528 research outputs found

    An ALMA Survey of faint disks in the Chamaeleon I star-forming region: Why are some Class II disks so faint?

    Full text link
    ALMA surveys of nearby star-forming regions have shown that the dust mass in the disk is correlated with the stellar mass, but with a large scatter. This scatter could indicate either different evolutionary paths of disks or different initial conditions within a single cluster. We present ALMA Cycle 3 follow-up observations for 14 Class II disks that were low S/N detections or non-detections in our Cycle 2 survey of the ∼2\sim 2 Myr-old Chamaeleon I star-forming region. With 5 times better sensitivity, we detect millimeter dust continuum emission from six more sources and increase the detection rate to 94\% (51/54) for Chamaeleon I disks around stars earlier than M3. The stellar-disk mass scaling relation reported in \citet{pascucci2016} is confirmed with these updated measurements. Faint outliers in the FmmF_{mm}--M∗M_* plane include three non-detections (CHXR71, CHXR30A, and T54) with dust mass upper limits of 0.2 M⊕_\oplus and three very faint disks (CHXR20, ISO91, and T51) with dust masses ∼0.5\sim 0.5 M⊕_\oplus. By investigating the SED morphology, accretion property and stellar multiplicity, we suggest for the three millimeter non-detections that tidal interaction by a close companion (<<100 AU) and internal photoevaporation may play a role in hastening the overall disk evolution. The presence of a disk around only the secondary star in a binary system may explain the observed stellar SEDs and low disk masses for some systems.Comment: ApJ accepte

    An ALMA Survey of CO isotopologue emission from Protoplanetary Disks in Chamaeleon I

    Get PDF
    The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey 13^{13}CO and C18^{18}O J = 3−23-2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 -- 2 M⊙_{\odot} in the nearby Chamaeleon I star-forming region. We detect 13^{13}CO emission from 17 sources and C18^{18}O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical ISM CO-to-H2_2 ratios of 10−410^{-4}, the resulting gas masses are implausibly low, with an average gas mass of ∼\sim 0.05 MJup_{Jup} as inferred from the average flux of stacked 13^{13}CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.Comment: accepted for publication in Ap

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Get PDF
    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    Mathematical practice, crowdsourcing, and social machines

    Full text link
    The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. Mathematical practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question answering system {\it mathoverflow} contains around 40,000 mathematical conversations, and {\it polymath} collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of "soft" aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a "social machine", a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent Computer Mathematics, CICM 2013, July 2013 Bath, U

    The feeling of anger: From brain networks to linguistic expressions.

    Get PDF
    This review of the neuroscience of anger is part of The Human Affectome Project, where we attempt to map anger and its components (i.e., physiological, cognitive, experiential) to the neuroscience literature (i.e., genetic markers, functional imaging of human brain networks) and to linguistic expressions used to describe anger feelings. Given the ubiquity of anger in both its normative and chronic states, specific language is used in humans to express states of anger. Following a review of the neuroscience literature, we explore the language that is used to convey angry feelings, as well as metaphors reflecting inner states of anger experience. We then discuss whether these linguistic expressions can be mapped on to the neural circuits during anger experience and to distinct components of anger. We also identify relationships between anger components, brain networks, and other affective research relevant to motivational states of dominance and basic needs for safety

    Semantic Web Tools and Decision-Making

    Get PDF
    Semantic Web technologies are intertwined with decision-making processes. In this paper the general objectives of the semantic web tools are reviewed and characterized, as well as the categories of decision support tools, in order to establish an intersection of utility and use. We also elaborate on actual and foreseen possibilities for a deeper integration, considering the actual implementation, opportunities and constraints in the decision-making context.info:eu-repo/semantics/publishedVersio
    • …
    corecore