34,936 research outputs found

    Morphological characterization of shocked porous material

    Full text link
    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodynamical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area AA roughly gives the velocity DD of a compressive-wave-series. When a velocity DD is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, DD becomes smaller. The area AA increases parabolically with time tt during the initial period. The A(t)A(t) curve goes back to be linear in the following three cases: (i) when the porosity Ī“\delta approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)Comment: 3 figures in JPG forma

    Investigation of an axial-excursion transducer for squeeze-film bearings

    Get PDF
    Resonant frequencies and characteristic bearing cone motion of axial-excursion transducer for squeeze-film gas bearing - drive voltage, preload, bearing mass, and mounting ring effect

    Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique

    Get PDF
    Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MĪ© level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GĪ© level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GĪ©, and found S = +550 ĀµV Kāˆ’1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible

    Analysis, design, and prototype development of squeeze-film bearings for AB-5 gyro Final report phase 2, design, fabrication and evaluation of prototypes

    Get PDF
    Squeeze-film bearing transducers with piezoceramic cylinders for AB-5 gyro - design, fabrication, and testing of cylindrical journal and annular bearing prototype

    Does parents' socio-economic status matter in intentions of vaccinating against human papillomavirus for adolescent daughters?

    Get PDF
    Background: The Human Papilloma Virus (HPV) vaccination provides substantial protection, and it is best to be taken before the age of twelve. Taiwan approved HPV vaccines since 2006. However, very few female adolescent have been vaccinated until now.Objectives: To examine whether the parentsā€™ socio-economic status matters in deciding to purchase HPV vaccination for their daughters based on the theory of planned behavior.Method: A structured questionnaire to collect 394 responses from parents of adolescent girls in Taiwan. Data was coded to categorize relevant socio-economic classes, and was analyzed with SPSS.Results: The behavior intentions of parents with low (mean= 5.28) and high (5.01) socio-economic status are significantly stronger than the moderate (4.56) in deciding to purchase the HPV vaccination. Socio-economic factor has a slightly negative impact (B= -0.08), and attitude (0.68), subjective norms (0.16), and behavior control (0.32) have positive impacts on the parentsā€™ intention.Conclusion: Major impacts on the decision to purchase an HPV vaccination for their adolescent was not due to the parentsā€™ socio-economic status but the parentā€™s attitude. As the major predictor of a less complicated decision, attitudes toward the HPV vaccination should be reinforced through continuous communications between service providers and patient-advocate groups.Keywords: Human Papillomavirus, cervical cancer, theory of planned behavior, vaccination, adolescen

    Efficient fault-tolerant routing in multihop optical WDM networks

    Get PDF
    This paper addresses the problem of efficient routing in unreliable multihop optical networks supported by Wavelength Division Multiplexing (WDM). We first define a new cost model for routing in (optical) WDM networks that is more general than the existing models. Our model takes into consideration not only the cost of wavelength access and conversion but also the delay for queuing signals arriving at different input channels that share the same output channel at the same node. We then propose a set of efficient algorithms in a reliable WDM network on the new cost model for each of the three most important communication patterns - multiple point-to-point routing, multicast, and multiple multicast. Finally, we show how to obtain a set of efficient algorithms in an unreliable WDM network with up to f faulty optical channels and wavelength conversion gates. Our strategy is to first enhance the physical paths constructed by the algorithms for reliable networks to ensure success of fault-tolerant routing, and then to route among the enhanced paths to establish a set of fault-free physical routes to complete the corresponding routing request for each of the communication patterns.published_or_final_versio

    Variant Reorientation in Single-crystal Shape-memory Alloys

    Get PDF
    In this work we model the variant reorientation in a single crystal NiMnGa magnetic shapememory alloy using the crystal-mechanics-based constitutive model of Thamburaja[1]. The model has been implemented in the ABAQUS/Explicit finite-element program by writing a user-material subroutine. Its numerical simulations quantitatively predict the mechanical response in simple compression and plain strain compression experiments to good accord

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Lattice Boltzmann Approach to High-Speed Compressible Flows

    Full text link
    We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combined with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition is satisfied. The influence of the various model parameters on the numerical stability is analyzed and some reference values of parameter are suggested. The new scheme works for both subsonic and supersonic flows with a Mach number up to 30 (or higher), which is validated by well-known benchmark tests. Simulations on Riemann problems with very high ratios (1000:11000:1) of pressure and density also show good accuracy and stability. Successful recovering of regular and double Mach shock reflections shows the potential application of the lattice Boltzmann model to fluid systems where non-equilibrium processes are intrinsic. The new scheme for stability can be easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear
    • ā€¦
    corecore