109 research outputs found

    Induced pluripotent stem cells from subjects with Lesch-Nyhan disease

    Get PDF
    Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine–guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND

    Worldwide barriers to genetic testing for movement disorders.

    Get PDF
    BACKGROUND AND PURPOSE: Despite enormous advances in identifying genetic variants responsible for many neurological diseases, access to genetic testing may be limited in clinical practice. The objective of this study was to assess worldwide access to genetic tests for movement disorders and factors impacting their utilization. METHODS: The Rare Movement Disorders Study Group of the International Parkinson and Movement Disorder Society designed an online survey electronically mailed to all 7815 members. RESULTS: Survey data completed by 1269 participants from 109 countries were analysed. Limited access to geneticists and genetic counsellors was reported in many world regions compared to Europe and North America. Availability of genetic testing was limited, with rates of access lower than 50%. Genetic testing for chorea was the most commonly available. For parkinsonism, dystonia, ataxia, hereditary spastic paraplegias and metabolic disorders, there was limited access to genetic testing in all countries compared to Europe and North America, with significant differences found for Africa, Central/South America, Asia. In many regions, genetic testing was supported by either private or public funding. Genetic testing was free of charge in Europe according to 63.5% of respondents. In North America, Africa, Central/South America, Asia and the Middle East access to free of charge genetic testing was by far significantly lower compared to Europe. CONCLUSIONS: This survey highlights difficulties in accessing genetic testing and individuals with expertise in genetics at the worldwide level. In addition, major disparities in genetic testing amongst world regions are highlighted, probably due to a variety of factors including financial barriers

    Plasticity and dystonia: a hypothesis shrouded in variability.

    Get PDF
    Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia

    Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach

    Get PDF
    According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype

    A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia

    Get PDF
    Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia

    The Pain in Dystonia Scale (PIDS)-Development and Validation in Cervical Dystonia.

    Get PDF
    BACKGROUND: A better understanding of pain in adult-onset idiopathic dystonia (AOID) is needed to implement effective therapeutic strategies. OBJECTIVE: To develop a new rating instrument for pain in AOID and validate it in cervical dystonia (CD). METHODS: Development and validation of the Pain in Dystonia Scale (PIDS) comprised three phases. In phase 1, international experts and participants with AOID generated and evaluated the preliminary items for content validity. In phase 2, the PIDS was drafted and revised by the experts, followed by cognitive interviews to ensure self-administration suitability. In phase 3, the PIDS psychometric properties were assessed in 85 participants with CD and retested in 40 participants. RESULTS: The final version of PIDS evaluates pain severity (by body-part), functional impact, and external modulating factors. Test-retest reliability showed a high-correlation coefficient for the total score (0.9, P < 0.001), and intraclass correlation coefficients were 0.7 or higher for all items in all body-parts subscores. The overall PIDS severity score showed high internal consistency (Cronbach's α, 0.9). Convergent validity analysis revealed a strong correlation between the PIDS severity score and the Toronto Western Spasmodic Torticollis Rating Scale pain subscale (0.8, P < 0.001) and the Brief Pain Inventory-short form items related to pain at time of the assessment (0.7, P < 0.001) and impact of pain on daily functioning (0.7, P < 0.001). CONCLUSION: The PIDS is the first specific questionnaire developed to evaluate pain in all patients with AOID, here, demonstrating high-level psychometric properties in people with CD. Future work will validate PIDS in other forms of AOID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Worldwide barriers to genetic testing for movement disorders.

    Get PDF
    BACKGROUND: Despite enormous advances in identifying genetic variants responsible for many neurological diseases, access to genetic testing access to genetic testing may be limited in clinical practice. OBJECTIVES: To assess worldwide access to genetic tests for movement disorders and factors impacting their utilization. METHODS: The Rare Movement Disorders Study Group of the International Parkinson and Movement Disorder Society designed an online survey electronically mailed to all 7815 members. RESULTS: Survey data completed by 1269 participants from 109 countries were analyzed. Limited access to geneticists and genetic counsellors was reported in many world regions compared to Europe and North America. Availability of genetic testing was limited, with rates of access lower than 50%. Genetic testing for chorea was the most commonly available. For parkinsonism, dystonia, ataxia, hereditary spastic paraplegias, and metabolic disorders, there was limited access to genetic testing in all countries compared to Europe and North America, with significant differences found for Africa, Central/South America, Asia. In many regions, genetic testing was supported either by private or public funding. Genetic testing was free of charge in Europe according to 63.5% of respondents. In North America, Africa, Central/South America, Asia and Middle East access to free of charge genetic testing was by far significantly lower compared to Europe. CONCLUSIONS: This survey highlights difficulties in accessing genetic testing and individuals with expertise in genetics at the worldwide level. In addition, we highlighted major disparities in genetic testing among world regions, likely due to a variety of factors including financial barriers

    Gene targeting in adult rhesus macaque fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT) has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology.</p> <p>Results</p> <p>A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term <it>in vitro </it>manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer.</p> <p>Conclusion</p> <p>The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.</p

    Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Get PDF
    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function
    corecore