131 research outputs found

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Towards a self-collision aware teleoperation framework for compound robots

    Get PDF
    This work lays the foundations of a self-collision aware teleoperation framework for compound robots. The need of an haptic enabled system which guarantees self-collision and joint limits avoidance for complex robots is the main motivation behind this paper. The objective of the proposed system is to constrain the user to teleoperate a slave robot inside its safe workspace region through the application of force cues on the master side of the bilateral teleoperation system. A series of simulated experiments have been performed on the Kuka KMRiiwa mobile robot; however, due to its generality, the framework is prone to be easily extended to other robots. The experiments have shown the applicability of the proposed approach to ordinary teleoperation systems without altering their stability properties. The benefits introduced by this framework enable the user to safely teleoperate whichever complex robotic system without worrying about self-collision and joint limitations

    Enhancing airplane boarding procedure using vision based passenger classification

    Get PDF
    This paper presents the implementation of a new boarding strategy that exploits passenger and hand-luggage detection and classification to reduce the boarding time onto an airplane. A vision system has the main purpose of providing passengers data, in terms of agility coefficient and hand-luggage size to a seat assignment algorithm. The software is able to dynamically generate the passenger seat that reduces the overall boarding time while taking into account the current airplane boarding state. The motivation behind this work is to speed up of the passenger boarding using the proposed online procedure of seat assignment based on passenger and luggage classification. This method results in an enhancement of the boarding phase, in terms of both time and passenger experience. The main goal of this work is to demonstrate the usability of the proposed system in real conditions proving its performances in terms of reliability. Using a simple hardware and software setup, we performed several experiments recreating a gate entrance mock up and comparing the measurements with ground truth data to assess the reliability of the system

    A fast airplane boarding strategy using online seat assignment based on passenger classification

    Get PDF
    The minimization of the turnaround time, the duration which an aircraft must remain parked at the gate, is an important goal of airlines to increase their profitability. This work introduces a procedure to minimize of the turnaround time by speeding up the boarding time in passenger aircrafts. This is realized by allocating the seat numbers adaptively to passengers when they pass the boarding gate and not before. Using optical sensors, an agility measure is assigned to each person and also a measure to characterize the size of her/his hand-luggage. Based on these two values per passenger and taking into account additional constraints, like reserved seats and the belonging to a group, a novel seat allocation algorithm is introduced to minimize the boarding time. Extensive simulations show that a mean reduction of the boarding time with approximately 15% is achieved compared to existing boarding strategies. The costs of introducing the proposed procedure are negligible, while the savings of reducing the turnaround time are enormous, considering that the costs generated by inactive planes on an airport are estimated to be about 30 $ per minute

    Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    Get PDF
    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations

    Development of site-specific biomechanical indices for estimating injury risk in cycling

    Get PDF
    In this paper we present novel biomechanical indices for site-specific assessment of injury risk in cycling. The indices are built from a multifactorial analysis based on the kinematics and kinetics of the cyclist from the biomechanical side, and muscle excitations and muscle synergies from the neurophysiological side. The indices are specifics for three body regions (back, knee, ankle) which are strongly affected by overuse injuries in cycling. We use these indices for injury risks analysis of a recreational cyclist, who offered to participate in the experiments. The preliminary results are promising towards the use of such indices for planning and/or evaluating training schedule with the final goal of reducing non-traumatic injuries in cycling

    Molecular dynamics simulations of the Salmonella typhi Vi antigenic polysaccharide and effects of the introduction of a zwitterionic motif

    Get PDF
    A series of hexasaccharides corresponding to the Vi capsular polysaccharide, a polymer of \u3b1-(1\u21924)-galacturonic acid, and analogs containing a zwitterionic motif with various degrees of acetylation at positions 3 have been modeled. When submitted to molecular dynamics simulations in a water box, all the structures visited only two quite restricted regions of the /\u3c8 conformational space both corresponding to extended geometries without any tendency towards supercoiling. The most stable conformation showed a clockwise helix arrangement of substituents on the molecular surface whereas the opposite arrangement was observed for the other conformation. The flexibility of the system and the hydrophobic character of the molecular surface are modulated by the 3-O-acetyl groups that confer rigidity to the system. In the zwitterionic analogs, the introduction of positive charges in the place of the acetamido groups alters the hydrophobicity that can be regained by methylation of the amino groups. The needed molecular flexibility can be obtained by the complete deacetylation at positions 3

    Clinical Presentation and Outcomes of Kawasaki Disease in Children from Latin America: A Multicenter Observational Study from the REKAMLATINA Network

    Get PDF
    Objetivos: Describir la presentación clínica, el manejo y los resultados de la enfermedad de Kawasaki (EK) en Latinoamérica y evaluar los indicadores pronósticos tempranos de aneurisma de la arteria coronaria (AAC). Diseño del estudio: Se realizó un estudio observacional basado en el registro de la EK en 64 centros pediátricos participantes de 19 países latinoamericanos de forma retrospectiva entre el 1 de enero de 2009 y el 31 de diciembre de 2013, y de forma prospectiva desde el 1 de junio de 2014 hasta el 31 de mayo de 2017. Se recopilaron datos demográficos, clínicos y de laboratorio iniciales. Se utilizó una regresión logística que incorporaba factores clínicos y la puntuación z máxima de la arteria coronaria en la presentación inicial (entre 10 días antes y 5 días después de la inmunoglobulina intravenosa [IGIV]) para desarrollar un modelo pronóstico de AAC durante el seguimiento (>5 días después de la IGIV). Resultados: De 1853 pacientes con EK, el ingreso tardío (>10 días tras el inicio de la fiebre) se produjo en el 16%, el 25% tuvo EK incompleta y el 11% fue resistente a la IGIV. Entre los 671 sujetos con puntuación z de la arteria coronaria notificada durante el seguimiento (mediana: 79 días; IQR: 36, 186), el 21% presentaba AAC, incluido un 4% con aneurismas gigantes. Un modelo pronóstico simple que utilizaba sólo una puntuación z de la arteria coronaria máxima ≥2,5 en la presentación inicial fue óptimo para predecir la AAC durante el seguimiento (área bajo la curva: 0,84; IC del 95%: 0,80, 0,88). Conclusiones: De nuestra población latinoamericana, la puntuación z de la arteria coronaria ≥2,5 en la presentación inicial fue el factor pronóstico más importante que precedió a la AAC durante el seguimiento. Estos resultados resaltan la importancia de la ecocardiografía temprana durante la presentación inicial de la EK. © 2023 Los autoresObjectives: To describe the clinical presentation, management, and outcomes of Kawasaki disease (KD) in Latin America and to evaluate early prognostic indicators of coronary artery aneurysm (CAA). Study design: An observational KD registry-based study was conducted in 64 participating pediatric centers across 19 Latin American countries retrospectively between January 1, 2009, and December 31, 2013, and prospectively from June 1, 2014, to May 31, 2017. Demographic and initial clinical and laboratory data were collected. Logistic regression incorporating clinical factors and maximum coronary artery z-score at initial presentation (between 10 days before and 5 days after intravenous immunoglobulin [IVIG]) was used to develop a prognostic model for CAA during follow-up (>5 days after IVIG). Results: Of 1853 patients with KD, delayed admission (>10 days after fever onset) occurred in 16%, 25% had incomplete KD, and 11% were resistant to IVIG. Among 671 subjects with reported coronary artery z-score during follow-up (median: 79 days; IQR: 36, 186), 21% had CAA, including 4% with giant aneurysms. A simple prognostic model utilizing only a maximum coronary artery z-score ≥2.5 at initial presentation was optimal to predict CAA during follow-up (area under the curve: 0.84; 95% CI: 0.80, 0.88). Conclusion: From our Latin American population, coronary artery z-score ≥2.5 at initial presentation was the most important prognostic factor preceding CAA during follow-up. These results highlight the importance of early echocardiography during the initial presentation of KD. © 2023 The Author(s
    corecore