53 research outputs found

    Proglacial streams runoff dynamics in Devil´s Bay, Vega Island, Antarctica

    Get PDF
    Increasing temperatures in Antarctica have resulted in the enlargement of proglacial regions on the Antarctic Peninsula, following glacier melt. This melt has increased river activity yet direct runoff measurements remain scarce in Antarctica, despite it acting as a proxy for glacial ablation. Here, we present discharge and water temperature data from 2013 for three streams on Vega Island and discuss their relationship with air temperature. The average discharge at the largest stream was 0.523 m3s−1 with a maximum of 5.510 m3s−1 – among the highest recorded in Antarctica. The rivers continued to flow even when temperatures dropped to −7°C, indicating that a large proportion of the total runoff originated sub-glacially. This is supported by the one-day time lag between air and water temperatures. Using river discharge as a proxy, we measured 124.5 ± 14.4 mm w.e. of ablation. This indirect measurement proved an effective tool to complement classic glaciological observations

    Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere

    Get PDF
    The Antarctic Peninsula (AP) is often described as a region with one of the largest warming trends on Earth since the 1950s, based on the temperature trend of 0.54°C/decade during 1951-2011 recorded at Faraday/Vernadsky station. Accordingly, most works describing the evolution of the natural systems in the AP region cite this extreme trend as the underlying cause of their observed changes. However, a recent analysis (Turner et al., 2016) has shown that the regionally stacked temperature record for the last three decades has shifted from a warming trend of 0.32°C/decade during 1979-1997 to a cooling trend of -0.47°C/decade during 1999-2014. While that study focuses on the period 1979-2014, averaging the data over the entire AP region, we here update and re-assess the spatially-distributed temperature trends and inter-decadal variability from 1950 to 2015, using data from ten stations distributed across the AP region. We show that Faraday/Vernadsky warming trend is an extreme case, circa twice those of the long-term records from other parts of the northern AP. Our results also indicate that the cooling initiated in 1998/1999 has been most significant in the N and NE of the AP and the South Shetland Islands (>0.5°C between the two last decades), modest in the Orkney Islands, and absent in the SW of the AP. This recent cooling has already impacted the cryosphere in the northern AP, including slow-down of glacier recession, a shift to surface mass gains of the peripheral glacier and a thinning of the active layer of permafrost in northern AP islands.info:eu-repo/semantics/publishedVersio

    Geomorphology of Ulu Peninsula, James Ross Island, Antarctica

    Get PDF
    This study presents a 1:25,000 geomorphological map of the northern sector of Ulu Peninsula, James Ross Island, Antarctic Peninsula. The map covers an area of c. 250 km2, and documents the landforms and surficial sediments of one of the largest ice-free areas in Antarctica, based on remote sensing and field-based mapping. The large-scale landscape features are determined by the underlying Cretaceous sedimentary and Neogene volcanic geology, which has been sculpted by overlying ice masses during glacial periods. Paraglacial and periglacial features are superimposed upon remnant glacial features, reflecting the post-glacial evolution of the landscape. The study area can be broadly separated into three geomorphological sectors, according to the dominant contemporary Earth-surface processes; specifically, a glacierised southern sector, a paraglacial-dominated eastern sector, and a periglacial-dominated central/northern sector. This map provides a basis for further interdisciplinary research, and insight into the potential future landscape evolution of other parts of the Antarctic Peninsula as the climate warms

    Ten Misconceptions from the History of Analysis and Their Debunking

    Full text link
    The widespread idea that infinitesimals were "eliminated" by the "great triumvirate" of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.Comment: 46 pages, 4 figures; Foundations of Science (2012). arXiv admin note: text overlap with arXiv:1108.2885 and arXiv:1110.545

    Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

    Get PDF
    We examine some of Connes' criticisms of Robinson's infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes' own earlier work in functional analysis. Connes described the hyperreals as both a "virtual theory" and a "chimera", yet acknowledged that his argument relies on the transfer principle. We analyze Connes' "dart-throwing" thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being "virtual" if it is not definable in a suitable model of ZFC. If so, Connes' claim that a theory of the hyperreals is "virtual" is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren't definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in his Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes' criticism of virtuality. We analyze the philosophical underpinnings of Connes' argument based on Goedel's incompleteness theorem, and detect an apparent circularity in Connes' logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace (featured on the front cover of Connes' magnum opus) and the Hahn-Banach theorem, in Connes' own framework. We also note an inaccuracy in Machover's critique of infinitesimal-based pedagogy.Comment: 52 pages, 1 figur

    Effect of hyaloclastite breccia boulders on meso-scale periglacial-aeolian landsystem in semi-arid Antarctic environment, James Ross Island, Antarctic Peninsula

    No full text
    In this study we aim to describe the processes leading to the creation of a specific periglacial and aeolian landsystem, which evolves around the hyaloclastite breccia boulders on James Ross Island, north-eastern Antarctic Peninsula. These boulders were deposited as a result of the Late Holocene advance of Whisky Glacier, forming a well-developed boulder train approximately 5-km long, stretching from Whisky Glacier moraine to Brandy Bay. The combination of ground temperature monitoring, snow cover measurements, grain size analysis and field survey were used to quantify and understand the interplay of periglacial and aeolian processes leading to the formation of the specific meso-scale landsystem around the boulders. The ground temperature probes were installed during January 2017 in the vicinity of two selected boulders. The two study sites, at Monolith Lake (large boulder) and Keller Stream (smaller boulder), were also fitted with snow stakes and trail cameras. An automatic weather station (AWS) on the Abernethy Flats, located approximately two kilometres to the north-west, was used as a reference site for ground temperature and snow cover thickness. The hyaloclastite breccia boulders act as obstacles to wind and trap wind-blown snow, resulting in the formation of snow accumulations on their windward and lee sides. These accumulations affect ground thermal regime and lead to the transport of fine particles by meltwater from the snow during the summer season. The snow cover also traps wind-blown fine sand resulting in the formation of fine-grained rims on the windward and lee sides of the boulders after the snow has melted. Furthermore, the meltwater affects ground moisture content, creating favourable, but spatially limited conditions for colonisation by mosses and lichens.En este trabajo tratamos de describir los procesos que conducen a la creación de un sistema específico periglaciar y eólico, que evoluciona alrededor de bloques de hialoclastita en la Isla James Ross, nordeste de la Península Antártica. Estos bloques fueron depositados como resultado del avance a finales del Holoceno del Glaciar Whisky, formando un cordón de bloques de unos 5 km de longitud, desde la morrena del Glaciar Whisky hasta la Bahía Brandy. La combinación del seguimiento de la temperatura del suelo, medidas de la cubierta nival, análisis granulométricos y trabajo de campo permitieron cuantificar y entender las interacciones de los procesos periglaciares y eólicosculos y atrapan el espesor de la cubierta nival. Los bloques brechosos de hialoclastita act lugar de referencia para la tem que conducen a la formación de un sistema específico a mediana escala alrededor de los bloques. Se instalaron sondas de temperatura del suelo en enero de 2017 en la proximidad de dos bloques seleccionados. Los dos lugares de estudio, en el Lago Monolith (bloque mayor) y el río Keller (bloque menor), fueron también controlados con estacas de nieve y cámaras de seguimiento. Una estación meteorológica automática en los Abernethy Flats, localizada aproximadamente 3 km al nordeste, fue utilizada como lugar de referencia para la temperatura del suelo y el espesor de la cubierta nival. Los bloques brechosos de hialoclastita actúan como obstáculos y atrapan la nieve desplazada por el viento, dando lugar a la formación de acumulaciones de nieve a sotavento y barlovento. Estas acumulaciones afectan al régimen termal del suelo y conducen al transporte de partículas finas por el agua de fusión durante el verano. La cubierta nival también atrapa arena fina transportada por el viento, dando lugar a la formación de anillos de arena fina en los lados de sotavento y barlovento de los bloques, una vez que la nieve ha fundido. Además, el agua de fusión afecta al contenido de humedad del suelo, creando condiciones favorables, aunque espacialmente limitadas, para la colonización por musgos y líquenes

    Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region

    Get PDF
    Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.info:eu-repo/semantics/publishedVersio

    Quantifying sediment sources, pathways, and controls on fluvial transport dynamics on James Ross Island, Antarctica

    No full text
    Proglacial regions are enlarging across the Antarctic Peninsula as glaciers recede in a warming climate. However, despite the increasing importance of proglacial regions as sedi ment sources within cold environments, very few studies have considered fluvial sediment dynamics in polar settings and spatio-temporal variability in sediment delivery to the oceans has yet to be unravelled. In this study, we show how air temperature, precipitation, and ground conditions combine to control sediment loads in two catchments on James Ross Island, Antarctica. We estimate that the sediment load for the Bohemian Stream and Algal Stream over the 50 day study period, the average sediment load was 1.18 ± 0.63 t km⁻² d⁻¹ and 1.73 ± 1.02 t km⁻² d⁻¹ , respectively. Both catchments show some sensitivity to changes in precipitation and air temperature, but the Algal catchment also shows some sensitivity to active layer thaw. The downstream changes in sediment provenance are controlled by underlying lithology, while differences in sediment load peaks between the two catchments appear to be primarily due to differing glacier and snowfield coverage. This identification of the controls on sediment load in this sub-polar environment provides insight into how other fluvial systems across the Antarctic Peninsula could respond as glaciers recede in a warming climate
    corecore