33,141 research outputs found
Cosmological perturbations in a gravity with quadratic order curvature couplings
We present a set of equations describing the evolution of the scalar-type
cosmological perturbation in a gravity with general quadratic order curvature
coupling terms. Equations are presented in a gauge ready form, thus are ready
to implement various temporal gauge conditions depending on the problems. The
Ricci-curvature square term leads to a fourth-order differential equation for
describing the spacetime fluctuations in a spatially homogeneous and isotropic
cosmological background.Comment: 5 pages, no figure, To appear in Phys. Rev.
Study of the spin- Hubbard-Kondo lattice model by means of the Composite Operator Method
We study the spin- Hubbard-Kondo lattice model by means of the
Composite Operator Method, after applying a Holstein-Primakov transformation.
The spin and particle dynamics in the ferromagnetic state are calculated by
taking into account strong on-site correlations between electrons and
antiferromagnetic exchange among spins, together with usual Hund
coupling between electrons and spins
The Origin of Structures in Generalized Gravity
In a class of generalized gravity theories with general couplings between the
scalar field and the scalar curvature in the Lagrangian, we can describe the
quantum generation and the classical evolution of both the scalar and tensor
structures in a simple and unified manner. An accelerated expansion phase based
on the generalized gravity in the early universe drives microscopic quantum
fluctuations inside a causal domain to expand into macroscopic ripples in the
spacetime metric on scales larger than the local horizon. Following their
generation from quantum fluctuations, the ripples in the metric spend a long
period outside the causal domain. During this phase their evolution is
characterized by their conserved amplitudes. The evolution of these
fluctuations may lead to the observed large scale structures of the universe
and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur
On the Computation of Structural Vibrations Induced by a Low-speed Turbulent Flow
A method for numerical evaluation of the vibrations of a cylindrical shell structure induced by a low speed external turbulent flow is discussed. The direction of flow is along the axis of revolution of the shell, and the source of excitation is the pressure fluctuations in the turbulent boundary layer. For the investigation of vibration and noise problems it is usually more desirable to utilize the modal expansion approach. The axisymmetric shell structure can be modeled by the assemblage of conical-shell finite-elements. This modeling allows the eigenfunction psi sub mn (x,theta) to be represented in a rectangular product of a longitudinal modal function f sub mn (x) and a circular harmonic function cos m theta (or sin m theta)
A conserved variable in the perturbed hydrodynamic world model
We introduce a scalar-type perturbation variable which is conserved in
the large-scale limit considering general sign of three-space curvature (),
the cosmological constant (), and time varying equation of state. In a
pressureless medium is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.
Unified Analysis of Cosmological Perturbations in Generalized Gravity
In a class of generalized Einstein's gravity theories we derive the equations
and general asymptotic solutions describing the evolution of the perturbed
universe in unified forms. Our gravity theory considers general couplings
between the scalar field and the scalar curvature in the Lagrangian, thus
includes broad classes of generalized gravity theories resulting from recent
attempts for the unification. We analyze both the scalar-type mode and the
gravitational wave in analogous ways. For both modes the large scale evolutions
are characterized by the same conserved quantities which are valid in the
Einstein's gravity. This unified and simple treatment is possible due to our
proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure
Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes
We study practically efficient methods for performing combinatorial group
testing. We present efficient non-adaptive and two-stage combinatorial group
testing algorithms, which identify the at most d items out of a given set of n
items that are defective, using fewer tests for all practical set sizes. For
example, our two-stage algorithm matches the information theoretic lower bound
for the number of tests in a combinatorial group testing regimen.Comment: 18 pages; an abbreviated version of this paper is to appear at the
9th Worksh. Algorithms and Data Structure
Quantum fluctuations of Cosmological Perturbations in Generalized Gravity
Recently, we presented a unified way of analysing classical cosmological
perturbation in generalized gravity theories. In this paper, we derive the
perturbation spectrums generated from quantum fluctuations again in unified
forms. We consider a situation where an accelerated expansion phase of the
early universe is realized in a particular generic phase of the generalized
gravity. We take the perturbative semiclassical approximation which treats the
perturbed parts of the metric and matter fields as quantum mechanical
operators. Our generic results include the conventional power-law and
exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure
Screening, Kohn anomaly, Friedel oscillation, and RKKY interaction in bilayer graphene
We calculate the screening function in bilayer graphene (BLG) both in the
intrinsic (undoped) and the extrinsic (doped) regime within random phase
approximation, comparing our results with the corresponding single layer
graphene (SLG) and the regular two dimensional electron gas (2DEG). We find
that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel
oscillation and the RKKY interaction, which are associated with the
non-analytic behavior of the screening function at . We find that the
Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all
qualitatively different in the BLG compared with the SLG and the 2DEG.Comment: 4 pages, 3 figure
- …
