2,859 research outputs found
Probabilistic Aspects Of Brittle Fracture In Pressure-Vessel Steels
This paper addresses issues relating to the treatment of distributions of tensile strength, local cleavage fracture stress, and fracture toughness in pressure-vessel steels and weld deposits. Attention is drawn to the differences in behaviour between steels which have "quasi-homogeneous" microstructures and those which exhibit spatial heterogeneity. The differences are of greatest significance when statistical analysis is applied to distributions to derive "lower-bound" values. The findings from model systems are used to re-assess an earlier analysis of Weibull fracture stress and to comment on the use of a Master Curve methodology in the analysis of the "Euro" fracture toughness data-set
Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4
Microneme proteins are secreted from apicomplexan parasites during invasion of host cells and they play crucial roles in parasite-host cell adhesion. EtMIC4 is a 240 kDa transmembrane protein from Eimeria tenella that contains 31 tandemly arranged epidermal growth factor (EGF), like repeats within its extracellular domain. The majority of these repeats have calcium binding (cb) consensus sequences. Little is known about cbEGFs in apicomplexan parasites but their presence in microneme proteins suggests that they may contribute to parasite-host interactions. To investigate the potential role of cbEGFs we have expressed and correctly refolded a cbEGF triplet from EtMIC4 (cbEGF7-9) and demonstrated that this triplet binds calcium. Circular dichroism spectroscopic analysis of cbEGF7-9 demonstrates that the molecule undergoes a gradual change in conformation with increasing levels of calcium. In the presence of calcium, the triplet becomes resistant to proteolytic degradation by a variety of proteases, a characteristic feature of cbEGF repeats from higher eukaryotic proteins, such as fibrillin, suggesting that calcium binding induces the formation of a rigid conformation. Moreover, mass spectrometric mapping of the cleavage sites that are protected by calcium shows that these sites are located both close to and distant from the calcium binding sites, indicating that protection is not due to steric hindrance by calcium ions, but rather due to the overall conformation adopted by the triplet in the presence of calcium. Thus, the tandemly-arranged cbEGF repeats within EtMIC4 provide a mechanism whereby, in the calcium-rich extracellular environment, the molecule could adopt a protease-resistant, rigid structure that could favour its interaction with host cell ligands
Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight
Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug
Free-jet investigation of mechanically suppressed, high radius ratio coannular plug model nozzles
The experimental and analytical acoustic results of a scale-model investigation or unsuppressed and mechanically suppressed high-radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Nine coannular nozzle configurations along with a reference conical nozzle were evaluated in the Anechoic Free-Jet Facility for a total of 212 acoustic test points. Most of the tests were conducted at variable cycle engine conditions applicable to advanced high speed aircraft. The tested nozzles included coannular plug nozzles with both convergent and convergent-divergent (C-D) terminations in order to evaluate C-D effectiveness in the reduction of shock-cell noise and 20 and 40 shallow-chute mechanical suppressors in the outer stream in order to evaluate their effectiveness in the reduction of jet noise. In addition to the acoustic tests, mean and turbulent velocity measurements were made on selected plumes of the 20 shallow-chute configuration using a laser velocimeter. At a mixed jet velocity of 700 m/sec, the 20 shallow-chute suppressor configuration yielded peak aft quadrant suppression of 11.5 and 9 PNdB and forward quadrant suppression of 7 and 6 PNdB relative to a baseline conical nozzles during static and simulated flight, respectively. The C-D terminations were observed to reduce shock-cell noise. An engineering spectral prediction method was formulated for mechanically suppressed coannular plug nozzles
Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application: Single stream nozzles
A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields
Climate Change Impacts on Groundwater in MAPC Communities
Groundwater is important for human health and the environment but has often been overlooked in the development of climate change adaptation strategies. This is because groundwater is rarely visible, and because changes in groundwater levels are not as dramatic as extreme flooding events, coastal storms, and storm surge. The importance of groundwater for drinking water, natural resources, and streamflow is well documented. Groundwater levels are also important considerations in the design of pavements, underground infrastructure, foundations, on-site wastewater treatment systems, and in the remediation of hazardous waste disposal areas. Groundwater is especially important in the wet northeast, where groundwater levels tend to be shallow and impactful. It is typically assumed that on average groundwater levels are not changing. This is no longer true with climate change.
Groundwater is the world’s largest distributed source of fresh water and is important for both ecosystems and human consumption. Groundwater levels are affected directly by recharge (water infiltrating the ground surface and moving into the groundwater system) and water losses through groundwater discharge to surface water bodies and groundwater withdrawals from aquifers. Many factors influence the amount of groundwater recharge that occurs. These include precipitation, temperature, evapotranspiration, land cover and land use, soil moisture, and topography. Climate change is affecting the global water cycle by increasing rates of ocean evaporation, terrestrial evapotranspiration, and precipitation.
Precipitation, temperatures, and sea levels are all projected to increase in the northeast due to climate change. These factors can result in long-term and seasonal changes in groundwater levels potentially impacting drinking water supplies, water quality, the useful life of pavements and underground infrastructure, and flooding
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed
- …