1,661 research outputs found
Irregular Dynamics in Up and Down Cortical States
Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise
Thermohydraulics of Resistive Transitions of the LHC Prototype Magnet String: Theoretical Modeling and Experimental Results
In preparation for the Large Hadron Collider (LHC) project, a 40 m-long prototype superconducting magnet string, representing a half-cell of the machine lattice, has been built and operated. The superconducting magnets which comprise this string normally operate in a pressurized static bath of superfluid helium at a pressure of 1 bar and at a temperature of 1.9 K. At 13.1 kA they have about 15.3 MJ of stored magnetic energy. A series of tests was performed to assess the thermohydraulics of resistive transitions (quenches) of the string of magnets. These measurements provide the necessary foundation for describing of the observed pressure rise as the combination of two processes, each acting on a different time scale. The measurements are presented and an explanatory model description of the events is given
A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6
The invention of the "dual resonance model" N-point functions BN motivated
the development of current string theory. The simplest of these models, the
four-point function B4, is the classical Euler Beta function. Many standard
methods of complex analysis in a single variable have been applied to elucidate
the properties of the Euler Beta function, leading, for example, to analytic
continuation formulas such as the contour-integral representation obtained by
Pochhammer in 1890. Here we explore the geometry underlying the dual five-point
function B5, the simplest generalization of the Euler Beta function. Analyzing
the B5 integrand leads to a polyhedral structure for the five-crosscap surface,
embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120
in PGL(6). We find a Pochhammer-like representation for B5 that is a contour
integral along a surface of genus five. The symmetric embedding of the
five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the
surface of genus four in R6 that has a polyhedral structure with 24 pentagonal
faces and a symmetry group of order 240 in O(6). The methods appear
generalizable to all N, and the resulting structures seem to be related to
associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure
The double torus as a 2D cosmos: groups, geometry and closed geodesics
The double torus provides a relativistic model for a closed 2D cosmos with
topology of genus 2 and constant negative curvature. Its unfolding into an
octagon extends to an octagonal tessellation of its universal covering, the
hyperbolic space H^2. The tessellation is analysed with tools from hyperbolic
crystallography. Actions on H^2 of groups/subgroups are identified for SU(1,
1), for a hyperbolic Coxeter group acting also on SU(1, 1), and for the
homotopy group \Phi_2 whose extension is normal in the Coxeter group. Closed
geodesics arise from links on H^2 between octagon centres. The direction and
length of the shortest closed geodesics is computed.Comment: Latex, 27 pages, 5 figures (late submission to arxiv.org
Curved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-Riemannian Space Forms
We study two aspects of the loop group formulation for isometric immersions
with flat normal bundle of space forms. The first aspect is to examine the loop
group maps along different ranges of the loop parameter. This leads to various
equivalences between global isometric immersion problems among different space
forms and pseudo-Riemannian space forms. As a corollary, we obtain a
non-immersibility theorem for spheres into certain pseudo-Riemannian spheres
and hyperbolic spaces.
The second aspect pursued is to clarify the relationship between the loop
group formulation of isometric immersions of space forms and that of
pluriharmonic maps into symmetric spaces. We show that the objects in the first
class are, in the real analytic case, extended pluriharmonic maps into certain
symmetric spaces which satisfy an extra reality condition along a totally real
submanifold. We show how to construct such pluriharmonic maps for general
symmetric spaces from curved flats, using a generalised DPW method.Comment: 21 Pages, reference adde
A Note on Infinities in Eternal Inflation
In some well-known scenarios of open-universe eternal inflation, developed by
Vilenkin and co-workers, a large number of universes nucleate and thermalize
within the eternally inflating mega-universe. According to the proposal, each
universe nucleates at a point, and therefore the boundary of the nucleated
universe is a space-like surface nearly coincident with the future light cone
emanating from the point of nucleation, all points of which have the same
proper-time. This leads the authors to conclude that at the proper-time t =
t_{nuc} at which any such nucleation occurs, an infinite open universe comes
into existence. We point out that this is due entirely to the supposition of
the nucleation occurring at a single point, which in light of quantum cosmology
seems difficult to support. Even an infinitesimal space-like length at the
moment of nucleation gives a rather different result -- the boundary of the
nucleating universe evolves in proper-time and becomes infinite only in an
infinite time. The alleged infinity is never attained at any finite time.Comment: 13 pages and 6 figure
Univalent Foundations and the UniMath Library
We give a concise presentation of the Univalent Foundations of mathematics outlining the main ideas, followed by a discussion of the UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations (section 1), and the challenges one faces in attempting to design a large-scale library of formalized mathematics (section 2). This leads us to a general discussion about the links between architecture and mathematics where a meeting of minds is revealed between architects and mathematicians (section 3). On the way our odyssey from the foundations to the "horizon" of mathematics will lead us to meet the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect Christopher Alexander
Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation
We calculate exactly both the microcanonical and canonical thermodynamic
functions (TDFs) for a one-dimensional model system with piecewise constant
Lennard-Jones type pair interactions. In the case of an isolated -particle
system, the microcanonical TDFs exhibit (N-1) singular (non-analytic)
microscopic phase transitions of the formal order N/2, separating N
energetically different evaporation (dissociation) states. In a suitably
designed evaporation experiment, these types of phase transitions should
manifest themselves in the form of pressure and temperature oscillations,
indicating cooling by evaporation. In the presence of a heat bath (thermostat),
such oscillations are absent, but the canonical heat capacity shows a
characteristic peak, indicating the temperature-induced dissociation of the
one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical
partition may be used to identify different degrees of dissociation in the
canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text,
references adde
- …