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Abstract: In this work we model the variant reorientation in a single crystal NiMnGa magnetic shape-
memory alloy using the crystal-mechanics-based constitutive model of Thamburaja[1]. The model has 
been implemented in the ABAQUS/Explicit finite-element program by writing a user-material 
subroutine. Its numerical simulations quantitatively predict the mechanical response in simple 
compression and plain strain compression experiments to good accord. 
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1 Introduction 
Materials which are capable of undergoing reversible phase transitions e.g. shape-memory alloys, 

piezoelectric materials and ferromagnetic shape-memory alloys etc. are finding increased use as 
actuation devices in smart structures. These phase transitions typically occur between the high 
temperature phase, austenite and the low temperature phase, martensite. The cooling of these 
materials from its high temperature austenitic phase to below its martensite finish temperature, mfθ  
will cause the conversion from the austenitic phase to multiple martensitic variants which are 
separated by twin planes or interfaces. The motion of these twin interfaces under the application of 
stress, electrical and magnetic fields will result in the conversion between martensitic variants i.e. 
variant reorientation and hence macroscopically observed shape changes. 

The microscopic process of variant reorientation under stress can be schematically shown in Figure 
1. As an example we consider the two variant case; variant i and variant j separated by a twin 
interface. Starting with the microstructure shown in state a, the application of stress from an 
unstressed state will cause the elastic deformation of the microstructures. Once a critical stress level 
is reached variant reorientation from variant i to variant j (state a  →  state b) will occur due to the 
motion of the twin interface. At state b, the variant reorientation would have been completed and 
further stressing will cause elastic deformation of the crystal. Conversely, applying the same level of 
stress in the opposite direction will cause variant reorientation from variant j to variant i (state a →  
state c) due to the motion of the twin interface. At state c, the variant reorientation would have been 
completed and further stressing will cause elastic deformation of the crystal. 

2 Single-crystal constitutive model 
For our constitutive model, we choose a representative-volume element (RVE) which contain 

martensitic variant(s) that o riginally nucleated from within a single crystal austenite i.e. state a in 
Figure 1, which is also taken as the reference configuration. 

The governing variables in the constitutive model are: (i) The Helmholtz free energy per unit 
reference volume, ψ . (ii ) The Cauchy stress, T . (iii) The deformation gradient, F  with det F  > 0. (iv) 

The inelastic deformation gradient, pF  with det pF  > 0. It represents the cumulative effect of 
martensitic variant reorientation in the RVE. (v) The elastic  deformation gradient, 1−= pe FFF  with 
det eF  > 0. It describes the elastic distortion of the lattice that gives rise to the Cauchy stress T . (vi) 
The variant reorientation systems labelled by integers ij  with ji <  (to avoid the double counting of 
variant reorientation systems). Each potential variant reorientation system is then specified by a 
constant variant reorientation transition tensor, ijS0  which is assumed to be known in the reference 

configuration. (vii) The variant volume fractions in the RVE, iλ  with 10 ≤≤ iλ and 1== ∑i
iλξ  

representing the total martensite volume fraction. 

The stress power per unit volume in the reference configuration is 

).()(det 1−⋅= FFTF &&ω  

This stress power may be additively decomposed as pe ωωω &&& += , where  
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is the elastic stress power, with 
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denoting the Green elastic strain and the symmetric second Piola-Kirchoff stress tensor relative to the 
reference configuration, respectively. With eeTe FFC = , the quantity 

0)()( 1* ≥⋅= −ppep FFTC &&ω                                                     (1)  

is the inelastic stress power which is assumed to be strictly non-negative at all times. 

Free energy 
The Helmholtz free energy per unit reference volume (under isothermal conditions and in the fully-

martensitic state) is taken to be 
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where C  represents the constant fourth-order elasticity tensor. 

Constitutive equation for elastic stress 

The stress-strain constitutive equation is given by 
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Flow rule 

The evolution equation for the inelastic deformation gradient, PF  is given by the flow rule: 
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where  ijγ&  denotes the variant reorientation rate between variant i  and variant j . Forward variant 

reorientation occurs when 0>ijγ& , and reverse variant reorientation occurs when 0<ijγ& . 

Since the total martensite volume fraction is conserved during variant reorientation, 
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with PlPkPi ,,2;1,,1;,,1 KKK =−== . Here P  is the total number of variant reorientation 
systems and the interaction matrix is given by 
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Variant reorientation criteria 

Substituting equation (4) into inequality (1) yields 

0≥∑
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Here ijσ  represents the driving force on each variant reorientation system ij . Assuming the 
material to be strongly dissipative, inequality (6) will not be violated if we assume the condition 

0)()(0 ≠=⇒> ijijijijij ifsignsign γγσγσ &&&                           (7)  

is satisfied for each variant reorientation system ij . Therefore with 0>ij
cσ representing the constant 

resistance to variant reorientation, the variant reorientation criteria are 
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ijij σσ                                    (8)  

for forward variant reorientation ( 0>ijγ& ) and reverse variant reorientation ( 0<ijγ& ), respectively. 

Finally the variant reorientation functions ij
+Φ  and ij

−Φ   are restricted as follows: 

0≤Φ +
ij  and 0≥Φ −

ij  

Consistency conditions 

The consistency conditions that serve to determine the variant reorientation rates ijγ&  are given as 
follows: 

(1) If 10,0 <≤=Φ +
iij λ  and 10 ≤< jλ  then 

0=Φ +
ijij &&γ  for forward variant reorientation  

(2) If 10,0 ≤<=Φ −
iij λ  and 10 <≤ jλ  then 

0=Φ −
ijij &&γ  for reverse variant reorientation  

For other conditions involving { }jiijij λλ ,,, −+ ΦΦ , 0=ijγ& . 

Therefore the list of material parameters that needed to be calibrated are: 

{ }ij
cC σ,  

The constitutive equations and a time-integration procedure have been implemented in the 
ABAQUS/Explicit (ABAQUS, [2]) by writing a user-material subroutine.  

3 Determination of material parameters and FEM simulations 
Originally austenitic single crystals of NiMnGa shape-memory alloys were purchased from a 

commercial source. At room temperature (298 K), these originally cubic austenitic single crystals have 
been transformed completely to the tetragonal martensitic phase, as shown in Figure 2. Following the 
methodology of Karaca et al. [3], these shape-memory alloys were compressed along the [100], [010] 
or [001]-direction of the parental cubic basis to make sure the material is initially in a single crystal 
martensitic variant state before subsequent testing takes place. Sufficient pure compression along the 
[100], [010] or [001]-direction of the parental cubic basis will result in the shape-memory alloy being in 
a fully single crystal martensite Variant 1, Variant 2 or Variant 3 state, respectively.  Henceforth, we 
shall denote the [100], [010] and [001]-direction of the parental cubic basis as direction-1, direction-2 
and direction-3, respectively. 

Since there are no literature data on NiMnGa single crystals regarding its elastic moduli in the 
tetragonal phase, as a first-cut assumption, we will assume the elastic moduli C  to be isotropic. 
Hence, the rest of the material parameters needed to be calibrated from physical experiments are the 
Young's Modulus, E, the Poisson's ratio, υ , the resistance to variant reorientation on each variant 
reorientation system, ij

cσ . In addition, we will assume that the resistance on all the variant 

reorientation systems are equal i.e. c
ij
c σσ = , and take the Poisson's ratio to be υ  = 0:33 which is 

typical for a metallic alloy.  



 

 

All the physical experiments performed in this work were conducted under very low 
strain/displacement rates to ensure that isothermal conditions prevail in the test specimens throughout 
the testing period. The experimental simple compression stress-strain data shown in Figure 3 was 
used to fit the material parameters E and ij

cσ  in our constitutive model. With the material initially being 
fully consisted of martensite Variant 3, a simple compression simulation along direction-2 was 
conducted to fit the material parameters in the constitutive model. This numerical simulation was 
conducted using a single ABAQUS C3D8R continuum-three dimensional brick element 3 . The values 
of the material parameters which best fit the experimental simple compression stress-strain curve 
shown in Figure 3 are: 

• Elastic constants: Young's modulus, E = 2.5GPa; Poisson's ratio, υ  = 0.33. 

• Variant reorientation resistance: cσ = 0.1606MJ/m 3 . 

The quality of the fit from this numerical simulation is shown in Figure 3. The constitutive model 
reproduces the experimental stress-strain curve to good accord. In particular, the constitutive model 
accurately predicts the amount of transformation strain ( ≈ 6%) achieved in the physical experiment.  

We then proceed to perform plane-strain compression simulations along direction-2 with the 
material being constrained along direction-1 or direction-3. The specimens for the plane-strain 
compression experiments have a cuboid geometry with their edges parallel along direction-1, 
direction-2 and direction-3. These test specimens have an initial height of 5.885mm measured along 
the loading direction (direction-2), and an initial width of 6.2mm measured along the constraint 
direction (direction-1 or direction-3). There is a small clearance of 0.02mm between the specimen and 
the constraints (which is assumed to be rigid) to allow for the insertion of the specimen into the actual 
testing setup.  

The initially-undeformed mesh for the finite-element simulations which reproduce the actual 
experimental plane-strain compression conditions as explained above is shown in Figure 4. The test 
specimen is meshed using a single ABAQUS C3D8R element whereas the constraints along the sides 
of the specimen are meshed using two ABAQUS R3D4 rigid elements. A plane-strain compression 
simulation was conducted along direction-2 with the rigid constraints being applied along direction-1. 
Figure 3 shows the stress-strain response from this simulation plotted along with the stress-strain 
curve obtained from the corresponding physical experiment. The experimental stress-strain response 
is well-predicted by the constitutive model. Note that this simulation also accurately predicts the 
amount of transformation strain ( ≈  6%) observed in the physical experiment. The stress-strain 
response from this simulation is similar to the simulated stress-strain response in simple compression. 
The reason for this is as follows: Recall again that there is an initial separation of 0.02mm between the 
specimen and the rigid constraints as shown in Figure 4. Referring to the simulated stress-strain 
response shown in Figure 3, the critical stress for variant reorientation is reached at an applied strain 
of about 0.1 %. Even with the Poisson's effect at this magnitude of applied elastic deformation, the 
lateral sides of the specimen have still not come into contact with the rigid constraints. Further 
deformation will cause variant reorientation to occur along a constant stress plateau until the variant 
reorientation process is complete. During variant reorientation, the specimen will expand along 
direction-3 (the free direction) and no deformation will be experienced along direction-1 i.e. the 
specimen will still not come into contact with the rigid constraints. Thus no constraining stresses will 
be imposed on the specimen along direction-1 and direction-3, and the simulated stress-strain 
response plotted in Figure 3 will be similar to the simple compression stress-strain simulation result 
shown in Figure 3. 

Next, using the initially-undeformed finite-element mesh shown in Figure 4, a plane-strain 
compression simulation was performed along direction-2 with the rigid constraints being applied along 
direction-3. The stress-strain curve from this simulation is plotted in Figure 3 along with the 
corresponding experimental stress-strain curve. The experimental stress-strain data is well-predicted 
by the constitutive model. However for the experimental and simulated stress-strain data shown in 
Figure 3, the variant reorientation process occurs along a stress plateau of about 0.34 % as compared 
to a stress plateau of 6 % obtained from the experimental and simulated stress-strain responses.  

The reason for this observed difference can be explained as follows: Referring to the simulated 
stress-strain curve shown in Figure 3, the critical stress for variant reorientation is also reached at an 
applied strain of about 0.1 %. At an applied strain of about 0.1 %, the lateral sides of the specimen will 



 

 

still not come into contact with the rigid constraints even with the Poisson's effect accompanying the 
applied elastic deformation thus far. A further application of deformation will result in the variant 
reorientation process to occur along a constant stress plateau. During the conversion from Variant 3 to 
Variant 2, the specimen will expand along direction-3 (the constraint direction) with no further 
deformation occurring along direction-1 (the free direction). At an applied strain of approximately 0.44 
%, the specimen would have expanded enough along direction-3 to be in contact with the rigid 
constraints. Upon further deformation, the variant reorientation process will continue with a steep 
increase in the magnitude of the loading stress i.e. the variant reorientation process will not occur at a 
constant loading stress level anymore. This is because of the increasing magnitude of the constraint 
stresses with increasing applied deformation.  

3 Conclusions 
In conclusion, the constitutive model is able to quantitatively and qualitatively capture the exotic 

stress-strain behavior exhibited by these shape-memory alloys, under simple compression and plane-
strain compression loading conditions.  
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Figure 1: Martensitic variants i and j originated from a single crystal austenite separated by an inter-
variant/twin interface. Under stress σ , the microstructure shown in (a) will undergo variant 
reorientation and transform into the microstructures shown in (b) or (c) depending on the sign of 
stress. Transformation between the microstructures shown in (b) and (c) is assumed to go through 
stage (a). 



 

 

 
Figure 2: Austenite to martensite transformation of a single crystal NiMnGa shape-memory alloy. The 
cubic parent austenitic phase can transform into three tetragonal martensitic variants i.e. the [100] 
(Variant 1), [010] (Variant 2) and [001] (Variant 3) variants. The lattice parameters for both the crystal 
structures are also shown. 

 
Figure 3: Experimental stress-strain curve in a simple compression experiment, plain-strain 
compression experiment with constraints along direction-1 and plain-strain compression experiment 
with constraints along direction-3. The numerical predictions from the corresponding finite-element 
simulation are also shown. 



 

 

 
Figure 4: The initially-undeformed mesh for the finite-element simulations which reproduce the actual 
experimental plane-strain compression conditions. All dimensions are in milimeter . 

 


