2,677 research outputs found

    Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector

    Full text link
    We present results demonstrating the time resolution and ÎĽ\mu/e separation capabilities with a new concept of an EAS detector capable for measurements of cosmic rays arriving with large zenith angles. This kind of detector has been designed to be a part of a large area (several square kilometers) surface array designed to measure Ultra High Energy (10-200 PeV) Ď„\tau neutrinos using the Earth-skimming technique. A criteria to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.Comment: accepted by Astrophysical Journal on January 12 2015, 16 pages 3 Figure

    A branch-and-price algorithm for the temporal bin packing problem

    Get PDF
    We study an extension of the classical Bin Packing Problem, where each item consumes the bin capacity during a given time window that depends on the item itself. The problem asks for finding the minimum number of bins to pack all the items while respecting the bin capacity at any time instant. A polynomial-size formulation, an exponential-size formulation, and a number of lower and upper bounds are studied. A branch-and-price algorithm for solving the exponential-size formulation is introduced. An overall algorithm combining the different methods is then proposed and tested through extensive computational experiments

    Rich vehicle routing with auxiliary depots and anticipated deliveries: An application to pharmaceutical distribution

    Get PDF
    We present and solve a rich vehicle routing problem based on a practical distribution problem faced by a third-party logistics provider, whose aim is to deliver pharmaceutical products to healthcare facilities in Tuscany. The problem is characterized by having multiple depots, a heterogeneous fleet of vehicles, flexible time windows, periodic demands, incompatibilities between vehicles and customers, a maximum duration for the routes, and a maximum number of customers per route. A multi-start iterated local search algorithm making use of several neighborhoods is proposed to solve the problem. The algorithm has been tested on a large number of instances and obtained good results, both on the real case study and on a number of artificially generated instances

    Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition

    Full text link
    An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in AuAu quasi-projectile sources formed in Au+AuAu+Au collisions at 35 A.MeV. The excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 5 A.MeV excitation energy. In the same energy range the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.Comment: 4 Postscript figures, submitted to Phys. Rev. Lett. on 14-apr-199

    Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus

    Full text link
    We show that the optical and electronic properties of nanocrystalline silicon can be efficiently tuned using impurity doping. In particular, we give evidence, by means of ab-initio calculations, that by properly controlling the doping with either one or two atomic species, a significant modification of both the absorption and the emission of light can be achieved. We have considered impurities, either boron or phosphorous (doping) or both (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities occupy nearest neighbor sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of an electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between adsorption and emission spectra. In order to give a deeper insight in this effect, in one case we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tune the optical properties of silicon nanocrystals.Comment: 14 pages 19 figure

    The molecular class C acid phosphatase of Chryseobacterium meningosepticum (OlpA) is a broad-spectrum nucleotidase with preferential activity on 5'-nucleotides

    Get PDF
    The olpA gene of Chryseobacterium meningosepticum, encoding a molecular class C phosphatase, was cloned and expressed in Escherichia coli. The gene encodes a 29-kDa polypeptide containing an amino-terminal signal peptide typical of bacterial membrane lipoproteins. Expression in E. coli results in a functional product that mostly partitions in the outer membrane. A secreted soluble OlpA derivative (sOlpA) lacking the N-terminal cysteine residue for lipid anchoring was produced in E. coli and purified by means of two steps of ion exchange chromatography. Analysis of the kinetic parameters of sOlpA with several organic phosphoesters revealed that the enzyme was able to efficiently hydrolyze nucleotide monophosphates, with a strong preference for 5'-nucleotides and for 3'-AMP. The enzyme was also able to hydrolyze sugar phosphates and beta-glycerol phosphate, although with a lower efficiency, whereas it was apparently inactive against nucleotide di- and triphosphates, diesters, and phytate. OlpA, therefore, can be considered a broad-spectrum nucleotidase with preference for 5'-nucleotides. Its functional behaviour exhibits differences from that of the Haemophilus influenzae OMP P4 lipoprotein, revealing functional heterogeneity among phosphatases of molecular class C

    Mathematical models for multicontainer loading problems

    Get PDF
    This paper deals with the problem of a distribution company that has to serve its customers by putting first the products on pallets and then loading the pallets onto trucks. We approach the problem by developing and solving integer linear models. We start with basic models, that include the essential features of the problem, such as respecting the dimensions of the truck, and not exceeding the total weight capacity and the maximum weigh capacity on each axle. Then, we add progressively new conditions to consider the weight and volume of pallet bases and to include other desirable features for the solutions to be useful in practice, such as the position of the center of gravity and the minimization of the number of pallets.The models have been tested on a large set of real instances involving up to 46 trucks and kindly provided to us by a distribution company. The results show that in most cases the optimal solution can be obtained in small running times. Moreover, when optimality cannot be proven, the gap is very small, so we obtain high quality solutions for all the instances that we tested

    Compressibility and entropy of cold fermions in one dimensional optical lattices

    Full text link
    We calculate several thermodynamic quantities for repulsively interacting one-dimensional fermions.We solve the Hubbard model at both zero and finite temperatures using the Bethe-ansatz method. For arbitrary values of the chemical potential, we calculate the particle number density, the double occupancy, various compressibilities, and the entropy as a function of temperature and interaction. We find that these thermodynamic quantities show a characteristic behavior so that measurements of these quantities can be used as a detection of temperature, the metal-insulator transition, and metallic and insulating phases in the trap environment. Further, we discuss an experimental scheme to extract these thermodynamic quantities from the column density profiles. The entropy and the compressibility of the entire trapped atomic cloud also reveal characteristic features indicating whether insulating and/or metallic phases coexist in the trap.Comment: 9 pages and 11 figures. The published versio
    • …
    corecore