15 research outputs found

    Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions

    No full text
    SiO2-based aerogels have been produced be removing a solvent (ethanol or hexafluoroisopropanol) from lyogels both above and below the critical temperature of the alcohols (in the range 210–260 and 160–220°C, respectively). The resultant materials have been characterized by low-temperature nitrogen adsorption measurements, X-ray diffraction, thermal analysis, scanning electron microscopy, X-ray microanalysis, and small-angle and ultrasmall-angle neutron scattering. The results demonstrate that removing the solvent 20–30°C below the critical temperature of the solvent yields silica that is characterized by higher specific porosity and has the same or a larger specific surface area in comparison with the aerogels produced by drying under supercritical conditions. The nature of the solvent used and the solvent removal temperature influence the size and aggregation behavior of primary clusters and the cluster aggregate size in the aerogels
    corecore