13 research outputs found

    Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration.

    Get PDF
    Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAU P301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer’s disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathiespost-print8580 K

    Use of UV-C postharvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life

    No full text
    The effect of UV-C treatments (0.32, 0.97, 2.56, 4.16 and 4.83 kJ.m(-2) at 254 nm) on the physical-chemical properties [colour, texture, total phenolic content (TPC), weight loss (WL)], and mesophylic counts of whole tomato, was evaluated during 15 days at 10 A degrees C. During storage, the Ctr samples acquired faster red colour than all UV-C samples (higher a* and lower A degrees h values). Comparing texture of Ctr and UV-C samples at 15(th) storage day, an increase of 9 and 8 % on firmness of treated samples at low UV-C intensities (0.32 and 0.97 kJ.m(-2), respectively) was observed. At the end of the storage, Ctr samples showed ca. 4 Log(10) of mesophylic load, and the samples treated at 0.97 and 4.83 kJ.m(-2) revealed the lowest microbial load (1.9 and 3.2 Log(10), respectively). These results indicate that UV-C radiation, at an appropriate dose, combined with low storage temperature (10 A degrees C) are an effective method to preserve the postharvest life of tomato, without adversely affecting quality parameters.info:eu-repo/semantics/publishedVersio
    corecore