324 research outputs found

    30 years of multi-wavelength observations of 3C 273

    Get PDF
    We present a wide multi-wavelength database of most observations of the quasar 3C 273 obtained during the last 30 years. This database is the most complete set of observations available for an active galactic nucleus (AGN). It contains nearly 20'000 observations grouped together into 70 light curves covering 16 orders of magnitude in frequency from the radio to the gamma-ray domain. The database is constituted of many previously unpublished observations and of most publicly available data gathered in the literature and on the World Wide Web (WWW). It is complete to the best of our knowledge, except in the optical (UBV) domain where we chose not to add all observations from the literature. In addition to the photometric data, we present the spectra of 3C 273 obtained by the International Ultraviolet Explorer (IUE) satellite. In the X-ray domain, we used the spectral fit parameters from the literature to construct the light curves. Apart from describing the data, we show the most representative light curves and the average spectrum of 3C 273. The database is available on the WWW in a homogeneous and clear form and we wish to update it regularly by adding new observations.Comment: 12 pages, 6 figures, to be published in A&AS, data available at: http://obswww.unige.ch/3c273

    A historic jet-emission minimum reveals hidden spectral features in 3C 273

    Full text link
    Aims. The aim of this work is to identify and study spectral features in the quasar 3C 273 usually blended by its strong jet emission. Method. A historic minimum in the sub-millimetre emission of 3C 273 triggered coordinated multi-wavelength observations in June 2004. X-ray observations from the INTEGRAL, XMM-Newton and RXTE satellites are complemented by ground-based optical, infrared, millimetre and radio observations. The overall spectrum is used to model the infrared and X-ray spectral components. Results. Three thermal dust emission components are identified in the infrared. The dust emission on scales from 1 pc to several kpc is comparable to that of other quasars, as expected by AGN unification schemes. The observed weakness of the X-ray emission supports the hypothesis of a synchrotron self-Compton origin for the jet component. There is a clear soft-excess and we find evidence for a very broad iron line which could be emitted in a disk around a Kerr black hole. Other signatures of a Seyfert-like X-ray component are not detected.Comment: 4 pages. Accepted for publication in A&A Letter

    INTEGRAL detection of hard X-rays from NGC 6334: Nonthermal emission from colliding winds or an AGN?

    Get PDF
    We report the detection of hard X-ray emission from the field of the star-forming region NGC 6334 with the the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The JEM-X monitor and ISGRI imager aboard INTEGRAL and Chandra ACIS imager were used to construct 3-80 keV images and spectra of NGC 6334. The 3-10 keV and 10-35 keV images made with JEM-X show a complex structure of extended emission from NGC 6334. The ISGRI source detected in the energy ranges 20-40 keV and 40-80 keV coincides with the NGC 6334 ridge. The 20-60 keV flux from the source is (1.8+-0.37)*10(-11) erg cm(-2) s(-1). Spectral analysis of the source revealed a hard power-law component with a photon index about 1. The observed X-ray fluxes are in agreement with extrapolations of X-ray imaging observations of NGC 6334 by Chandra ACIS and ASCA GIS. The X-ray data are consistent with two very different physical models. A probable scenario is emission from a heavily absorbed, compact and hard Chandra source that is associated with the AGN candidate radio source NGC 6334B. Another possible model is the extended Chandra source of nonthermal emission from NGC 6334 that can also account for the hard X-ray emission observed by INTEGRAL. The origin of the emission in this scenario is due to electron acceleration in energetic outflows from massive early type stars. The possibility of emission from a young supernova remnant, as suggested by earlier infrared observations of NGC 6334, is constrained by the non-detection of 44Ti lines.Comment: 8 pages, 8 figures, Astronomy and Astrophysics (in press

    Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    Full text link
    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central black hole with free-fall acceleration. We propose however that the line emission at high, blue-shifted velocities is better explained in terms of entrainment of gas clouds by the jet. This gas is therefore probably collisionally excited as a result of heating due to the intense infrared radiation from the jet, which would explain the strength of this component in Civ relative to Lya. This phenomenon might be a signature of disk-jet interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste

    Simultaneous EUVE/ASCA/RXTE Observations of NGC 5548

    Get PDF
    We present simultaneous observations by EUVE, ASCA, and RXTE of the type~1 Seyfert galaxy NGC 5548. These data indicate that variations in the EUV emission (at 0.2\sim 0.2 keV) appear to lead similar modulations in higher energy (\ga 1 keV) X-rays by \sim10--30 ks. This is contrary to popular models which attribute the correlated variability of the EUV, UV and optical emission in type~1 Seyferts to reprocessing of higher energy radiation. This behavior instead suggests that the variability of the optical through EUV emission is an important driver for the variability of the harder X-rays which are likely produced by thermal Comptonization. We also investigate the spectral characteristics of the fluorescent iron Kα\alpha line and Compton reflection emission. In contrast to prior measurements of these spectral features, we find that the iron Kα\alpha line has a relatively small equivalent width (WKα100W_{K\alpha} \sim 100 eV) and that the reflection component is consistent with a covering factor which is significantly less than unity (Ω/2π0.4\Omega/2\pi \sim 0.4--0.5). Notably, although the 2--10 keV X-ray flux varies by ±25\sim \pm 25% and the derived reflection fraction appears to be constant throughout our observations, the flux in the Fe~Kα\alpha line is also constant. This behavior is difficult to reconcile in the context of standard Compton reflection models.Comment: 13 pages, 6 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, submitted to Ap

    The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    Full text link
    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (20-1000 keV) between 1991 April and 2000 May (9.1y). Using the Earth Occultation Technique to extract flux information, a catalog of sources using data from the BATSE large area detectors has been prepared. The first part of the catalog consists of results from the monitoring of 58 sources, mostly Galactic. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the world wide web. We then performed a deep-sampling of 179 objects (including the aforementioned 58 objects) combining data from the entire 9.1y BATSE dataset. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies and supernova remnants. Flux data for the deep sample are presented in four energy bands: 20-40, 40-70, 70-160, and 160-430 keV. The limiting average flux level (9.1 y) for the sample varies from 3.5 to 20 mCrab (5 sigma) between 20 and 430 keV, depending on systematic error, which in turn is primarily dependent on the sky location. To strengthen the credibility of detection of weaker sources (5-25 mCrab), we generated Earth occultation images, searched for periodic behavior using FFT and epoch folding methods, and critically evaluated the energy-dependent emission in the four flux bands.Comment: 64 pages, 17 figures, abstract abridged, Accepted by ApJ

    The Ensemble Photometric Variability of ~25000 Quasars in the Sloan Digital Sky Survey

    Full text link
    Using a sample of over 25000 spectroscopically confirmed quasars from the Sloan Digital Sky Survey, we show how quasar variability in the rest frame optical/UV regime depends upon rest frame time lag, luminosity, rest wavelength, redshift, the presence of radio and X-ray emission, and the presence of broad absorption line systems. The time dependence of variability (the structure function) is well-fit by a single power law on timescales from days to years. There is an anti-correlation of variability amplitude with rest wavelength, and quasars are systematically bluer when brighter at all redshifts. There is a strong anti-correlation of variability with quasar luminosity. There is also a significant positive correlation of variability amplitude with redshift, indicating evolution of the quasar population or the variability mechanism. We parameterize all of these relationships. Quasars with RASS X-ray detections are significantly more variable (at optical/UV wavelengths) than those without, and radio loud quasars are marginally more variable than their radio weak counterparts. We find no significant difference in the variability of quasars with and without broad absorption line troughs. Models involving multiple discrete events or gravitational microlensing are unlikely by themselves to account for the data. So-called accretion disk instability models are promising, but more quantitative predictions are needed.Comment: 41 pages, 21 figures, AASTeX, Accepted for publication in Ap

    Swift detection of all previously undetected blazars in a micro-wave flux-limited sample of WMAP foreground sources

    Get PDF
    Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope αmux\alpha_{mu x} of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions are X-ray sources detectable by the present generation of X-ray satellites. An hypothetical all-sky soft X-ray survey with sensitivity of approximately 101510^{-15} erg/s would be crucial to locate and remove over 100,000 blazars from CMB temperature and polarization maps and therefore accurately clean the primordial CMB signal from the largest population of extragalactic foreground contaminants.Comment: 13 pages, 4 figures, 5 tables, A&A in pres

    The Far-Infrared Spectral Energy Distributions of X-ray-selected Active Galaxies

    Get PDF
    [Abridged] We present ISO far-infrared (IR) observations of 21 hard X-ray selected AGN from the HEAO-1 A2 sample. We compare the far-IR to X-ray spectral energy distributions (SEDs) of this sample with various radio and optically selected AGN samples. The hard-X-ray selected sample shows a wider range of optical/UV shapes extending to redder near-IR colors. The bluer objects are Seyfert 1s, while the redder AGN are mostly intermediate or type 2 Seyferts. This is consistent with a modified unification model in which the amount of obscuring material increases with viewing angle and may be clumpy. Such a scenario, already suggested by differing optical/near-IR spectroscopic and X-ray AGN classifications, allows for different amounts of obscuration of the continuum emission in different wavebands and of the broad emission line region which results in a mixture of behaviors for AGN with similar optical emission line classifications. The resulting limits on the column density of obscuring material through which we are viewing the redder AGN are 100 times lower than for the standard optically thick torus models. The resulting decrease in optical depth of the obscuring material allows the AGN to heat more dust at larger radial distances. We show that an AGN-heated, flared, dusty disk with mass 10^9 solar and size of few hundred pc is able to generate optical-far-IR SEDs which reproduce the wide range of SEDs present in our sample with no need for an additional starburst component to generate the long-wavelength, cooler part of the IR continuum.Comment: 40 pages, 14 figures, accepted for publication in Astrophysical Journal, V. 590, June 10, 200
    corecore