24 research outputs found

    Influence of root and leaf traits on the uptake of nutrients in cover crops

    Get PDF
    Aims: Cover crops play an important role in soil fertility as they can accumulate large amounts of nutrients. This study aimed at understanding the nutrient uptake capacity of a wide range of cover crops and at assessing the relevance of acquisition strategies. Methods: A field experiment was conducted to characterize 20 species in terms of leaf and root traits. Plant traits were related to nutrient concentration and shoot biomass production with a redundancy analysis. Acquisition strategies were identified using a cluster analysis. Results: Root systems varied greatly among cover crop species. Five nutrient acquisition strategies were delineated. Significant amounts of nutrients (about 120 kg ha−1 of nitrogen, 30 kg ha−1 of phosphorus and 190 kg ha−1 of potassium) were accumulated by the species in a short period. Nutrient acquisition strategies related to high accumulations of nutrients consisted in either high shoot biomass and root mass and dense tissues, or high nutrient concentrations and root length densities. Species with high root length densities showed lower C/N ratios. Conclusions: The same amounts of nutrients were accumulated by groups with different acquisition strategies. However, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities

    No full text
    International audiencePlant species influence soil microbial communities, mainly through their functional traits. However, mechanisms underlying these effects are not well understood, and in particular how plant/ microorganism interactions are affected by plant identities and/or environmental conditions. Here, we performed a greenhouse experiment to assess the effects of three plant species on arbuscular mycorrhizal fungal (AMF) colonization, bacterial potential nitrification (PNA) and denitrification activities (PDA) through their functional traits related to nitrogen acquisition and turnover. Three species with contrasting functional traits and strategies (from exploitative to conservative), Dactylis glomerata (L.), Bromus erectus (Hudson) and Festuca paniculata (Schinz and Tellung), were cultivated in monocultures on soil grassland with or without N fertilization. Fertilization impacted some plant traits related to nutrient cycling (leaf and root N concentration, root C:N) but did not affect directly microbial parameters. The highest PDA and PNA were observed in D. glomerata and F. paniculata monocultures, respectively. The highest AMF colonization was obtained for F. paniculata, while B. erectus exhibited both the lowest AMF colonization and bacterial activities. Bacterial activities were influenced by specific above-ground plant traits across fertilization treatments: above-ground biomass for PDA, shoot:root ratio and leaf C:N ratio for PNA. Mycorrhizal colonization was influenced by below-ground traits either root dry matter content or root C:N. Hence, AMF colonization and bacterial activities were impacted differently by species-specific plant biomass allocation, root traits and nutrient requirement. We suggest that such effects may be linked to distinct root exudation patterns and plant abilities for nutrient acquisition and/or nutrient competition

    Drivers of nitrogen leaching from organic layers in Central European beech forests

    Get PDF
    Background and Aims: The response of forest ecosystems to continuous nitrogen (N) deposition is still uncertain. We investigated imports and exports of dissolved N from mull-type organic layers to identify the controls of N leaching in Central European beech forests under continuous N deposition. Methods: Dissolved N fluxes with throughfall and through mull-type organic layers (litter leachate) were measured continuously in 12 beech forests on calcareous soil in two regions in Germany over three consecutive growing seasons. Results Mean growing season net (i.e. litter leachate – throughfall flux) fluxes of total dissolved N (TDN) from the organic layer were low (2.3 ± 5.6 kg ha −1 ) but varied widely from 12.9 kg ha −1 to –8.3 kg ha −1 . The small increase of dissolved N fluxes during the water passage through mull-type organic layers suggested that high turnover rates coincided with high microbial N assimilation and plant N uptake. Stand basal area had a positive feedback on N fluxes by providing litter for soil organic matter forma- tion. Plant diversity, especially herb diversity, reduced dissolved N fluxes. Soil fauna biomass increased NO3−-N fluxes with litter leachate by stimulating mineralization. Microbial biomass measures were not related to dissolved N fluxes. Conclusions Our results show that dissolved N exports from organic layers contain significant amounts of throughfall-derived N (mainly NO3−-N) that flushes through the organic layer but also highlight that N leaching from organic layers is driven by the complex interplay of plants, animals and microbes. Furthermore, diverse understories reduce N leaching from Central European beech forests
    corecore