
ar
X

iv
:1

90
2.

04
92

5v
1 

 [
m

at
h.

O
C

] 
 1

3 
Fe

b 
20

19

A Branch-and-Price Algorithm for the Temporal Bin Packing

Problem

Mauro Dell’Amico

DISMI, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

mauro.dellamico@unimore.it

Fabio Furini 1

Université Paris Dauphine, PSL Research University, LAMSADE, 75016 Paris, France

fabio.furini@dauphine.fr

Manuel Iori

DISMI, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

manuel.iori@unimore.it

Abstract

We study an extension of the classical Bin Packing Problem, where each item consumes the bin

capacity during a given time window that depends on the item itself. The problem asks for finding

the minimum number of bins to pack all the items while respecting the bin capacity at any time

instant. A polynomial-size formulation, an exponential-size formulation, and a number of lower

and upper bounds are studied. A branch-and-price algorithm for solving the exponential-size for-

mulation is introduced. An overall algorithm combining the different methods is then proposed and

tested trough extensive computational experiments.

Keywords: Bin Packing Problem, Branch-and-Price Algorithm, Temporal Bin Packing Problem

1. Introduction

The Bin Packing Problem (BPP) is one of the classical problems in combinatorial optimization and

has been extensively studied in the literature, see, e.g., Delorme et al. [21]. Given a large number

of identical bins of capacity W ∈ Z+ and a set N = {1, 2, . . . , n} of items, where each item j ∈ N
is associated with an integer weight wj ≤ W , the BPP asks to pack all the items into the minimum

number of bins without exceeding the capacity.

In this paper, we study a natural generalization of the BPP called the Temporal Bin Packing Problem

(TBPP). In the TBPP, a feasible assignment of the items to the bins must be computed over a

1Corresponding author

Preprint submitted to February 14, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/286077032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1902.04925v1


discretized time horizon T̂ = {0, 1, 2, . . . , |T̂ |}, of total length |T̂ |. If a bin is selected, its capacity

is a renewable resource that is available at any time unit in the horizon. Each item j ∈ N consumes

the bin capacity during a given time window [sj , tj), with 0 ≤ sj < tj < |T̂ |. The integer input

parameters sj ∈ Z+ and tj ∈ Z+ represent the starting time and the ending time of an item,

respectively. As for the BPP, in the TBPP each item must be assigned to a unique bin where it

remains for its entire time window. The TBPP asks to pack all the items into the minimum number

of bins so that the bin capacity is never exceeded at any unit of time. The problem is strongly

NP-hard, because its restriction obtained by setting |T̂ | = 1 boils down to a BPP, which is well

known to be strongly NP-hard.

The TBPP adds a temporal dimension to the classical BPP, thus making the problem very challeng-

ing to solve in practice. A related difficult problem is the Vector Packing Problem (VPP), see, e.g.,

Hessler et al. [30], where each bin has k capacities W1, . . . ,Wk and each item j is associated with

a vector of k weights wj = (wj1, . . . , wjk). A feasible VPP solution consists in packing all items

in the bins so that the capacity is respected for all the k dimensions. We will show in Section 3 that

the TBPP is a special case of the VPP.

Other related problems are: i) the Two-Dimensional BPP (2D-BPP), see, e.g. Pisinger and Sigurd

[37], in which both items and bins are rectangles and the aim is to pack all items without over-

lapping in the minimum number of bins; and ii) the Temporal Knapsack Problem (TKP), see, e.g.,

Caprara et al. [11], in which items also have a profit and the aim is to find a subset of items of maxi-

mum profit that fits into a single bin. These problems, as well as other interesting related problems,

are discussed in more detail in Section 2.

The TBPP finds applications in many fields, including logistics, healthcare, production and ware-

house management. Consider, for example, the production field: each item can be interpreted as a

task (or a product) that must attain a given production rate (equal to its weight) in each time unit of a

given time window; each bin can be seen as a production plant that can be used for the allocation of

tasks; minimizing the number of bins consequently implies minimizing the number of production

plants that are used for the tasks (see, e.g., Angelelli et al. [4] for a related problem).

The remainder of the paper is organized as follows. Section 2 describes the related literature. Sec-

tion 3 presents two TBPP mathematical models, the former having polynomial size and the latter

exponential. Sections 4 and 5 provide, respectively, lower and upper bounds for the problem,

whereas Section 6 describes a branch-and-price algorithm that solves the exponential-size model.

All algorithms and models are computationally tested in Section 7 and conclusions are drawn in

Section 8.

2. Literature and related problems

The BPP is one of the most widely studied problems in the combinatorial optimization field. A

number of surveys and annotated bibliographies have been consequently proposed during the years

to describe the main techniques that have been developed for its solution. Such techniques are either

focused on the BPP or on its reformulation known as the Cutting Stock Problem (CSP), where all

items having same weight are grouped together into item types.
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Useful classifications have been provided by Wäscher et al. [42], who presented a typology of

cutting and packing problems based on detailed categorization criteria, and Coffman Jr. and Csirik

[15], who introduced a four-field classification scheme aimed at highlighting the main theoretical

results in the area. A few years later, Coffman Jr. et al. [16] presented an overview of approximation

algorithms for the BPP and a number of its variants, and classified all references according to

Coffman Jr. and Csirik [15]. Valério de Carvalho [39] presented a survey with a focus on the most

popular Linear Programming (LP) methods for the BPP and the CSP.

Recently, Delorme et al. [21] reviewed the most important mathematical models and algorithms

developed for the exact solution of the BPP and the CSP, and experimentally evaluated the perfor-

mance of the main available software tools. The extensive results obtained, together with the input

benchmark instances addressed, have been gathered together and made available on-line at the Bin

Packing Problem Library, as shown in Delorme et al. [23]. Exact algorithms that appeared after

Delorme et al. [23] are the iterative aggregation and disaggregation method by Clautiaux et al. [14],

the improved reflect formulation of Delorme and Iori [20], and the branch-and-price by Wei et al.

[43].

A number of problem extensions have been proposed during the years. We believe it is worth

describing the main results that have been obtained on those variants that are close to the TBPP.

The previously mentioned VPP has been the object of several interesting researches. Caprara and

Toth [10] focused on the case with k = 2 dimensions, providing effective heuristics and a few

exact algorithms, the most effective one based on column generation. Alves et al. [2] implemented

several dual-feasible functions and fast lower bounding techniques. Brandão and Pedroso [9] used

pseudo-polynomial arc-flow models and managed to reduce their size through the use of graph

reduction techniques. Very recently, Hessler et al. [30] proposed efficient stabilized branch-and-

price algorithms. Their column-generation sub-problem is a multidimensional knapsack problem

(see, e.g., Dell’Amico et al. [19]) either binary, bounded, or unbounded, that they solved as a

shortest path problem with resource constraints.

Extensions in which items and bins are boxes in d dimensions have also been intensively studied.

Most of the works on these problems focused on the case where d = 2, solving the 2D-BPP. The

aim of the 2D-BPP is to pack all items into the minimum numbers of bins without overlapping. A

review of some of the methods to solve the BPP and the 2D-BPP was given in the early nineties by

Haessler and Sweeney [29]. Later on, surveys on the 2D-BPP and on some of its relevant variants

were proposed by Lodi et al. [32, 33, 34]. Recent relevant results on the 2D-BPP have been obtained,

among others, by Pisinger and Sigurd [37], who developed an efficient exact algorithm based on

column generation and constraint programming, and by Serairi and Haouari [38], who proposed a

list of lower bounding techniques.

The problem of interval scheduling with a resource constraint (ISRC) was presented by Angelelli

and Filippi [3]. The ISRC is a scheduling problem where jobs have to be processed by parallel

identical machines. Similarly to the items in TBPP, each job in the ISRC has fixed start and finish

time, as well as a resource consumption (i.e., a weight). Angelelli and Filippi [3] focused on

the recognition version of the ISRC, and proved that deciding whether an instance has a feasible

solution is strongly NP-complete even when the resource capacity of the machines is fixed to any

value greater than or equal to two. A few years later, Angelelli et al. [4] studied the optimization
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version of the ISRC, whose objective is a weighted function that depends on the assignment of

jobs to machines. They proposed a column generation scheme, as well as greedy and restricted

enumeration heuristics, and extensively tested them on a number of instances.

Another relevant problem is the BPP with Contiguity Constraints (BPPC). In the BPPC, a certain

number of copies might exist for an item, and all copies should be packed in consecutive bins. Start-

ing from Martello et al. [36], the BPPC has been used as a relaxation for two-dimensional cutting

and packing problems, either within branch-and-bound algorithms (see, e.g., Alvarez-Valdes et al.

[1] and Belov and Rohling [7]) or in combinatorial Benders decompositions (see, e.g., Côté et al.

[17] and Delorme et al. [22]).

It is well-known that the BPP can be solved by a Dantzig-Wolfe reformulation in which each sub-

problem is a one-dimensional Knapsack Problem (Gilmore and Gomory [26, 27]). The same result

holds for the TBPP, with the relevant difference that the subproblem is a TKP. The TKP has re-

ceived a fair amount of attention in the recent combinatorial optimization literature. The problem

was formally introduced in Bartlett et al. [6] to model resource allocation problems in the context

of sparse resources, such as communication bandwidth of computer memory. Caprara et al. [11]

were the first to solve the TKP with a Dantzig-Wolfe reformulation, using two variants of a branch-

and-price algorithm in which subproblems are either associated with groups of capacity constraints

or with single capacity constraints, and showing that the former variant performs much better than

the latter. Gschwind and Irnich [28] provided improved computational results by producing stabi-

lized column generation algorithms based on the use of dual-optimal inequalities, i.e., inequalities

that are fulfilled by at least one of the dual optimal solutions and can thus be used to reduce the

search space (see Valério de Carvalho [40] and Ben Amor et al. [8] for further details on this type of

techniques). We also mention that Caprara et al. [13] solved the TKP by using a so-called recursive

Dantzig-Wolfe reformulation, which uses the reformulation not only for solving the original master

problem, but also for recursively solving the pricing sub-problems.

3. Mathematical models

In order to derive suitable models for TBPP, we start by showing that the TBPP can be modeled by

considering only a polynomial number of time instants. Despite the capacity requirements being

defined on the entire time horizon, a weight variation may arise only at the starting time of an item.

Therefore, it is sufficient to satisfy the capacity restrictions at the n starting times of the items.

Given an item j ∈ N , let us define Sj := {ℓ ∈ N : sℓ ≤ sj and tℓ > sj} as the set of active items at

time sj (note that j ∈ Sj). As all items in Sj are active at the same time instant, a capacity constraint

must be imposed for these items. Moreover, if Sj ⊆ Sk, then the associated capacity constraint at

time sj is dominated by that of time sk. Let us define T = {t ∈ N : St * Sk, ∀k ∈ N} as the

index set of all the non-dominated constraints (or non-dominated sets). To model the problem, it is

enough to consider the capacity usage at each t ∈ T .

To simplify the presentation we compact the indices in T by shifting them into the set T =
{1, . . . , |T |} and we rename the corresponding non-dominated sets as S1, . . . , S|T |. We call t ∈ T
a time step. W.l.o.g., let us also suppose that the items are sorted by non-decreasing starting times.

In Figure 1, we give an example to illustrate a TBPP instance with five items having weights
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w1 = w2 = w4 = 2, w3 = w5 = 1, and bin capacity W = 4. The starting time and ending time (sj
and tj) are shown in Figure 1(a). For instance, item 1 is active in the first two time instants and

item 2 is active from the second to the last time instant. The simultaneously active sets of items

are : S1 = {1}, S2 = {1, 2}, S3 = {2, 3}, S4 = {2, 3, 4} and S5 = {2, 5}. The non dominated

sets are S2, S4 and S5. In Figure 1(b) we show the renumbered non-dominated sets S1 = {1, 2},

S2 = {2, 3, 4} and S3 = {2, 5}. Finally, Figure 1(c) reports an optimal TBPP solution using two

bins, the first containing items 1, 2, 4, 5 and the second only item 3.

One can also use the example to note the difference between TBPP and 2D-BPP. Consider an

instance of 2D-BPP defined by the rectangles in Figure 1, and 3 × 4 rectangular bins. An optimal

2D-BPP solution packs item 3, together with all the other items, in the first bin. This derives from

the fact that in the 2D-BPP the rectangles can be shifted not only vertically (as in the TBPP) but also

horizontally (because there are no time windows), so a single bin is enough to solve the instance.

(a) original instance

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

(b) time steps

1 2 3

1

2

3

4

5

(c) an optimal solution

bin 1

bin 2

1 2 3

1

2

3

4 5

Figure 1: Example of a TBPP instance with 5 items and 3 time steps.

We can now show that the TBPP is a special case of the VPP. Given a TBPP instance, define a

corresponding VPP instance with the same items and |T | dimensions each with capacity W . For

each item j ∈ N define the item weights as

wjt =

{
0 if t < sj or t ≥ tj
wj otherwise

t ∈ T . (1)

One can see that any VPP solution to this instance is a feasible solution for the TBPP instance, and

vice versa, so the VPP generalizes the TBPP.

3.1. A polynomial-size model

In this section, we introduce the first Integer Linear Programming (ILP) formulation for the TBPP.

Let I = {1, 2, . . . , m} be the set of bins, where m ≤ n is an upper bound on the number of bins

necessary to pack all items. We introduce a set of binary variables y with the following meaning:

yi =

{
1 if bin i is used,

0 otherwise,
i ∈ I;
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and a second set of binary variables x such that:

xij =

{
1 if item j is packed in bin i,
0 otherwise,

i ∈ I, j ∈ N.

The polynomial-size ILP formulation, called ILPc in the reminder of the paper, reads as follows:

min
∑

i∈I

yi (2)

∑

i∈I

xij = 1 j ∈ N, (3)

∑

j∈St

wjxij ≤ Wyi i ∈ I, t ∈ T, (4)

xij ∈ {0, 1} i ∈ I, j ∈ N, (5)

yi ∈ {0, 1} i ∈ I. (6)

The objective function (2) minimizes the number of used bins, constraints (3) impose that each item

is packed in one bin, and constraints (4) impose that for each bin and for each time step the total

weight of the active items does not exceed the bin capacity. The optimal solution value of ILPc is

denoted by z(ILPc), we use the same notation for all the other models.

3.2. An exponential-size model

In this section, we describe a second formulation for the TBPP characterized by an exponential

number of variables associated with all feasible packing patterns, i.e., subsets of items respecting

the bin capacity at any time step. Let P represent the collection of all feasible packing patterns:

P =

{
P ⊆ N :

∑

j∈St∩P

wj ≤ W, t ∈ T

}
.

For each pattern P ∈ P , we introduce a binary variable ξP with the following meaning:

ξP =

{
1 if packing pattern P is selected,

0 otherwise.
P ∈ P.

The exponential-size ILP formulation, called ILPe in the reminder of the paper, reads as follows:

min
∑

P∈P

ξP (7)

∑

P∈P:j∈P

ξP=1 j ∈ N, (8)

ξP ∈ {0, 1} P ∈ P. (9)

The objective function (7) minimizes the number of packing patterns (bins) used, and constraints

(8) ensure that each item is packed in one bin.
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4. Lower bounds

We introduce some lower bounding techniques which are useful to solve several instances to proven

optimality in short computing times.

Observe that for a single time step t ∈ T , the ILPc models the BPP by considering only the items

in St. We denote this formulation as ILPc(t). A valid lower bound for the TBPP is thus:

LB0 = max
t∈T

z(ILPc(t)). (10)

The following example shows that the optimal solution value of the TBPP may be strictly greater

than the optimal solution value of the ILPc(t) for each t ∈ T . Consider five items with weights

w1 = 10, w2 = 2, w3 = 4, w4 = 6, w5 = 8, a bin capacity W = 10 and two time steps defined by

sets S1 = {1, 2, 3} and S2 = {2, 3, 4, 5}. In Figure 2(a) we show that the optimal ILPc(t) solutions,

for t = 1, 2, use two bins, but the optimal TBPP solution uses three bins, as depicted in Figure

2(b). Two bins can be obtained if and only if items 2 and item 3 are packed in different bins in the

two time steps. As this does not lead to a feasible TBPP solution, three bins are necessary for an

optimal TBPP solution.

1

2

3

2

5

3

4

1 2 time steps

(a) optimal ILPc(t) solutions

bin 1

bin 2

1

2

3

5

2

3

4

1 2 time steps

(b) a TBPP optimal solution

bin 1

bin 2

bin 3

Figure 2: A small example with LB0 < z(ILPc)

The difference between LB0 and the optimal TBPP solution value can be greater than one, as shown

in the following example. Let n = 24, W = 3 and item weights wj = 2 (j = 1, . . . , 9), wj = 1
(j = 10, . . . , 18) and wj = 3 (j = 19, . . . , 24). Two are the time steps and the corresponding sets of

simultaneously active items are defined as follows: S1 = {1 ≤ j ≤ 18} and S2 = {10 ≤ j ≤ 24}.

The optimal ILPc(t) solution for t = 1, 2 has 9 bins as shown in Figure 3(a) (note that, to reduce

space, this figure is drawn with a 90o rotation with respect to the previous ones, i.e., the bins are on

the horizontal axis and the time steps in the vertical axis). The optimal TBPP solution has 11 bins

(Figure 3(b)), hence two units larger than LB0.

Let us now consider the continuous relaxation of ILPc and ILPc(t), denoted, respectively, by LPc

and LPc(t). A second valid TBPP lower bound is given by z(LPc). For any t ∈ T , it is known
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bin 1

1

bin 2

2

bin 3

3

bin 4

4

bin 5

5

bin 6

6

bin 7

7

bin 8

8

bin 9

9

10 11 12 13 14 15 16 17 18

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6

19 20 21 22 23 24

bin 7 bin 8 bin 9

16 17 18

13 14 15

10 11 12

(a) Optimal ILPc(t) solutions for time steps 1 (above) and 2 (below)

bin 1

1

bin 2

2

bin 3

3

bin 4

4

bin 5

5

bin 6

6

bin 7

7

bin 8

8

bin 9

9

16 17 18

bin 10 bin 11

10

11

12

13

14

15

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6

19 20 21 22 23 24

bin 7 bin 8 bin 9

16 17 18

bin 10 bin 11

10

11

12

13

14

15

(b) Optimal TBPP solution: time steps 1 (above) and 2 (below)

Figure 3: Example showing that LB0 may have a gap larger than one.

(see e.g. Martello and Toth [35]) that the optimal solution value of LPc(t) can be computed as:

z(LPc(t)) = 1
W

∑
j∈St

wj, from which we immediately have

z(LPc) = max{z(LPc(t)), t ∈ T} =
1

W
max

{∑

j∈St

wj, t ∈ T

}
.

Given an instance of the TBPP let t̃ = argmax{
∑

j∈St
wj : t ∈ T}, then a lower bound from the

continuous relaxation of ILPc is

LB1 = ⌈z(LPc(t̃))⌉. (11)

A straightforward implementation of LB1 requires an O(n2) computing time, but this bound can

be improved as shown in the next property.

Property 1. Given an instance of the TBPP, lower bound LB1 can be computed in O(n logn) time.

Proof. Remind that the items are sorted by non-decreasing starting times. Compute a list L con-

taining the items sorted by non-decreasing ending time tj . Start with a total item weight W = 0
and consider the items one at a time, in the original order. For each item j, add wj to W and remove

from list L each item k with tk ≤ sj , by reducing W of the corresponding weights wk. Store the
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maximum value of W obtained and let t̃ denote the corresponding time step. The initial sorting can

be implemented in O(n logn), while the scanning of the items requires O(n) because each item is

considered exactly once in each list, and the thesis follows.

Another lower bound, which requires an intermediate computing effort between that of LB0 and

LB1, can be obtained by solving a single BPP on time step t̃, thus obtaining:

LB0(t̃) = z(ILPc(t̃)).

4.1. Preprocessing with item weight lifting

In order to improve lower boundLB1, see (11), we can apply lifting techniques (see, e.g., Dell’Amico

et al. [18]) which try to increase the item weights, while ensuring that the lifted instance has the

same optimal solution value of the original one.

Given an item j ∈ N , let γ(j) = {k ∈ N \ {j} : ∃t ∈ T such that j, k ∈ St} denote the set of

items that are active in at least one time step where j is active. We can use the following ILP model

to compute the maximum possible loading of a bin where item j is packed:

σ(j) = max





∑

k∈γ(j)

wkxk :
∑

k∈γ(j)

wkxk ≤ W − wj, xk ∈ {0, 1}, k ∈ γ(j)



 . (12)

Given the optimal value σ(j) (or any valid upper bound on σ(j)) we know that the bin where j is

packed, in the time steps where j is active, has at least an empty space W − wj − σ(j), so we can

lift the weight of j as:

wj = wj + (W − wj − σ(j)) = W − σ(j). (Lift-1)

Model (12) represents a Subset Sum Problem (SSP) (see, e.g., Martello and Toth [35]). To imple-

ment this lifting procedure we have to execute a first step which solves n SSPs to try to lift the item

weights. Once an item j has been lifted, a new iteration can be executed to try to further lift the

items in γ(j).

Another lifting procedure can be obtained by considering each time step t ∈ T , such that j ∈ St,

and defining the following SSP:

σ(j, t) = max





∑

k∈St\{j}

wkxk :
∑

k∈St\{j}

wkxk ≤ W − wj , xk ∈ {0, 1}, k ∈ St \ {j}



 . (13)

Similarly to the previous case, we see that, for the given time step t, we can lift the weight of the

item j to W − σ(j, t). By considering all the time steps in which j is active, we define the valid

lifting:

wj = nt∈T :j∈St
(W − σ(j, t)). (Lift-2)

The implementation of this lifting requires to solve n× |T | SSPs for each iteration.

Property 2. For a given item j ∈ N , lifting Lift-2 dominates lifting Lift-1.

9



Proof. Let t̃ denote the time instant giving the minimum value in (Lift-2). The thesis immediately

follows because St̃ ⊆ γ(j).

We note that, although observation 2 guarantees that Lift-2 dominates Lift-1 for a given item, it

does not guarantee that the total lift on all the items obtained by Lift-2 dominates that obtained by

Lift-1.

In the following, we will denote as LBI
2 and LBII

2 the value of LB1 computed with weights lifted

using the first and second method, respectively, and a single lifting iteration.

4.2. Lower bound from the exponential-size formulation

Another lower bound can be obtained by computing the continuous relaxation of the exponential-

size formulation ILPe, that we denote as LPe in what follows. We have thus

LB3 = ⌈z(LPe)⌉. (14)

The following property states that the quality of the lower bound obtained solving the LP relax-

ation of ILPc is dominated by its counterpart associated with ILPe.

Property 3. The optimal value of LPe is greater than or equal to the optimal value of LPc.

Proof. We start the proof by showing that any feasible solution of LPe can be transformed into a

feasible solution of LPc preserving its objective function value. W.l.o.g., we consider the case in

which m = n. Any optimal basic solution of LPe can have at most n non-zero variables; let ξ∗

denote a feasible solution of LPe, and P (i) be a function that returns the i-th active pattern in ξ∗

(i.e., P (i) is the i-th pattern associated to a strictly positive variable). We can define a solution

(x∗, y∗) of LPc as follows: for each bin i ∈ I and for each j ∈ N , we can set:

y∗i = ξ∗P (i) and x∗
ij = ξ∗P (i).

In case
∑

i∈I x
∗
ij > 1, for some j, we can arbitrarily reduce the x∗

ij in order to sum up 1. By

construction, the solution (x∗, y∗) is feasible for LPc and has the same objective function value.

We then show a case where the optimal value of LPe is strictly larger than the optimal value of

LPc. Consider the instance presented in Figure 2 with 5 items and 2 time steps. The optimal

solution value of LPc is equal to 2. This optimal value can be obtained for instance by the solution

y∗1 = y∗2 = 1 and xij = 1
2

for i = 1, . . . , 5 and j = 1, 2 (all the other LPc variables are set to

zero). An optimal solution for LPe is defined by the four feasible packing patters P1 = {2, 3},

P2 = {2, 4}, P3 = {1, 5}, P4 = {3, 4}, and by the corresponding variables ξP1
= ξP2

= ξP4
= 0.5

and ξP3
= 1. The optimal solution value is z(LPe) = 2.5 > z(LPc)= 2.

5. Upper bounds

We start by describing some simple heuristic algorithms that can be used to provide approximate

solutions in short computing times.
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Greedy algorithm. The first method we introduce is based on a sequence of greedy algorithms

derived from the well known First-Fit algorithm for BPP (see, e.g., Johnson [31]). The First-Fit

performs n iterations by considering one item at a time, in a given order. At the beginning no bin

is open (used). In the first iteration, a single bin is opened and the first item is packed in it. At each

iteration j > 1, the algorithm looks for the first open bin in which j fits, if any. If this bin exists

j is packed in it, otherwise a new empty bin is opened and used to pack j. The algorithm runs in

O(n2) time.

We extend the First-Fit for the BPP to the TBPP, by simply checking, for each item j and tentative

bin i, if packing j in i is feasible for all the time steps in [sj, tj). The time complexity increases

to O(n2|T |), but in practice these methods are very fast. We implemented two versions: in First-

Fit-1 we do not make any sorting of the items, but we consider them in their natural order given

by increasing sj values. In First-Fit-2 we sort the items by non-decreasing wj values. The two

versions were run on the original instances and on those lifted with Lift-1 (see Section 4.1). In the

following, we call UB1 the best solution value obtained by running First-Fit-1 and First-Fit-2 on

the original and lifted instances.

Rolling horizon heuristic. We developed a more powerful heuristic using a rolling horizon concept.

Let ∆ ∈ [1, . . . , |T |] denote the width of a heuristic time window. Our rolling horizon heuristic

performs ⌈ |T |/∆ ⌉ iterations, and at each iteration it solves model ILPc with a limited number

of time-step constraints. More specifically, let ILPc
k∆, with k = 1, . . . , ⌈ |T |/∆ ⌉, denote the

restricted ILPc model obtained by: (i) defining constraints (4) only for time steps in Tk = [(k−1)∆+
1, n(k∆, |T |)], and (ii) selecting only the x variables associated with the items in Nk = ∪t∈Tk

Sj

(i.e., the active items in Tk). If a feasible solution for ILPc
k∆ is found, we pack the items in Nk

according to this solution, by fixing, the corresponding x variables to one. These items are no

longer considered for possible reassignment. Due to the variable fixing the next model ILPc
(k+1)∆

starts from the packing of the items in ∪k
h=1Nh and packs the new items from Nk+1 in the residual

space of the opened bins, or in new bins. If for some iteration k no feasible solution to ILPc
k∆

is found, the algorithm terminates with no TBPP solution. We will call UB2 the solution value

obtained by the rolling horizon heuristic.

A further upper bound UB3 has been developed using a truncated version of the exact branch-and-

price algorithm of Section 6. We will give details on this heuristic in that section.

6. Solving the Exponential-Size formulation

In Section 3, we introduced a polynomial-size formulation ILPc and an exponential-size formu-

lation ILPe. Formulation ILPc can be explicitly written, also for large size instances, and solved

using a generic ILP solver. Formulation ILPe, instead, has exponentially many variables that can-

not be explicitly enumerated for large-size instances. Column Generation (CG) techniques are then

necessary to efficiently solve the continuous relaxation of ILPe (we refer the interested reader to,

e.g., Desaulniers et al. [24] for further details on column generation). In the following, we present

a new branch-and-price framework for ILPe. Two are the main ingredients of a branch-and-price

algorithm: (i) a column generation algorithm to solve the Linear Programming Relaxation of the
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exponential-size integer model, and (ii) a branching scheme. We discuss separately these two as-

pects in the next sections, before introducing a heuristic based on this framework, and our final

overall algorithm for the TBPP.

6.1. Solving the Linear Programming Relaxation of ILPe

Model LPe, initialized with a subset of variables (columns) defining feasible solutions, is called

the Restricted Master Problem (RMP). In our implementation, we initialize the RMP with the

columns associated with the best solution provided by the Greedy algorithm of Section 5. Its

solution provides a (sub)-optimal primal solution. To find the optimal solution we consider the

dual of this LP:

max

{∑

j∈N

πj :
∑

j∈P

πj ≤ 1, P ∈ P, πj ≥ 0, j ∈ N

}
, (15)

where πj is the dual variable associated with the j-th constraint (8). It is worth noticing that we

use the ‘≥’ sign in constraint (8), instead of the ‘=’ sign, to have non negative dual variables. This

choice does not change the problem, since any solution of (7)-(9) which packs an item in more

than one bin can be transformed into a TBPP solution by arbitrarily removing the item from all the

used patterns, but one. A violated dual constraint induces a negative reduced cost in the primal

problem, so the corresponding primal variable must be added to the RMP to find an optimal solution.

Accordingly, the column generation performs a number of iterations where violated dual constraints

are added to the RMP in form of primal variables, and the RMP is re-optimized, until no violated

dual constraint exists. At each iteration, the so-called Pricing Problem is solved. This problem

asks to determine (if any) a packing pattern P ∗ ∈ P for which the associated dual constraint is

violated, i.e., such that ∑

j∈P ∗

π∗
j > 1, (16)

where π∗ is the optimal vector of dual variables for the current RMP.

If a packing pattern P ∗ has dual weight larger than one (that is, the reduced cost is negative), the

associated column is added to the RMP and the problem is re-optimized. If, on the other hand,

the dual weight is not larger than 1, by linear programming optimality conditions no column can

improve the objective function of the RMP and therefore LPe is solved to optimality.

In the solution of the pricing problem we want to find a violating pattern P ∗, or to prove that no

one exists. The following 0-1 Temporal Knapsack Problem (TKP) models the separation using a

binary variable zj that takes value 1 if and only if item j ∈ N is selected in subset P ∗:

zs(π
∗) = max

{∑

j∈N

π∗
j zj :

∑

j∈St

wjzj ≤ W, t ∈ T, zj ∈ {0, 1}, j ∈ N

}
. (17)

If zs(π
∗) > 1 a violating pattern P ∗ = {j ∈ N : zj = 1} has been found, otherwise the RMP

solution is optimal.
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6.2. Branching schemes for ILPe

The design of a branching scheme is crucial for the performance of a branch-and-price algorithm

(see, e.g., Vanderbeck [41]). In the following, we describe two branching scheme adopted in our

new branch-and-price framework. Two are the main properties that a branching rule should hold.

Firstly, it is a complete scheme, i.e., it ensures that integrality can be imposed in all cases. Secondly,

it does not require modifications to the master problem and it does not impact much on the pricing

algorithm. The latter property means that an ideal branching does not alter the structure of the

pricing problem so that the same algorithm can be applied during the entire search. In the following,

we denote with ξ∗ a fractional solution to LPeat a given node of the branching tree, and with

P̂ ⊆ P the set of columns in the RMP at the node.

Branching BR-1. This is the standard branching rule, which selects a variable ξ∗P with fractional

value and separates the current node into two children nodes, by imposing, respectively, ξ∗P = 1
and ξ∗P = 0. The advantage of this rule is to force the algorithm to find feasible solutions in short

time, in particular when a deep-first exploration rule is used and the left branch (with ξ∗P = 1) is

selected first. The RMP can easily incorporate the branching constrains, because one can directly

impose the branching variable value. The pricing on the left branch is easy, because we can just

remove the items in P from the pricing problem, but on the right branch it is necessary to add a cut

to avoid generating P again. To achieve this, we use the cut

∑

j∈N\P

zj −
∑

j∈P

zj ≥ 1− |P |. (18)

Branching BR-2. The second branching strategy we propose is inspired by the Rayan-Foster branch-

ing scheme and it preserves the pricing algorithm in part of the branching nodes. This rule is de-

signed to impose that each couple of items are either packed in the same bin or in different ones.

This rule has been proposed for branch-and-price algorithms based on set-covering formulations

(see, e.g., Barnhart et al. [5]) and used to derive several effective exact algorithms for the BPP, see

e.g., Wei et al. [43]. A couple of items r and s ∈ N is fractionally packed if:

∑

P∈P̂:r,s∈P

ξ∗P = γ, (19)

with γ fractional. In case more than one pair of fractionally packed items exist, we select the couple

r and s associated with the first fractional γ value. Two children nodes are then created:

• in the first node we force items r and s to be packed in the same bin;

• in the second node we force items r and s to be packed in different bins.

This branching rule can be implemented without any additional constraint to the RMP, indeed it is

enough to remove from RMP the columns that does not respect the rule. For the pricing problem

we can see that in the left branch we can force a couple (r, s) of items to be packed together by

replacing the couple with a super item, say ̂ with s̂ = n(sr, ss), t̂ = max(tr, ts) and weight
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depending on the time steps:

w̂t =





wr if r ∈ St, s 6∈ St,
ws if r 6∈ St, s ∈ St,
wr + ws if r ∈ St, s ∈ St,

t ∈ [s̂, t̂].

The pricing problem is modified by substituting the capacity constraints in (17) with constraints∑
j∈St

wjtzj ≤ W, t ∈ T , so the problem remains a TKP but with time step dependent item weights.

In the right branch we enforce the two items to belong to different patterns. In this case the pricing

problem (17) must be changed by introducing the so called conflicts between items. Unfortunately

the conflicts cannot be directly managed with some modification of the input instance, and we are

forced to solve the problem as a generic MIP with the additional constraint zr + zs ≤ 1.

The branching rule BR-1 is clearly complete because we have no variable to branch only when all

values are integer, and the solution is integer. The following observation states that also the branch-

ing rule BR-2 is complete for ILPe:

Property 4. The branching rule BR-2 provides a complete branching scheme for model ILPe.

Proof. If at each node of the branching tree we select a pair of items and fix them to be packed in

the same bin or in separate bins, then, after at most O(n2) branchings, all couples have been fixed

and all solutions enumerated. To prove the thesis, it is enough to show that we can always find two

items providing a fractional γ value, as defined in (19).

In Barnhart et al. [5], it is proved that for any 0-1 constraint matrix A (as for the case of LPe), if a

basic solution ξ∗ to Aξ = 1 is fractional, then there exist two rows r and s such that:

0 <
∑

P∈P : r,s∈P

ξ∗P < 1. (20)

As we adopted a covering formulation (Aξ ≥ 1), we can use the above property to prove that the

required items exist if ξ∗ determines at least two strict constraints (i.e., it is satisfied with the “=”

sign). We show that these two rows always exists by analyzing all possible cases. We first note that

in an optimal solution there must be at least one strict constraint, otherwise it is possible to improve

the solution by reducing the value of one variable, until the l.h.s. of one row takes the value one. If

there is at least another strict constraint we are done, otherwise let r denote the row of the unique

strict constraint. If there is a packing P not containing item r and such that ξ∗P > 0, we can improve

the solution by reducing ξ∗P until a second constraint is strict, and this case is closed. Otherwise let

P̂+ denote the subset of columns of P̂ with a positive ξ∗ value. In the remaining case, r ∈ P for

all P ∈ P̂+, and for any s ∈ N \ {r} equation (19) defines an integer γ value (otherwise we have

found the r, s couple to be used for branching). But the latter case is not possible because it implies

that any item is packed within r in all columns of P̂
+, which results to be identical.

6.3. Exponential-size formulation based heuristic

Effective heuristic algorithms can be obtained by contaminating a branch-and-price framework with

one or more heuristic rules that cut parts of the search tree. The diving metaphor in an LP-based
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branch-and-bound tree foresees a search that plunges deep into the enumeration tree by selecting a

branch with some heuristic rule at each node.

In our case, we have implemented the branch-and-price with branching rule BR-1 (which fixes a

variable ξP at a time to 1 and 0, respectively), but we have limited the number of possible branching

using a token-based rule. Fixing a variable at value 1 (i.e., fixing the packing of a bin) reduces the

problem size and drives the algorithm to find a feasible solution in a short time. For this reason, we

allow the algorithm to perform all left branches ( which fix the variable to 1), but we restrict the

number of right branches. More specifically, at the beginning the algorithm has K token available

for right branching. When a tree node k is separated using a right branch, the number of available

tokens is reduced by one. When no more token exist, the algorithm can perform only left branches.

If backtracking occurs and the search return to node k the token possibly used for a right branch

returns available and the total number of tokens is increased by one. One can see that with K ≥ 1
tokens at most O(n2(K−1)) solutions are generated, while a single solution is generated for K = 0.

6.4. Overall algorithm

The final algorithm we propose to solve the TBPP is based on a combination of the above ap-

proaches. In particular, in a first phase, we start by computing the lower bound LB0 and an upper

bound, say UB0, obtained by running the Greedy and the H-Rolling heuristics, and choosing the

best solution. If UB0 = LB0, then we stop. Otherwise, in the second phase, we compute the

continuous relaxation LPe. We check again if UB0 provides the optimal solution by comparing

it with LB3, and stopping if equality holds. In the third phase, we run the tree-exploration of the

H-Diving heuristic, starting from the continuous relaxation LPe already computed while evaluat-

ing LB3. Let UB3 be the corresponding heuristic solution value. If UB3 = LB3 we are done,

otherwise we proceed to the final phase running the branch-and-price method of Section 6, using

branching rule BR-2. The algorithm, called B&P+ in the following, is resumed in Algorithm 1.

We observe that phase 2 is one of the most time consuming, because it requires to solve LPe using

the column generation approach. Once LPe is solved the next tree-search performed by H-Diving

with a single token, is usually fast. In phase 4, instead, the tree-search using branching rule BR-2

without restrictions, may use large computing times. See Section 7 for details.

Algorithm 1: B&P+

1: Compute L = max(LB0, LB1, LB2); ⊲ Phase 1

2: Run First-Fit-1 and First-Fit-2 on the original and lifted instance, run H-Rolling, and let U be

the minimum solution value;

3: if U = L the solution is optimal then return;

4: Compute L = max(L, LB3); if U = L the solution is optimal then return; ⊲ Phase 2

5: Run H-Diving with one token and possibly improve U ; ⊲ Phase 3

6: if U = L the solution is optimal then return;

7: Run the branch-and-price with branching rule BR-2, possibly improving L and U ⊲ Phase 3

8: return.
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7. Computational Results

The experiments have been performed on a computer with a 3.10 GHz 4-core Intel Xeon processor

and 16Gb RAM, running a 64 bits Ubuntu Linux operating system version 14.04.5. The algorithms

were coded in C++ and all the codes were compiled with gcc 6.2 and -O3 optimizations. To

solve the linear relaxations of the models and the required ILPs, we used Cplex 12.7, run on a

single-thread (parameter CPX PARAM THREADS set to one).

We build our testbed starting from the TKP instances called “I” in Caprara et al. [11]. The testbed

“I” consists of one hundred instances which are further divided into ten classes generated using

different values of some inout parameters (see Table 1), and the following rules, which allows to

generate only the inclusion-wise non-dominated sets of simultaneously active items (see Caprara

et al. [11] for further details). Given the size |T o|, for each t ∈ {1, . . . , |T o|} the number of tasks

in St is uniformly distributed in [an, amax]. If t > 1 then β percent tasks from St−1 are randomly

selected and inserted in St, where β is uniformly distributed in [bn, bmax]. Item weights are uniform

random integer from [10, 100]. The bin capacity is W = 100 for all instances. For Classes I-IV,

|T o| = 2688+128(i−1) (i = 1, . . . , 10). For Classes V-X, |T o| = 768+128(i−1) (i = 1, . . . , 10).

Table 1: Parameter values used to generate the test instances

Class an amax bn bmax Class an amax bn bmax

I 10 10 90 95 VI 30 30 70 90

II 15 15 90 95 VII 30 30 90 95

III 20 20 90 95 VIII 25 35 90 95

IV 25 25 90 95 IX 25 35 70 90

V 30 30 90 95 X 30 40 90 95

Due to the fact that the TBPP instances share the same data structure with those of the TKP, ex-

cept for the absence of item profits, these instances could be directly used to define TBPP in-

stances. However the BPP is normally much harder to solve than a KP, and the same happens

with the time versions here considered. Therefore we reduced the size of the original instances

as follows. Let T o denote the time steps in an original instance, we build TBPP instances with

|T | ∈ {5, 10, 15, 20, 30, . . . , 150} by extracting from the original instance all the items in ∪|T |
t=1St,

and disregarding the profits.

Instances of classes VI and IX have bn smaller than the other classes. This implies that when

generating a set St a smaller number of tasks are taken from St−1, and thus a larger number of new

tasks exist in St. This fact, however, does not translate into a greater difficulty of the class, as will

be seen in the remaining of the section.

7.1. Lower bounds

Our first lower bound LB0 (see Section 4) requires to solve |T | BPP instances. To solve the BPPs

we implemented the arc-flow algorithm proposed in Valério de Carvalho [39]. Lower bound LB1

can be computed in O(n logn) as shown by Property 1, while LBI
2 requires to solve n Subset

Sum problems for each iteration (see Section 4.1). We executed a single iteration by solving the
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SSP with Cplex. The next lower bound LBII
2 is still based on a lifting procedure, and requires

the solution of O(n|T |) SSPs for each iteration. Again we used a single iteration and Cplex for

solving the subproblems.

Table 2 reports the results of the lower bounds for instances with |T | = (10, 20, . . . , 100). Each

row corresponds to 100 instances from the ten classes (ten instances for each class). The column

labeled |T | gives the number of time steps in the 100 instances, the column labeled ‘|N |’ gives

the average number of items. Columns ‘# opt’, ‘avg gap’ and ‘max gap’, report, respectively, the

number of times the bound is equal to the optimal solution value and the average and maximum

absolute gap with respect to the optimum. (The optimal solution values are computed with the

exact methods evaluated in the next Section 7.3, possibly running them for long times, when no

method is able to produce a proven optimum within the given time limit.). Column ‘time’ reports

the average computing time, when it is not negligible. The last row of the table reports the total

number of optimal values found and the average gap and time, for each lower bound. We do not

report on LBII
2 since it does not improves upon LBI

2 , and uses some more computing time. Table 3

gives the same information grouped by instance class: in this case each row refers to 150 instances.

LB0 LB0(t̃) LB1 LBI

2 LB3

avg max avg avg max avg max avg max avg

|T | |N | # opt gap gap time # opt gap gap # opt gap gap # opt gap gap # opt time

10 54.90 97 0.03 1 0.08 92 0.08 1 12 1.49 4 22 1.20 4 100 0.24

20 88.39 96 0.04 1 0.15 88 0.13 2 3 1.82 4 12 1.46 4 100 0.90

30 121.43 95 0.05 1 0.21 83 0.18 2 2 2.02 4 8 1.66 4 100 2.23

40 154.10 96 0.04 1 0.29 83 0.18 2 2 2.09 4 6 1.72 4 100 4.23

50 186.70 98 0.02 1 0.36 83 0.21 3 1 2.31 5 3 1.90 4 100 5.51

60 219.61 97 0.03 1 0.45 82 0.22 3 1 2.27 5 3 1.89 4 100 9.80

70 252.50 98 0.02 1 0.52 78 0.26 3 1 2.31 5 3 1.93 4 100 14.41

80 285.93 98 0.02 1 0.57 82 0.20 3 1 2.40 5 5 1.95 4 100 18.07

90 318.86 98 0.02 1 0.62 79 0.24 3 1 2.49 5 2 2.04 4 100 30.14

100 351.78 99 0.01 1 0.69 77 0.27 3 1 2.53 5 2 2.10 4 100 44.61

110 385.04 98 0.02 1 0.76 79 0.27 3 1 2.55 5 1 2.10 4 100 29.79

120 417.73 99 0.01 1 0.84 80 0.27 3 0 2.61 5 0 2.15 4 100 38.23

130 451.12 99 0.01 1 0.92 78 0.30 3 0 2.58 5 0 2.14 4 100 48.40

140 483.61 99 0.01 1 0.97 79 0.29 3 0 2.59 5 1 2.13 4 100 65.85

150 516.45 99 0.01 1 1.03 79 0.30 3 0 2.61 5 2 2.14 4 100 67.47

1466 0.02 0.56 1222 0.23 26 2.31 70 1.90 1500 25.33

Table 2: Performance of the Lower Bounds

Bound LB0 is quite effective and fails to find the optimum solution value in only 34 instances over

1500. Its performances improve with the problem size. Bound LB0(t̃) fails on 278 instances and

its performances definitely worsens when the size of the instance increases. Bounds LB1 and LBI
2

are not competitive since they are able to provide very few optimal values. The best bound is LB3

which is able to give the optimal value for all the 1500 instances. However, this result is obtained

with a larger computational effort. Indeed, it requires to solve the continuous relaxation LPe for

which the computing time grows up to 67.47 seconds, on average, with some rare instances were

the time exceeds 2000 seconds. Lower bound LB0 runs, on average, in at most one second, while

for LB0(t̃), LB1 and LBI
2 the computing time is negligible and is not reported.
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LB0 LB0(t̃) LB1 LBI

2 LB3

avg max avg avg max avg max avg max avg

class |N | # opt gap gap time # opt gap gap # opt gap gap # opt gap gap # opt time

I 89.00 144 0.04 1 0.16 135 0.10 1 13 1.35 2 27 1.03 2 150 0.49

II 147.53 149 0.01 1 0.31 112 0.31 2 8 1.84 4 15 1.55 3 150 3.55

III 164.94 150 0.00 0 0.32 90 0.49 3 0 2.45 4 2 2.16 4 150 3.14

IV 208.98 147 0.02 1 0.52 118 0.22 2 1 2.15 4 4 1.57 4 150 17.45

V 241.21 148 0.01 1 0.69 142 0.05 1 2 2.45 4 12 1.83 4 150 58.50

VI 531.69 147 0.02 1 0.70 124 0.17 1 0 2.93 5 0 2.55 4 150 42.04

VII 241.50 133 0.11 1 0.68 115 0.24 2 1 2.32 4 4 2.03 4 150 56.61

VIII 326.86 148 0.01 1 0.75 121 0.25 2 1 2.49 4 4 1.87 3 150 17.39

IX 554.91 150 0.00 0 0.69 133 0.13 2 0 2.55 4 2 2.21 3 150 23.13

X 352.15 150 0.00 0 0.83 132 0.30 3 0 2.59 5 0 2.21 4 150 30.96

1466 0.02 0.56 1222 0.23 26 2.31 70 1.90 1500 25.33

Table 3: Performance of the Lower Bounds: instances grouped by groups

Note that although LB3 equals the optimal solution value in all the 1500 instances we generated,

this equality cannot always hold if P 6= NP . For the BPP it is known that the continuous relax-

ation of the exponential-size formulation almost always provides the optimal solution value. The

Integer Round-Up Property (IRUP) states that the value of the LP relaxation of the exponential-size

formulation, rounded up to the closest integer, yields the optimal solution value. However, for BPP

the IRUP property does not hold (see, e.g., Caprara et al. [12]). The TBPP generalizes the BPP, so

it also cannot exhibit the IRUP property.

7.2. Heuristic algorithms

We implemented three heuristic algorithms. The first one, called “Greedy” in the following, is

made by running the four versions of the first fit method described in Section 5 (First-Fit-1 and

First-Fit-2 applied to the original and lifted instance) and returning the best of these solutions.

The “H-Rolling” heuristic implements the rolling horizon method introduced in Section 5. The

method uses a parameter ∆ to define the rolling time window. We performed preliminary tests with

∆ = {10, 20, 30, 40}, on a subset of instances. On the basis of these experiments, we selected the

value ∆ = 30 for our complete computational tests. We also made some preliminary tuning on the

time limit given to Cplex for the solution of each restricted ILPc model and we finally set the time

limit to 10 seconds for instances with |T | < 100 and to 30 seconds when |T | ≥ 100.

The last heuristic “H-Diving” is the diving method described in Section 6.3. Initially, it solves

the continuous relaxation LPewith the column generation method described in Section 6.1, which

provides both LB3 and the starting point of the algorithm. Then, the branch-decision-tree defined

by branching rule BR-1 is partially explored using the token-rule given in Section 6.3. For the

computation of the root node (LB3) we set the time limit to 3500 CPU seconds, while 100 seconds

are allowed for the tree exploration. The same 3600 seconds time limit will be used for the exact

algorithms. Table 4 gives the results for the three methods. The columns report on the number

of times the heuristic solution is equal to the optimal solution (# opt), the average and maximum

absolute gap with respect to the optimum value (avg gap, max gap), and the average and max
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Greedy H-Rolling H-Diving

avg max avg max avg max avg max avg max

|T | |N | # opt gap gap # opt gap gap time time # opt gap gap time time

10 54.90 46 0.57 2 100 0.00 0 1.87 10.00 100 0.00 0 0.46 7.02

20 88.39 36 0.84 2 92 0.08 1 4.63 10.00 100 0.00 0 1.93 15.05

30 121.43 32 1.04 3 79 0.28 3 5.53 10.00 100 0.00 0 5.92 65.20

40 154.10 30 1.10 3 70 0.34 2 5.95 10.32 99 0.02 2 12.38 130.38

50 186.70 36 1.03 3 75 0.32 3 5.81 20.00 97 0.06 3 18.93 155.72

60 219.61 34 1.06 3 75 0.29 2 6.88 20.01 91 0.15 3 32.25 202.22

70 252.50 29 1.12 3 72 0.33 2 7.32 20.08 87 0.26 3 44.49 299.81

80 285.93 30 1.13 3 73 0.30 2 7.41 20.43 76 0.47 3 59.06 332.32

90 318.86 30 1.10 4 77 0.24 2 8.70 25.77 81 0.42 4 71.37 1454.90

100 351.78 27 1.10 4 78 0.25 2 17.44 60.68 69 0.61 4 98.22 2615.81

110 385.04 27 1.14 3 79 0.26 3 19.77 65.81 63 0.69 3 84.16 580.28

120 417.73 31 1.09 4 78 0.26 2 20.06 82.45 62 0.70 4 91.98 1272.17

130 451.12 28 1.14 4 72 0.33 3 19.57 80.23 59 0.80 4 102.97 1375.88

140 483.61 31 1.09 3 74 0.31 2 19.74 78.42 50 0.90 3 127.66 1701.14

150 516.45 29 1.14 3 76 0.31 3 19.68 79.62 48 0.93 3 132.00 602.14

476 1.05 1170 0.26 11.36 1182 0.40 58.92

Table 4: Performance of the heuristic algorithms: instances grouped by time steps

computing time, when it is relevant. Each row provides results on the 100 instances we generated

for each |T | value. The last row summarises the above results on all the 1500 instances. Table

5 provides the same information grouped by classes (we remind that in this case we have 150

instances per row). The Greedy is extremely fast and its computing time is not reported. It is able

Greedy H-Rolling H-Diving

avg max avg max avg max avg max avg max

class |N | # opt gap gap # opt gap gap time time # opt gap gap time time

I 89.00 115 0.24 2 147 0.02 1 0.05 1.20 150 0.00 0 1.41 42.12

II 147.53 78 0.49 2 126 0.16 1 1.89 30.04 147 0.02 1 16.45 135.91

III 164.94 55 0.66 2 118 0.21 1 2.16 10.13 145 0.05 2 14.16 139.91

IV 208.98 14 1.56 3 123 0.20 2 12.26 40.77 107 0.59 3 62.22 246.13

V 241.21 13 1.85 4 74 0.65 3 20.94 79.62 102 0.77 4 111.04 2615.81

VI 531.69 28 1.06 3 128 0.17 2 14.53 61.98 83 0.67 3 100.78 595.11

VII 241.50 6 1.92 3 108 0.37 3 19.30 82.45 106 0.71 3 104.86 1701.14

VIII 326.86 44 0.93 3 120 0.23 3 13.24 60.63 115 0.38 3 50.24 428.01

IX 554.91 101 0.36 2 138 0.08 1 9.26 69.45 128 0.16 2 48.60 472.91

X 352.15 22 1.39 4 88 0.52 3 19.93 80.50 99 0.66 4 79.43 425.49

476 1.05 1170 0.26 11.36 1182 0.40 58.92

Table 5: Performance of the heuristic algorithms: instances grouped by class

to provide the optimal solution for about one third of the instances, while H-Rolling and H-Diving

for about four over five solutions. H-Diving finds twelve more optimal solutions than H-Rolling, but

looking at each group of instances with the same |T | one can see that no one of the two algorithms

dominates the other. If one looks at the single instances (not reported here) it is possible to find a

sort of complementarity between the two methods: one solves instances not solved by the other and
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Figure 4: Heuristic performances by instance classes

vice versa. The same considerations apply to the results grouped by class, shown in Table 5. For

example H-Diving improves upon H-Rolling for classes I, II, III, V and X, while H-Rolling is the

winner in the other classes. H-Rolling is able to find all the 100 optimal solutions only for |T | = 10,

then its performances slightly worsen, and for |T | = (40, . . . , 150) the number of optimal solutions

found ranges between 70 and 80. H-Diving, instead, finds all the optimal solutions for |T | ≤ 30,

then its performances constantly decrease while |T | increases. However, even when it finds only 48

optimal solutions (|T | = 150) against the 76 found by H-Rolling, there are some instances where

H-Diving beats H-Rolling (and vice versa).

From Table 5 and Figure 4 one can see that class I is definitely the easiest for all algorithms, while

classes II and III are also easy for H-Diving, although the computing times grows, on average,

from 1.41 seconds to 16.45 seconds. Instances of classes IV and V are the most difficult to solve

for H-Rolling and H-Divng, respectively.

7.3. Exact algorithms

We started the computational analysis of the exact algorithms by comparing the results of the Vector

Packing Solver by Brandão and Pedroso [9] with that of the polynomial-size formulation (2)–(6),

solved by Cplex and with the exponential-size formulation solved by our branch-and-price algo-

rithm introduced in Section 6. Table 6 reports the results for instances with |T | = 10, 15. Each

row refers to the 10 instances of a given class, and the columns show the results for the Vector

Packing Solver ‘VPSolver’, for the polynomial-size model ‘ILPc’ and for the exponential-size for-

mulation ‘ILPe’. For each algorithm, we provide the number of optimal solutions found (# opt)

and the average computing time over the solved instances. The column labeled ‘|N |’ reports the

average number of items, while the column labeled ‘#’ reminds the number of instances tested in

each class. A time limit of 600 seconds has been given to each algorithm. For |T | = 10 ,the Vector
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|T | = 10 |T | = 15

VPSolver ILPc ILPe VPSolver ILPc ILPe

class |N | # # opt time # opt time # opt time # opt time # opt time # opt time

I 19.0 10 10 0.01 10 0.02 10 0.02 10 0.03 10 0.03 10 0.04

II 30.2 10 10 0.05 10 0.06 10 0.15 10 0.33 10 0.21 10 0.22

III 36.9 10 10 0.05 10 0.14 10 0.04 10 0.46 10 0.69 10 0.09

IV 46.1 10 10 0.33 10 0.45 10 0.71 10 3.66 10 1.98 10 1.10

V 53.8 10 10 0.48 10 1.93 10 0.47 10 9.70 10 6.20 10 1.59

VI 88.5 10 3 176.91 10 3.91 10 1.85 0 M.L. 10 48.79 10 6.09

VII 53.4 10 10 0.34 10 0.47 10 0.45 10 6.58 10 8.06 10 1.36

VIII 64.4 10 10 18.52 10 0.91 10 0.55 8 108.29 9 4.06 10 1.49

IX 87.6 10 4 193.75 10 5.04 10 1.13 0 M.L. 10 19.69 10 7.03

X 69.1 10 10 4.40 10 125.17 10 0.26 5 124.09 10 20.14 10 1.51

87 39.48 100 13.81 100 0.56 73 31.64 99 10.98 100 2.05

Table 6: Performance comparison of exact algorithms on small instances (time limit 600 secs)

Packing approach is not able to solve seven and six instances from classes VI and IX, respectively.

For |T | = 15, it is able to solve only 73 over 100 instances. In this case, the unsolved instances

are due to the excessive memory usage (entry ‘M.L.’ in the table). The computing time drastically

increases for some instances. This is probably due to the fact that VPSolver is intended to solve a

more general problem than the TBPP. The ILPc model is able to solve all instances with |T | = 15
but one, using 31.64 CPU seconds on average. The ILPe solves all instances in short times (on

average 2.05 seconds) and is two order of magnitude faster than the VPSolver. On the basis of

these results, we decided that using VPSolver to solve the problem is not viable due to memory

limitation ad high computing times, so we disregard this approach for the next experiments.

We then performed computational experiments to assess the effectiveness of ILPc and of our overall

algorithm B&P+ to solve the TBPP. We set a time limit of 3600 seconds for each algorithm and

instance. In Tables 7 and 8 we report, for ILPc and B&P+, the number of optimal solution and

the average and maximum absolute gap and computing time. For B&P+ we additionally report the

average root time, the average number of columns in the root LP, and the average number of nodes

explored. The average and maximum values are computed on the instances which are solved to a

proven optimum. The two tables group the instances by |T | and class, respectively.

From Table 7 one can see that B&P+ dominates ILPc for all |T | < 150, since it finds always more

optimal solutions in a shorter average time. The ILPc reaches the time limit for |T | ≥ 20, while

B&P+ for |T | ≥ 90. For |T | = 150 B&P+ finds two less optima than ILPc in a comparable running

time. The analysis by instance classes in Table 8 confirms that B&P+ dominates ILPc class by class,

both by number of optimal solutions found and computing time. The first three classes appear to

be easy for both algorithm, while class IV is also easy, but ILPc fails on three instances. Class X

remains the most difficult for both methods.

In order to give a graphical representation of the relative performance of the two exact algorithms,

we report a performance profile in Figure 5. For each instance, we compute a normalized time τ as

the ratio of the computing time of the considered configuration over the minimum computing time

for solving the instance to optimality. For each value of τ the vertical axis reports the percentage of

the instances for which the corresponding configuration spent at most τ times the computing time
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of the fastest configuration. The curves start from the percentage of instances in which the corre-

sponding configuration is the fastest and at the right end of the chart, we can read the percentage

of instances solved by a specific algorithm. The best performance are graphically represented by

the curves in the upper part of Figure 5. B&P+ is the fastest one for approximatively 70% of the

instances and it is able to solve to problem optimality 98% of them. On the other hand, ILPcis able

to solve only 90% of the instances within the same time limit of 1 hour, and only 65% and 85% of

the instances by allowing 10 and 100 times more time than the one required by B&P+, respectively.

Figure 5 graphically demonstrates that B&P+ compares favorably to ILPc on the testbed of the

1500 considered instances.
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Figure 5: Performance profile of the exact methods

We complete our analysis by studying the contribution of each component of the overall algorithm

B&P+ to the solution of the TBPP, see Tables 9 and 10. The first group of three columns (labeled

H-Rolling+LB0) refers to the first phase of the algorithms where we compute all the lower bounds,

but LB3 and we run the Greedy and the H-Rolling heuristic. In the columns we report the number

of instance solved (# opt) and the average and maximum running times, computed with respect

to the solved instances. The second group of three columns (labeled H-Rolling+LB3) refers to the

instances that are not solved in the previous phase and shows the results obtained when lower bound

LB3 (i.e., the LP relaxation of the root node of the branch-decision-tree) is computed. Again we

report the results evaluated only for the solved instances. Note that in column labeled “#opt” we

report the total number of instances solved in the first two phases of the algorithm, and in brackets

the number of new optima. The next group of three columns (labeled H-Diving) shows the results

on the remaining unsolved instances, after the execution of the diving search. The last group of five

columns gives the results of the application of the B&P+ search to the instances that are not solved

by the heuristics and lower bounds.
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8. Conclusions

In this paper, we studied the Temporal Bin Packing Problem (TBPP), a challenging generalization

of the classical Bin Packing Problem where each item consumes the bin capacity during a given

time window. The goal is to determine the minimum number of bins to pack all the items while,

at the same time, respecting the bin capacity at any instant of time. We have proposed and studied

the first two mathematical formulations for the TBPP, the first one with a polynomial number of

variables and constraints and the second one with an exponential number of variables. We have

introduced several upper and lower bounds for the TBPP and we have designed an exact algorithm

which combines them in an effective way. Our new branch-and-price algorithm, based on column

generation, is able to solve to proven optimality instances with up to 500 items and 150 time steps,

in reasonable computing times.

Several are the potential future lines of research. In the recent literature, effective pseudo-polynomial

size formulations have been proposed for the Bin Packing Problem. It would be interesting to study

if these formulations, especially the ones based on the arc flow mechanism (see, e.g., Valério de

Carvalho [39] and [20]), could be effectively used to tackle the TBPP as well. Finally, it would be

interesting to introduce additional real-world features to the TBPP; for instance, precedence con-

straints between the items (see, e.g., Dell’Amico et al. [18]) or item class set-up costs (see, e.g.,

Furini et al. [25]).
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ILPc B&P+

root

avg max avg max avg avg max avg max avg max avg

|T | |N | # opt gap gap time time nodes # opt gap gap time time time time col nodes

10 54.90 100 0.00 0.00 13.81 1234.59 662.6 100 0.00 0 1.95 10.19 0.24 3.08 103.1 7.9

20 88.39 99 0.01 1.00 100.46 t.l. 2361.5 100 0.00 0 5.24 25.19 0.90 6.06 264.7 24.1

30 121.43 96 0.04 1.00 273.49 t.l. 2476.8 100 0.00 0 9.33 75.46 2.23 16.25 524.9 48.8

40 154.10 92 0.08 1.40 396.91 t.l. 2683.6 100 0.00 0 15.74 385.20 4.23 33.68 844.7 71.2

50 186.70 93 0.08 1.39 414.36 t.l. 2683.2 100 0.00 0 27.89 935.86 5.51 48.47 1045.6 85.9

60 219.61 85 0.17 2.01 596.10 t.l. 2289.5 100 0.00 0 63.94 2168.50 9.80 88.62 1585.2 114.9

70 252.50 84 0.18 1.62 694.06 t.l. 2648.7 100 0.00 0 115.12 2622.69 14.41 173.10 2193.8 148.1

80 285.93 85 0.20 2.61 635.66 t.l. 2627.2 100 0.00 0 132.60 2964.84 18.07 201.83 2708.8 174.8

90 318.86 88 0.15 2.52 578.75 t.l. 2955.5 99 0.01 1 151.82 t.l. 30.14 1295.94 3178.4 205.6

100 351.78 86 0.16 2.00 642.66 t.l. 2528.0 99 0.01 1 168.85 t.l. 44.61 2245.15 3496.2 207.8

110 385.04 88 0.14 1.96 609.58 t.l. 2754.6 98 0.04 3 218.01 t.l. 29.79 472.09 4154.4 229.4

120 417.73 91 0.12 2.07 523.89 t.l. 2353.4 99 0.02 2 239.87 t.l. 38.23 1164.56 4588.4 239.3

130 451.12 92 0.10 2.02 631.67 t.l. 2156.0 94 0.09 3 433.91 t.l. 48.40 1253.87 4686.6 238.3

140 483.61 89 0.14 2.00 634.70 t.l. 2687.4 92 0.11 2 475.08 t.l. 65.85 1555.42 6764.3 285.7

150 516.45 92 0.09 2.34 613.20 t.l. 2605.0 90 0.15 3 560.40 t.l. 67.47 502.21 7519.6 290.1

1360 0.11 2431.5 1471 0.03 174.75 25.33 2396.4 142.3

Table 7: Performance of the exact algorithms, instances grouped by time steps
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ILPc B&P+

root

avg max avg max avg avg max avg max avg max avg

class |N | # opt gap gap time time nodes # opt gap gap time time time time col nodes

I 19.0 150 0.00 0.00 1.23 157.46 80.8 150 0.00 0 0.55 30.69 0.49 6.81 193.7 11.2

II 30.2 150 0.00 0.00 3.90 82.68 107.3 150 0.00 0 9.35 222.46 3.55 34.21 809.9 47.3

III 36.9 150 0.00 0.00 22.89 739.07 359.2 150 0.00 0 8.10 279.36 3.14 37.83 852.2 65.7

IV 46.1 147 0.02 1.00 206.61 t.l. 1444.9 150 0.00 0 60.10 1135.04 17.45 141.83 2222.9 134.7

V 53.8 128 0.19 2.61 882.97 t.l. 3449.9 146 0.04 2 396.64 t.l. 58.50 2245.15 2943.1 164.1

VI 88.5 142 0.06 1.40 359.66 t.l. 2066.4 146 0.03 1 214.72 t.l. 42.04 473.19 5238.6 289.1

VII 53.4 124 0.19 2.34 874.38 t.l. 2864.5 147 0.04 3 249.37 t.l. 56.61 1555.42 2499.9 160.2

VIII 64.4 132 0.15 1.89 586.40 t.l. 3256.9 144 0.07 3 223.86 t.l. 17.39 326.13 2770.3 178.8

IX 87.6 124 0.20 2.00 845.39 t.l. 4794.7 147 0.02 1 82.28 t.l. 23.13 368.59 2574.4 132.7

X 69.1 113 0.30 2.07 1122.77 t.l. 5890.7 141 0.09 3 501.58 t.l. 30.96 326.02 3699.5 229.7

1360 0.11 2431.5 1471 0.03 174.75 25.33 2396.4 142.3

Table 8: Performance of the exact algorithms, instances grouped by classes

2
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H-Rolling+LB0 H-Rolling+LB3 H-Diving B&P+ search

avg max avg max avg max avg max avg max

|T | |N | # opt time time # opt time time # opt time time # opt gap gap time time

10 54.90 97 1.80 10.00 100(3) 4.44 10.26 - - - - - - - -

20 88.39 88 3.90 10.00 92 (4) 12.35 13.72 100 (8) 14.59 24.39 - - - - -

30 121.43 74 4.08 10.00 79 (5) 14.37 22.10 100 (21) 25.01 72.27 - - - - -

40 154.10 67 4.49 10.32 70 (3) 18.51 31.74 99 (29) 26.97 93.46 100 (1) 0.00 0.00 385.20 385.20

50 186.70 73 4.75 20.00 75 (2) 21.04 41.17 97 (22) 34.33 117.04 100 (3) 0.00 0.00 531.95 935.86

60 219.61 72 6.10 20.01 75 (3) 20.55 58.11 95 (20) 41.60 106.51 100 (5) 0.00 0.00 999.49 2168.50

70 252.50 70 6.45 20.08 72 (2) 56.69 73.83 94 (22) 38.76 98.22 100 (6) 0.00 0.00 1671.65 2622.69

80 285.93 72 6.48 20.43 73 (1) 55.79 55.79 91 (18) 44.97 100.40 100 (9) 0.00 0.00 1318.28 2964.84

90 318.86 76 8.02 25.77 77 (1) 76.80 76.80 92 (15) 51.87 116.66 99 (7) 0.13 1.00 1708.19 t.l.

100 351.78 78 14.77 60.68 78 (-) - - 90 (12) 66.79 141.48 99 (9) 0.10 1.00 1486.10 t.l.

110 385.04 78 17.82 65.81 79 (1) 93.17 93.17 88 (9) 62.04 126.55 98 (10) 0.33 3.00 1641.51 t.l.

120 417.73 78 19.28 82.45 78 (-) - - 87 (9) 57.14 153.56 99 (12) 0.15 2.00 1684.90 t.l.

130 451.12 72 17.70 80.23 72 (-) - - 83 (11) 61.97 123.74 94 (11) 0.53 3.00 2433.47 t.l.

140 483.61 74 18.34 78.42 74 (-) - - 80 (6) 52.06 98.00 92 (12) 0.55 2.00 2288.29 t.l.

150 516.45 75 16.67 64.10 76 (1) 100.67 100.67 82 (6) 64.36 114.64 90 (8) 0.83 3.00 3012.76 t.l.

1144 9.93 1170 (26) 28.22 1378 (208) 41.85 1471 (93) 0.35 1970.21

Table 9: Contribution of the various methods used in B&P+: instances grouped by time steps
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H-Rolling+LB0 H-Rolling+LB3 H-Diving B&P+ search

avg max avg max avg max avg max avg max

|T | |N | # opt time time # opt time time # opt time time # opt gap gap time time

I 19.0 141 0.02 1.20 14 (6) 1.19 2.43 150 (3 ) 16.44 30.21 - - - - -

II 30.2 125 2.09 30.04 126 (1) 2.77 2.77 149 (23) 37.58 93.76 150 (1) 0.00 0.00 222.46 222.46

III 36.9 118 2.26 10.13 118 (-) - - 149 (31) 20.02 66.87 150 (1) 0.00 0.00 279.36 279.36

IV 46.1 121 12.32 40.77 123 (2) 15.80 17.87 141 (18) 46.96 112.07 150 (9) 0.00 0.00 729.38 1135.04

V 53.8 72 18.41 61.21 74 (2) 55.46 100.67 118 (44) 51.63 153.56 146 (28) 0.19 2.00 1739.71 t.l.

VI 88.5 125 14.76 61.98 128 (3) 57.38 76.80 136 (8 ) 53.52 116.99 146 (10) 0.29 1.00 2118.85 t.l.

VII 53.4 98 19.67 82.45 108 (10) 38.43 93.17 130 (22) 57.01 131.99 147 (17) 0.30 3.00 1687.26 t.l.

VIII 64.4 118 11.74 41.10 120 (2) 12.37 13.59 138 (18) 29.58 98.22 144 (6) 0.83 3.00 2627.64 t.l.

IX 87.6 138 8.12 69.45 138 (-) - - 147 (9 ) 35.70 72.27 147 (-) 1.00 1.00 t.l. t.l.

X 69.1 88 19.73 80.50 88 (-) - - 120 (32) 47.44 140.60 141 (21) 0.47 3.00 2396.26 t.l.

1144 9.93 1170 (26) 28.22 1378 (208) 41.85 1471 (93) 0.35 1970.21

Table 10: Contribution of the various methods used in B&P+: instances grouped by classes
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