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Abstract
While seemingly simple, handover requires joint coordinate efforts from both partners, commonly in dynamic collaborative
scenarios. Practically, humans are able to adapt and react to their partner’s movement to ensure seamless interaction against
perturbations or interruptions.However, literature on robotic handover usually considers straightforward scenarios.Wepropose
an online trajectory generation method based on DynamicMovement Primitives to enable reactive robot behavior in perturbed
scenarios. Thus, the robot is able to adapt to human motion (stopping should the handover be interrupted while persisting
through minor disturbances on the partner’s trajectory). Qualitative analysis is conducted to demonstrate the capability of
the proposed controller with different parameter settings and against a non-reactive implementation. This analysis shows
that controllers with reactive parameter settings produce robot trajectories that can be deemed as more coordinated under
perturbation. Additionally, a randomized trial with participants is conducted to validate the approach by assessing the subject
perception through a questionnaire while measuring task completion and robot idle time. Our method has been shown
to significantly increase the subjective perception of the interaction with no statistically significant deterioration in task
performancemetrics under one of the two sets of parameters analyzed. This paper represents a first step towards the introduction
of reactive controllers in handover tasks that explicitly consider perturbations and interruptions.
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1 Introduction

Handover represents a quintessential cooperative task. As
such, humans perform it with ease, exchanging objects seam-
lessly and sometimes even without explicit communication.
However, successful cooperation depends on prior knowl-
edge and anticipatory behavior between the partners.

In human-to-human handovers, agents anticipate the
movement of the partner and adjust accordingly [1,2].
Furthermore, studies have shown that humans also prefer
robots that can replicate such behavior [1,3,4]. Most notably,
humans place a great deal of importance on temporal pre-
cision in handover tasks [5], as it is integral to satisfying
user experience. In a simple handover setting, without any
disturbances, this results in smooth and synchronized tra-
jectories from both partners. Naturally, if the interaction
includes disturbances or interruptions, controller design can
become significantly more complex. Even in the interaction
between humans, anticipatory control can fail on a higher
level. As an example, imagine a practical joke of interrupt-
ing a handovermid-way,while the partner’s hand still reaches
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for the air. To overcome this, the receiver would have to react
quickly, either to stop or target a new position, possibly on
a lower control level. Namely, by promptly and intuitively
adjusting the trajectory of the hand, as opposed to a higher
level of control which would be more akin to a pre-planned
state machine (i.e. recognizing the change in the state of
the joint task and updating its behavior accordingly). Never-
theless, the implications of disturbances or perturbations on
joint tasks are noticeable in real-world scenarios where unex-
pected events happen or partners get engaged in other tasks
[6]. More formally, addressing these issues could improve
Human-Robot Collaboration (HRC) safety and satisfaction.
In an industrial setting, a robot could endanger human work-
ers by invading their workspace when they are not ready to
receive an object. Hence, the development of controllers that
are robust to perturbations and thus improve cooperation and
safety metrics, is warranted. To summarize, such a controller
should be capable of stopping the handover should the partner
stop or move away. However, if there are some minor dis-
turbances, and the partner persists in reaching for the object,
the robot should comply. Additionally, the HRC problem
is further constrained by safety requirements and desired
performance. The robot should be compliant to human con-
tact, and should not generate trajectories that humans find
threatening. Conversely, the generated trajectories should be
smooth and efficient, representing the expected behavior of
a human partner.

To this end, in this work, we propose an online trajec-
tory generation method for robust robot-to-human handover,
based on Dynamic Movement Primitives (DMP) [7]. The
DMP is used to generate a trajectory online and to modulate
the speed of such trajectory to react to disturbances and coor-
dinate with the human partner. This allows for an interaction
that is safe, responsive, and robust to disturbances or inter-
ruptions of the handover. Furthermore, the added safety and
coordination can be realized without deterioration of task
performance metrics commonly discussed in the handover
literature [8], while improving the quality of the interac-
tion. Primarily, to the best of our knowledge, addressing
the problem of being robust to interruptions or unexpected
movements with online trajectory generation has never been
addressed explicitly.Nevertheless, it can be considered a nec-
essary step for the application of robot-human handover in
practical contexts, and our work aims to address it.

The paper is outlined as follows. First, in Sect. 2 a brief
overview of the related work is presented. Then, in Sect.
3 a mathematical framework for the proposed approach is
formalized andSect. 4 presents a detailed report of the robotic
implementation. Next, in Sect. 5 methods for experimental
evaluation of the proposed method are specified, and results
are presented in Sect. 6. Finally, in Sect. 7 the results and
their implications on robotic handover and HRC in general
are discussed.

2 RelatedWork

As there is an ever-increasing interest in the development of
HRC applications, robotic handover has also garnered pop-
ularity in recent robotic literature as a fundamental action
required in most contexts with physical collaboration. How-
ever, the implementation of robotic agents that can handover
seamlessly (as humans do) is still an open problem. Ortenzi
et al. [8] present a comprehensive review of the handover in
a recent survey focused on robotic applications.

2.1 Toward Human-Like Handover

By definition, handover is a joint action between a giver and
a receiver. Accordingly, when humans hand over objects they
are cooperating, both temporally and spatially [8]. Success-
ful joint interaction is dependent on properly perceiving and
anticipating the partner’s actions. Furthermore, a study by
Koene et al. [9] has shown that humans place more relative
importance on temporal precision, as opposed to spatial.

Communication has a great influence on cooperation, and
thus several studies explore explicit forms such as speech [5],
gaze [10], tactile feedback [11] or gestures [12] to communi-
cate the intent.Humans are capable of predicting the partner’s
intention without explicit communication [2] and adjusting
their own motion accordingly [1]. However, studies examin-
ing the exploitation of human motion to communicate intent
are not as prevalent. Data-driven approaches have been used
to exploit kinematic features for handover detection [13], and
identification of important physical cues during the interac-
tion [14]. Even more implicitly, humans use sensorimotor
communication to convey intent in joint actions by adjusting
the motion of their trajectories [15]. As the method proposed
is online, an implicit communication conveyed by themotion
of the partner’s trajectories is suitable for fast adaption of
robotic trajectory.

2.1.1 Reacting to Perturbations

Literature on robotic handover rarely considers cases in
which the handover could be interrupted due to other tasks or
someperturbations.Most notably,Huang et al. [3] propose an
adaptive controller for the robotic giver which considers the
occupancy of the human receiver. Similarly, they explore the
influence of adaptive robot behavior on subjective and task
performance metrics during a handover. In contrast to our
work, the adaptive approach the authors propose is based on a
finite state machine (FSM). As the examined setting (unload-
ing dishes) consists of multiple robot tasks (reach, grasp,
retrieve, give, handover, retract) which are repeated through-
out, a high-level control strategy is warranted. Instead, the
focus of our method is on reacting to perturbation given the
permanence of the handover intention on the robot’s side. As
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an example, consider the case when a high-level controller
is too slow (or fails) to recognize when the handover should
be interrupted or adjusted, or when it starts the handover at
the wrong time (e.g. too soon).

The approach we propose aims at modulating the interac-
tion continuously, instead that on a symbolic level, acting
directly on how the trajectory is generated. As such, the
controller is robust to perturbations or stoppages that might
hinder the human receiver, while increasing low-level safety
should the receiver disengage from the handover. Further-
more, the proposed method can be integrated with others that
act on a higher level of the control loop, usingmore elaborate
methods to interpret human actions, like the one proposed by
Huang et al. [3]. In such context, the proposed approach could
lower the requirements of the FSM in terms of reaction time
and precision in the interpretation of the human activity (e.g.
to start/stop the handover), enabling a smoother application
tomore complexHRC tasks. Thus, by considering the control
on a lower level we can more closely address coordination,
safety, and efficiency between the partners when the robot is
engaged in the “give” phase.

2.2 Online Trajectory Generation for Robotic
Handover

Successful HRC implementation depends on robustness,
reactivity, and context awareness [8,16]. Adaptable behavior
is a requirement if changes in the environment and partner
behavior are considered. A pre-planned approach could sat-
isfy these requirements only if all aspects of interaction are
known, which is not the case considered in this work. Thus,
we propose an online method for trajectory generation.

The problem of generating a suitable trajectory for a
robot-human handover has been addressed with a wide range
of different methods by the research community. Addition-
ally, numerous methods of generating suitable trajectories
have been proposed also in the more general context of
human-robot interactions, such as minimum-jerk methods
[17] or optimization-based methods [18] over legibility or
predictability metrics.

Another notable line of work can be identified in the appli-
cation of techniques that try to learn an underlying correlation
between different parts of trajectories (either of those of the
same agent, between two agents, or both). During the execu-
tion, observing the action of the partner, the robot can adapt
reactively by exploiting the learned correlation. To this end,
Probabilistic Movement Primitives (ProMP) [19], Interac-
tion Primitives [20], and Interaction Meshes [21] have all
been applied to generate suitable trajectories for typical HRI
tasks, including handover [19,20,22].

Given that one of the main objectives of the proposed con-
troller is to adapt through unexpected perturbations, it would
be complex to directly apply such methods: the fundamental

issue is that a general perturbation is unpredictable, and can
happen in any possible way. As such, learning what to do
in such cases from recorded human-human interactions can
become quickly impractical due to an exponential growth of
possible cases. To make a practical example, let’s consider
that the human reaching for the object receives an unexpected
push against his arm: considering variations of the relative
positions of the two agents, the direction of the push, and its
magnitude, would lead to one specific perturbation requir-
ing many different training examples. A different way of
exploiting learned correlations could be to detect whether
the human is currently engaging or not in a handover, inter-
preting his actions. In such case, the controller could then
implement a (learned or hard-coded) reaction to a situation
when it detects that the human is not moving for handover.
This strategy can be seen as akin to the work performed by
Huang et al. [3], where the robot has to decide when and how
to engage in the handover. Themethod proposed here follows
similar reasoning, albeit aiming to address a lower level of
reactivity, prioritizing simplicity and efficiency. This focus
also comes from the practical consideration that an analyti-
cal and simple approach can lead to a more standardized and
predictable behavior of the system, which may be desired in
the case considered by this work.

2.2.1 DMP

BothDMP and dynamical systems have been already applied
in this context, with various degrees of success. The main
benefit of this type of approach is the ability to generate a tra-
jectory online and in real-time. Additionally, this allows the
robot to react to changes in the environment without having
to re-plan the whole motion. In Ref. [23] the authors devel-
oped a controller basedon coupled dynamical systems,which
is inspired and modeled after data recorded from human-
human handover experiments. However, the controller relies
on an estimation of the shared weight of the object, which
can prove difficult to extend to different objects or handover
directions. In Ref. [24] the coupling of hand transport and
finger motion is analyzed in humans. Then, the results are
applied to develop a controller based on coupled dynamical
systems, which results in smooth reach-to-grasp motions.
Finally, in Ref. [25] DMP have been directly applied to the
problem of robot-to-human handover. Dependence on the
human’s motion is included only as a target for the DMP,
which is considered to always be the partner’s hand instead
of a predicted target position. However, should the human
retreat the hand before taking the object, the robot would still
converge to the hand of the partner, representing a potential
danger if the robot cannot recognize it and stop the handover
fast enough. This is also potentially in contrast with the pref-
erence for faster handover shown in the same work.
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3 Mathematical Framework

Dynamic Movement Primitives are a method of generating
trajectories as the evolution of virtual dynamical systems.
The method, introduced by Ijspeert et al. [7], allows the
learning and reproduction of both non-periodic and periodic
trajectories and has seen several extensions for different pur-
poses. Here, we introduce briefly the basis of the method for
the generation of non-periodic trajectories; for further details,
the reader is referred to [26].

For simplicity, let’s consider a mono-dimensional trajec-
tory with just one degree of freedom (DOF) x(t), with initial
state x(t0) = x0 and desired final goal x(t f ) = g. The DMP
method considers the evolution of this trajectory as generated
by a second-order dynamical system similar to the classical
mass-damper-spring model, called transformation system:

τ 2 ẍ = αx (βx (g − x) − τ ẋ) + f (s) (1)

where αx and βx are positive parameters of the system and τ

is its time constant. In the rest of this paper we will consider
a critically damped system, with βx = αx

4 . The forcing term
f (s) can be used to shape the evolution of the trajectory and
is usually defined as

f (s) = fnl s(g − x0) (2)

where fnl is a generic non-linear function approximator,
(g − x0) is a scaling factor and s is a phase variable that
decreases monotonically from 1 to 0 as the system evolves.
As s vanishes, the effect of f (s) on the system does too,
and x(t) converges stably toward g. The evolution of s is
determined by the canonical system, typically chosen as

τ ṡ = −αss (3)

with τ again as the time-constant of the system and αs a
positive parameter. This framework can easily be extended
to multiple DOFs by considering one transformation system
for each DOF and a single common canonical system. In this
way, different DOFs are kept coordinated by the shared phase
variable.

3.1 Coupling Terms

A major advantage of the DMP framework is the possibility
to obtain a complex behavior of the system by adding seem-
ingly simple coupling terms, either spatial or temporal, to
the original formulation. In the following, we will refer to a
DMP with the terms

τ 2 ẍ = αx (βx (g − x) − τ ẋ) + f (s) + Cs (4)

τ = τ0(1 + Ct ) (5)

where Cs and Ct represent the spatial and temporal coupling
terms, respectively. Ideally, the evolution of the trajectory
should react to what the human partner is doing. This is
needed in situationswhere, for example, the human interrupts
the handover and retreats their hand. Similarly, in situations
where they stop the hand and go back to the execution of the
handover after a few moments, or reengage in the handover
after executing a secondary task. Furthermore, it may be of
interest to adjust the speed of the movement depending on
the speed of the human partner [25].

These objectives can be accounted for by considering cou-
pling terms that depend on the speed at which the partner’s
hand is approaching the final handover position. However,
the system should distinguish between a case where the part-
ner’s hand is stationary because it has already reached the
final position and a case where it has stopped midway for
some other reason. Furthermore, it shouldn’t have to rely
excessively on the accuracy of the estimation of the final
handover position.

As in this work we focus on the temporal coordination of
the interaction, we assume that we have an estimate of the
final handover position g. This is in line with the findings that
humans place more importance on temporal coordination,
compared to spatial, during handovers [9].Given g, we define
d as the distance between the partner’s hand and the final
handover position, with an initial value d(t0) = d0 at the
start of the handover. The following coupling terms are then
proposed:

d = ‖g − xhand‖ (6)

¨̃d = αd

(αd

4
(d − d̃) − ˙̃d

)
(7)

Ct = ktσd

(
d̃

d0

)
σḋ

( ˙̃d
)

(8)

Cs = −αxτ ẋ ksσd

(
d̃

d0

)
σḋ

( ˙̃d
)

(9)

with

σi (y) = 1

1 + exp (−ai (y + δi ))
(10)

where (7) is a second-order low-pass filter for the measured
distance d, kt and ks are positive values, and σi (y) is a sig-
moid function with steep coefficient ai and x-axis offset δi .

3.1.1 Intuition Behind the Coupling Terms

The proposed coupling terms are based on two assumptions:

1. If the human partner is moving with “enough” speed
toward the final location of the handover (or to a point
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Fig. 1 The evolution of the
trajectory of the robot, x(t), is
modulated by the distance d(t)
between the hand of the
participant and the final
handover position, g

in proximity), it can be interpreted as if he is engaging in
the handover.As such, the robot should accelerate towards
the final location. This effect is given by the sigmoid σḋ ,
and modulated by its parameters.

2. The closer the human’s hand is to the final location, the
less we should use its approach speed to evaluate his
engagement in the handover. An extreme example of this
is when the human partner has already reached out com-
pletely and is waiting for the robot to pass the object.

The mathematical effect of the two coupling terms can be
considered intuitively as increasing the mass (with Ct ) and
the damping (with Cs). The extent to which they increase
is modulated by the two sigmoids and the values of kt and
ks . The presented formulation has the added benefit that the
coupling terms cannot generate an unsafe evolution of the
dynamical system, as they can only slow down and dampen
the system.

Finally, the adaptation to the human partner is modulated
mainly by σḋ , while the main objective of σd is to reduce
the prevalence of the other term once the hand closes in on
the final position. For this reason, during all the experiments
the values of ad and δd were kept fixed to 13.0 and −0.35,

respectively, to produce an almost linear response for
(

d̃
d0

)
∈

[0.2, 0.5]. These values have been chosen intuitively and do
not represent an optimum of some kind. If needed, this term
can also be easily adapted to consider absolute distances,
instead of relative ones. Figure 1 shows an example of the
physical setup, highlighting the distance from the goal and
the trajectory of the robot.

3.2 Virtual Compliance

To guarantee both the safety of the participant and to enable
a more human-like interaction during the exchange of the

object a virtual compliance method is also implemented
as an additional extension to the DMP. Particularly, as the
joints of the robot used in the experiments are controlled
with position/velocity commands, more advanced methods
like computed torque control or backstepping control are not
applicable. In addition, compliance cannot be implemented
by controlling directly the joints’ torques.

The DMP framework presents a way of naturally includ-
ing a compliant behavior of the end-effector. As the trajectory
is generated through a simulated dynamical system, corre-
sponding to a mass-spring-damper system, external forces
can be sensed and applied to the virtual system. A compliant
behavior at the end-effector is naturally obtained by modify-
ing the forcing term to be

f (s) = fnl s (g − x0) + kext f ext (11)

where fext are the sensed external forces and kext is a gain
term that can be adjusted to modulate the compliance.

4 Robotic Implementation

4.1 ROS Setup and Overall Architecture

The proposed control architecture has been implemented
using the Robot Operating System (ROS) [27]. To this end,
ROS nodes have been used for:

• Reading the input data regarding the position of the
human hand;

• Collecting and processing the data from the force-torque
sensor;

• Controlling the opening/closing of the robot’s hand;
• Generating the trajectory as presented above;
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• Running the inverse kinematics of the robot to follow
such trajectory.

The block diagram of the proposed implementation is
shown in Fig. 2.

4.2 Robot

AUR5CB-series robot fromUniversal Robots has been used
to perform experiments. Controlling the robot via a ROS
interface was possible by using the official drivers developed
and provided by the manufacturer, which allow connecting
with Ethernet to the robot.

Closed-loop inverse kinematics has been implemented as
a variation of the classical one based on the Jacobian damped
pseudo-inverse [28].

4.3 End Effector and Force Sensor

To hold the object, the robot was equipped with an IH2
Azzurra hand (Prensilia SRL), [29] as the end-effector. A
six-axis force-torque sensor (model HEX-70-XE, OnRobot)
was mounted between the robot and the hand, to measure the
forces applied at the robot hand. As the focus of this work
is on the trajectory generation, to release the object a simple
strategy based on a force threshold was used: when the abso-
lute magnitude of the force read from the sensor exceeded
a preset value, the opening of the hand was triggered. Fur-
thermore, to avoid opening the hand mid-way due to inertial
forces from the robot hand, a second threshold was added on
the distance from the final position. The opening was trig-
gered when both conditions (proximity to the final position
and force readings above a certain value) were satisfied. The
parameters for the release were kept constant during all the
experiments.

4.4 Perception

To read the position of the human partner’s hand a “Vicon”
motion capture system with 8 active cameras (2 Vero cam-
eras, 6 Bonita cameras, Vicon Ltd.) has been used. A custom
motion capture skeleton was created for the right arm of par-
ticipants. Before each experiment, it was refitted to every new
participant, following the pipeline suggested by the manu-
facturer. The only measure fed to the controller is the hand
position, which is used to compute the distance and the speed
of approach to the final handover position.

5 Methods for Experimental Evaluation

In this section, methods for two analyses are presented.
Firstly, a framework for demonstration of robot coordina-

Fig. 2 Simplified block diagram of the setup

tion in different handover scenarios and qualitative analysis
is presented in Sect. 5.2. Then, a formal experimental study
is outlined in Sect. 5.3. The latter study aims to validate the
proposed approach through objective performance metrics
and a subjective survey on user experience.

5.1 Parameter Settings

To perform the trials, three different configurations of the
controller were used: Non-Reactive (NR), Reactive-1 (R1),
and Reactive-2 (R2). The first corresponds to a controller
with no coupling term to coordinate with the human, similar
to a general motion primitive for a handover, while the other
two configurations differ in the coupling terms.

The specific values of R1 and R2 are reported in Table
1 and were chosen after a pilot study [30] was performed
to examine the proposed approach. This study highlighted a
spread in the preferences of participants, with some prefer-
ring faster robot reactions and others preferring a smoother
and slower behavior. Furthermore, it showed how different
parameters could produce similar behaviors and perceptions
of them. For these reasons, the two sets of parameters were
hand-picked by the authors, corresponding to a (subjectively)
slower reacting (R1) and faster reacting (R2) robot.

During all the trials the base values of the DMP were kept
at:

τ0 = 1.0 αx = 20.0 βx = αx

4
αd = 20.0 kext = 0.7

Table 1 Selected parameters
used in the two configurations
Reactive-1 (R1), Reactive-2
(R2)

Parameters

αḋ δḋ ks kt

R1 6.7 0.23 5.0 4.4

R2 7.8 0.08 7.9 5.4
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The non-linear part of the forcing term fnl was learned with
a K-nearest neighbors method to produce minimum-jerk-
like trajectories that converge to the target in ∼ 1.3s. This
method has been chosen as it is simple, produces a smooth
interpolation, and exhibits a predictable behavior outside
the range of the data used to generate it. Furthermore, it is
already available in common scientific computing libraries.
The implementation used has been the one provided by the
SciKit Learn Python library [31]. The reference minimum-
jerk trajectory, to be learned, has been generated analytically.

In all the presented cases, the initial distance δ0 is mea-
sured at the start of the interaction. As such, during the
randomized trials with participants, it is measured consid-
ering the Home position shown in Fig. 3a.

5.2 Robot Coordination in Different Handover
Scenarios

To demonstrate the capabilities of the proposed method, and
to show the influence on the coordination with a human, the
controller has been applied in three typical handover scenar-
ios:

• Straightforward handover;
• Handover with a stop;
• Handover with an external push (while reaching out).

These scenarios are performed by one of the experimenters
with the robotic setup described in Sect. 4.

In the “straightforward handover” scenario both the
human and the robot reach out to the handover location at
the same time. In the “handover with a stop” scenario, how-
ever, after both the robot and the participant start, the human
pauses briefly and then continues. Finally, in the “handover
with an external push” scenario, there is an external distur-
bance (a small push) from an external agent (another one of
the experimenters) on the user’s arm while they are reach-
ing the handover location. In the “straightforward handover”
scenario, both the human and robot are following minimum-
jerk-like trajectories and are expected to reach the goal at the
same time. On the other hand, the other scenarios represent
perturbations that might impede the interaction and require
adaptation on the robot side.

To characterize the coordination effects, three metrics are
considered:

1. Normalized distance of the robot from the goal, as a func-
tion of the human distance from the goal.

2. Normalized distance of the robot and the human from the
goal over time.

3. Normalized speed of the robot and the human towards the
goal over time.

as these metrics can provide insight into the correlation
between partners’ movements.

5.3 Randomized Trials

To assess and validate the efficacy of the proposed method,
21 participants were asked to perform an experiment collab-
orating with the robot with one within-participant factor, i.e.,
the behavior of the controller.

5.3.1 Experimental Protocol

Twenty-one participants (right-handed, 10 females and 11
males, aged 22–34) took part in the experiment. None of the
participants reported any history of sensory or motor impair-
ments and all of them claimed to have normal or corrected
to normal vision. Informed consent in accordance with the
Declaration of Helsinki was obtained from each participant
before conducting the experiments.

To evaluate the behavior of the proposed controller, the
experiment has been setup as a perturbed handover scenario,
inspired by an industrial assembly task where either:

• The robot starts at the wrong time, or
• The robot starts correctly, but the participant has changed
their mind.

The object used for the handover was an empty 0.5l plas-
tic bottle (cylinder diameter ∼ 60mm, length ∼ 210mm).
Participants, starting from a pre-defined home position (Fig.
3a), were required to perform a task consisting of multiple
phases:

1. Reach for a box laying on a small table in front of them,
Fig. 3b;

2. Move the box on another small table, placed on their side,
Fig. 3c;

3. Reach back for the bottle, in the pre-determined handover
position, Fig. 3d;

4. Place the bottle inside the box.

The box is intentionally placed close to (∼ 25 cm) the final
handover location. Each participant has been explained the
task and the capability of the robot to move at different
times and speeds. Then, each participant was trained to per-
form the task by executing some training attempts with the
robot stationary in the final position. Before the experiment,
the motion capture skeleton was calibrated for each partici-
pant. A verbal signal was given to the participant to let them
start performing their task. Just before the participant was
instructed to start, the robot was given the command to begin
performing the handover. As a result, the robot was allowed
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Fig. 3 Different phases of the
task (1–3 of the phases
described in Sect. 5.3.1 ). From
left to right: the robot initiates
the execution of the handover
and the human is given the
signal to initiate the task; as the
human moves for an object
close to the handover location,
the robot accelerates (gently)
toward the final position; the
human interrupts the handover
to place the object, the robot
slows down; as the human
moves back for the handover,
the robot accelerates toward the
final position

to move along the generated trajectory even before the par-
ticipant received their signal.

Three parameter settings discussed in Sect. 5.1 were ran-
domized over 15 trials (five per setting). In total, the whole
procedure lasted approximately 45 min. This study was
approved by the local ethical committee of the Scuola Supe-
riore Sant’Anna, Pisa, Italy (approval number 02/2017).

5.3.2 Data Analysis

For the purposes of data analysis task performance metrics
and a subjective survey were taken during the experiment.

Two objective metrics were recorded to assess the robot’s
performance:

1. Task completion time.
2. Percentage robot idle time.

Task completion time was defined through phases presented
in Sect. 5.3.1. Thus, it was the time from the onset of Phase 1
(human initiates the motion) until the end of Phase 3 (hands
collide). Percentage robot idle time is calculated as a per-
centage of time the robot spent idling (Vr ≈ 0) out of the
total Task Completion Time.

After each trial participants were asked to give their eval-
uation based on a survey similar to Ref. [25]:

• It was easy to receive the object.
• I was satisfied with the interaction.
• The interaction was comfortable.
• I felt safe during the interaction.

Answers to the survey were given on a 9-point scale. It is
worth noting that participants were explained that the object
will always arrive at the same location and that the release of
the robotic hand will always be the same.

As an additional check for differences across the repeated
trials, data were separated into three groups (first, middle,
and last 5 trials) and the correlation between these groups
was analyzed.

6 Results

6.1 Robot Coordination in Different Handover
Scenarios

To qualitatively evaluate whether the proposed methods
could coordinate the robot even in the presence of perturba-
tions, we consider the plots shown in Figs. 4, 5, and 6.

Figure 4 shows a comparison of the two normalized dis-
tances over time, for each of the considered cases. A point

(xk, yk) in the plot corresponds to
(
1 − dh(tk )

dh(t0)
, 1 − dr (tk )

dr (t0)

)
,

where dh and dr correspond to the distances of the human
and the robot from the final handover position g, respectively.
Intuitively, the handover starts in (0, 0), and ends in (1, 1),
when both agents reach the goal. The center diagonal, shown
as a dashed line in Fig. 5, is considered as a hypothetical refer-
ence of a “perfectly coordinated” handover, with both agents
having covered the same relative distance at each instant.
This choice considers the typical case of a human-to-human
(unperturbed) handover as reported by Shibata et al. [32],
with the derivative of the distance between the two hands
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Fig. 4 Comparison of the (inverted) normalized distance from the goal.
The value plotted is 1 − d

d0
. For each graph, the x-axis corresponds to

the human and the y-axis to the robot. The value at the start of the inter-

action is zero, while 1.0 correspond to having reached the goal. The
diagonal represents a hypothetical perfectly coordinated interaction

Fig. 5 Normalized distance from the goal over time. The value plotted is d
d0
. The continuous line represents the human, the dashed line represents

the robot. Crosses represent the points of external push

following also a bell-shaped minimum-jerk profile as the
two hands converge. Considering also the typical minimum-
jerk-like trajectory of both hands, reported in the same study,
such a case would produce the center diagonal line. Thus, we
considered that line as representative of a hypothetical ref-
erence interaction. This approach to illustratively describe
coordination borrows from a similar approach in the neuro-

science literature, which presents equivalent ways to assess
motor coordination during grasp [33] and to compare grasp-
ing force, e.g. healthy versus impaired participants, adults
versus children, unimpaired digits versus anesthetized ones
[34] [35].

By observing normalized distance to goal (Fig. 5) and nor-
malized speed (Fig. 6)we can inspect howdoes humanmove-
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Fig. 6 Normalized speed
toward the goal over time. The

value plotted is ḋ
max(ḋ)

. �

represents the delay in speed
peaks between the human and
the robot in respective trials.
Crosses represent the points of
external push

ment influence the robot’s behavior. Correlation between
changes in robot (dashed line) and human (continuous) rep-
resents adaptive behavior from the controller.

6.2 Randomized Trials

6.2.1 Task Performance Metrics

Since the distribution is assumed to be non-normal, to
calculate the 95% confidence interval around the mean,
bias corrected and accelerated (BCa) bootstrap method is
used. Then, Kruskal-Wallis non-parametric ANOVA test was
used to calculate p-values between the parameter settings.
Detailed results are reported in Table 2.

Figure 7 compares themean task-completion timebetween
the three sets of parameters. While there was a significant
difference in p-value between NR and R1 (p = 0.002), no
statistical significance could be claimed between NR and R2
(p = 0.060).

Percentage robot idle time is represented in Fig. 8. Thus
it can be seen that the robot with the NR controller spent
considerable time idling. There was a significant difference
between NR and both reactive controllers (p < 0.001).

Fig. 7 Task completion time by parameter settings. Pairwise compar-
isons are computed with a non-parametric Kruskal-Wallis test. Error
bars show 95% confidence interval computed with a non-parametric
bootstrapmethod. Significancemarks forp-values (< 0.05) are reported
between the NR and reactive controllers

Additionally,Kruskal-Wallis non-parametricANOVAtest
was used to calculate p-values between the early, middle, and
late 5 trials for the task performance metrics. In terms of the
percentage robot idle time, therewas no significant difference
across the trial repetitions. There was a statistically signifi-
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Table 2 Task completion time
and percentage robot idle time
mean values with 95%
confidence intervals for different
parameter settings. These values
are reported also in Figs. 7 and 8

Task completion time Percentage robot idle time

Parameter settings Mean [s] 95% CI [s] Mean [%] 95% CI [%]

NR 3.514 −0.233/+0.348 53.35 −5.97/+4.93

R1 4.128 −0.311/+0.418 22.97 −4.49/+5.33

R2 3.774 −0.271/+0.402 22.08 −3.81/+4.91

Fig. 8 Percentage Robot Idle Time by parameter settings. Pairwise
comparisons are computed with a non-parametric Kruskal–Wallis
test. Error bars show 95% confidence interval computed with a non-
parametric bootstrap method. Significance marks for p-values (< 0.05)
are reported between the NR and reactive controllers

cant difference between the first andmiddle (p = 0.037), and
first and last (p = 0.002) 5 trials in terms of the task comple-
tion time. This is however to be expected due to participants
improving and getting accustomed to the task.

6.2.2 Subjective Metrics

Again,Kruskal-Wallis non-parametricANOVAtestwas used
to calculatep-values between theparameter settings, andBCa
bootstrappingwas used to calculate the 95%confidence inter-
val around the mean. The results are reported in Table 3.

In Fig. 9 differences in subjective response between the
parameter settings are presented. There was no significant
difference in the evaluation of how easy it was to receive
the object (p > 0.05). For all the other criteria, there was a
significant preference for reactive controllers. This was par-
ticularly the case in terms of satisfaction and safety.

Additionally,Kruskal-Wallis non-parametricANOVAtest
was used to calculate p-values between the early, middle,
and late 5 trials for the subjective metrics. There was no
significant difference across the repeated trials for all the
subjective metrics.

7 Discussion

7.1 Coordination Analysis

By examining the Fig. 4, it can be noted that in the “stop” and
“external push” scenarios the controller is able to adapt to the
unexpected disturbances by modulating the speed and thus
performing the final part of the trajectory in synchrony with
the human. It is also interesting to consider the “straightfor-
ward” handover scenario, where the robot and the human are
almost perfectly coordinatedwhen the controller is not active
(NR). As the handover can proceed with no interruptions this
is to be expected. Furthermore, in the same case, it can be
assumed from the plots of Fig. 4 that the controller with R1
and R2 parameters produced an uncoordinated behavior on
the robot part. However, as the plot does not show time-
relevant information, in a faster execution (as is the case for
the “straight” scenario) the plot is more sensitive to smaller
delays on one part. This can be verified observing Fig. 5.

After the experiments, it has been noticed by the authors
that the reactive controllers (either with R1 and R2 param-
eters) consistently produced a trajectory of the robot with
peaks in the speed profile delayed with the respect to the
human one (as shown in 6). The trajectory reaches peak
speed around 0.3–0.5 s later (Fig. 6), a value similar to a
typical human sensorimotor delay [36]. After further inves-
tigation, it has been found that no specific single part of the
implemented architecture (in particular, low-pass filtering)
can produce directly such a delay. As such, the behavior
can be attributed to the parameters of the coupling terms
in R1 and R2. Furthermore, these parameters were selected
from two best sets learned from participants’ preferences in
Ref. [30] (i.e. the delay has never been explicitly considered).
Thus, this finding is in line with the human preference for
human-like sensorimotor delays, as shown in Ref. [36]. Fur-
ther investigation is warranted, to see if such metrics could
drive the learning of parameters in such systems.

7.2 Randomized Trials

The task is designed to represent a challenging setting for
the proposed controller, as well as to highlight the aspects
of collaboration that depend on mutual cooperative efforts
between the agents (i.e. coordination, safety, fluency). Thus,
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Table 3 Subjective survey mean
values with 95% confidence
intervals for different parameter
settings. The same results are
reported in Fig. 9 for an easier
visualization

Ease Satisfaction

Parameter settings Mean 95% CI Mean 95% CI

NR 7.94 −0.31/+0.24 6.84 −0.48/+0.41

R1 8.05 −0.22/+0.17 7.98 −0.22/+0.18

R2 8.08 −0.19/+0.15 8.06 −0.23/+0.16

Comfort Safety
Parameter settings Mean 95% CI Mean 95% CI

NR 7.24 −0.47/+0.36 7.05 −0.52/+0.42

R1 8.15 −0.19/+0.15 8.54 −0.17/+0.12

R2 8.18 −0.21/+0.15 8.44 −0.19/+0.13

Fig. 9 Data from the subjective
metrics evaluation given by
participants. Pairwise
comparisons are computed with
a non-parametric
Kruskal–Wallis test. Error bars
show 95% confidence interval
computed with a non-parametric
bootstrap method. Significance
marks for p-values (< 0.05) are
reported between the NR and
reactive controllers

the initial position of the box was purposely placed close
(∼ 25 cm) to the handover location. Given the proposed
coupling terms, this represents an explicitly bad case for the
controller, as the initial target of phase 1 requires the hand
also to approach the handover location.

In doing so, amore elaborateHRC task is set up.By engag-
ing the human receiver in a secondary task prior to handover,
additional constraints are placed on the interaction. This not
only represents a realistic scenario from a real-world cooper-
ative setting, but additional coordinate efforts required from
the agents will better demonstrate how different parameters
influence the perceived interaction and task metrics. Further-
more, as the human cannot actively pay attention to the robot

for the whole duration of the task, the perceived safety of the
interaction becomes more prominent.

As defined in Sect. 5.3.1, for practical purposes, the task
completion time is reported until the hands collide. This is
done to give a clear and precise end-point and to focus on the
parts of the task the work focuses on (i.e. trajectory genera-
tion). Thus, the last phase (Phase 4) serves only as a natural
conclusion of a multi-phased task, giving a final goal to the
participants.

While there are some objective task performance met-
rics suggested for the robot handover scenarios [8], many
of them are difficult to apply to the proposed scenario. For
example, concurrent activity could only be fairly analyzed
in the handover phase of the task and only for the reactive
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trial types. Otherwise, simply reporting the % concurrent
activity would lead to a great mismatch in phases when the
robot is not intended to move. For this reason, we focused
on concurrent movement and related metrics in Sect 6.1.
For similar reasons, the percentage robot idle time should
be inspected cautiously, especially in the NR setting, as the
robot spends the majority of interaction time idling. This
does not necessarily deteriorate performance, as the robot
does not have any further assignments after reaching the final
location, however, the robot idling in the shared workspace
could be deemed as an obstruction. Additionally, robot idling
could deteriorate the perceivedquality of collaborationwhich
might correlate to the results of the subjectivemetrics in Sect.
6.2.2. Further, as the human is active during the whole length
of interaction, human idle time is virtually non-existent.

FromFig. 7 it can be noted that theNR setting is somewhat
faster when compared to reactive controllers. This is partially
expected, as it was similarly reported in [3], because the robot
heads straight to the final handover location and waits there
for the human to finish their respective tasks and grasp the
bottle. However, when compared to R2 there is no significant
deterioration in task completion time, while both reactive
controllers outperform the NR in terms of percentage robot
idle time.

According to the results of the subjective survey, in terms
of satisfaction, only 4 out 21 participants preferred the NR
controller, on average, as opposed to the reactive ones. Simi-
larly, only 4 preferred the NR controller in terms of comfort.
Most notably, no participant deemed the NR controller more
safe when compared to the reactive ones. Thus, as subjective
metrics are considered, the inclination towards reactive and
coordinated control is evident.

Results of the subjective survey are conclusivewith related
works [3,9,25] on HRC and coordination, as humans place
importance on adaptive efforts from their partners. Thus,
further research which would aim to improve temporal coor-
dination between the agents is warranted for successful HRC
implementations. In Sect. 5.2, a way to quantitatively assess
this type of coordination is presented. This goes in line with
the previous pilot study [30], where participants did not show
significant preferences between non-reactive and reactive
parameter settings for the “straightforward” scenario. This
was similarly presented in the studies [1,25] which have
shown that humans prefer faster handovers. However, as
the task gets obstructed and perturbed, fast and non-reactive
controllers can deteriorate the subjective perception of the
interaction.

While physiological measurements were not recorded due
to practical constraints, experiment length, and focus on the
technical feasibility of themethod,we report havingobserved
noticeable discomfort in certain participants, with the NR
parameter setting. For example, some participants were star-
tled by the robot which was heading directly to the final

goal, while the participant was still in the first phase of
the task. More drastically, certain participants, in later tri-
als, decided to let the NR controller reach the final location
before continuing with their respective tasks. Deterioration
in human experience can probably also be attributed to the
fact that fast robotic movements can induce stress in han-
dover scenarios [37]. This couldwarrant future studies which
could more accurately measure induced stress in compound
HRC scenarios that involve controllers with different adap-
tive capabilities.

Somewhat in contrast with [3], we have shown in Sect.
6.2.1 that reactive (ormore akin to their proposed “adaptive”)
controllers do not necessarily deteriorate task performance
metrics to a significant degree and might even improve on
certain metrics. This could be due to the fact that in this work
control on a lower level is considered, leading to faster and
more robust trajectory generation, as opposed to high-level
task planning. As discussed, the number of objective met-
rics which apply are limited by considering perturbations
and interruptions in a handover setting. Nevertheless, con-
sidered metrics represent a suitable baseline for objective
performance analysis and encourage further considerations
for metrics that could be employed in similar scenarios. As
HRC tasks can range in complexity, and the experience is
shaped by multiple criteria (as explored in the subjective sur-
vey), additional objective metrics are needed to accurately
assess the interaction. As stated, literature on less-structured
handover tasks is sparse, and as it develops hopefully more
objective metrics will be proposed.

Considering the results of task performance metrics and
the subjective survey, the “fast reactive” (R2) controller could
provide a good trade-off between quality and efficacy. The
proposed controller does not deteriorate significantly task
completion time, while significantly improving the percent-
age robot idle time and the subjective metrics.

8 Conclusion

In this paper, a method for robust handovers with online
trajectory generation using DMP is proposed. This method
allows for dynamic handovers which take cues from human
hand motion, and thus allow the robot to coordinate accord-
ingly. The approach has been shown to be capable of stopping
when appropriate, persisting through minor disturbances on
the partner’s trajectory, and completing the task. Then, the
method was assessed through coordination analysis and val-
idated through objective task performance metrics and a
subjective survey on user experience.

While this paper was focused on the temporal aspect of
coordination, and thus handover locationwas predetermined,
extensionwith a goal-free implementation is in development.
Thus, a complete framework for online trajectory generation
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for dynamic and robust handover can be presented. Fur-
thermore, as simplistic hand release was used in this work,
reactive capabilities could be added to the release controller
to improve the fluency of the task.While implemented virtual
compliancemade the releasemore natural as the robotic hand
was compliant to human pull, the release triggered by force
threshold could be deemed as “stiff” by human partners.

It is apparent that HRC research can benefit frommethods
that can use implicit cues to be more robust against uncer-
tainty or unexpected external factors. This is particularly the
case for methods where the robot is made to learn some
behavior: it is easy to showcase a correct execution, but it
is difficult to learn all the ways in which it can go wrong.
Extended research on this topic could lead to a more stan-
dardized analysis of managing disturbances and unexpected
behavior. Having better-suited objective metrics to assess
these kinds of scenarios would greatly benefit the research
community and robotic development for real-world HRC in
general.
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