16 research outputs found

    Ion-doped brushite cements for bone regeneration

    Get PDF
    Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented.This study was funded by the Portuguese Foundation for Science and Technology (FCT) and the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) for the transnational cooperation FCT/DAAD 2018-2019. The authors also thank the funds provided under the distinctions attributed to JMO (IF/01285/2015) and SP (CEECIND/03673/2017). Furthermore, funding by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant Nr. HU 2498/1-1; GB 1/22-1, and the Emerging Talents Initiative of the FAU is acknowledged

    Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils

    Get PDF
    This paper reports on the physico-chemical response of two lime stabilised sulfate bearing artificial soils subject to the European Accelerated Volumetric Swell Test (EN13286-49). At various intervals during the test, a specimen was removed and subject to compositional and microstructural analysis. Ettringite was formed by both soils types, but with significant differences in crystal morphology. Ettringite crystals formed from kaolin based soils were very small, colloidal in size and tended to form on the surface of other particles. Conversely, those formed from montmorillonite were relatively large and typically formed away from the surface in the pore solution. It was concluded that the mechanism by which ettringite forms is determined by the hydroxide ion concentration in the pore solution and the fundamental structure of the bulk clay. In the kaolin soil, ettringite forms by a topochemical mechanism and expands by crystal swelling. In the montmorillonite soil, it forms by a through-solution mechanism and crystal growth

    Enthalpy of formation of ye’elimite and ternesite

    Get PDF
    Calcium sulfoaluminate clinkers containing ye’elimite (Ca4Al6O12(SO4)) and ternesite (Ca5(SiO4)2SO4) are being widely investigated as components of calcium sulfoaluminate cement clinkers. These may become low energy replacements for Portland cement. Conditional thermodynamic data for ye’elimite and ternesite (enthalpy of formation) have been determined experimentally using a combination of techniques: isothermal conduction calorimetry, X-ray powder diffraction and thermogravimetric analysis. The enthalpies of formation of ye’elimite and ternesite at 25 °C were determined to be − 8523 and − 5993 kJ mol−1, respectively

    Ca6Al2[SO4]3[OH]12[H2O]26

    No full text

    Osteogenic lithium-doped brushite cements for bone regeneration

    No full text
    Available online 31 December 2021This study investigated the osteogenic performance of new brushite cements obtained from Li+-doped ÎČ-tricalcium phosphate as a promising strategy for bone regeneration. Lithium (Li+) is a promising trace element to encourage the migration and proliferation of adipose-derived stem cells (hASCs) and the osteogenic differentiation-related gene expression, essential for osteogenesis. In-situ X-ray diffraction (XRD) and in-situ 1H nuclear magnetic resonance (1H NMR) measurements proved the precipitation of brushite, as main phase, and monetite, indicating that Li+ favored the formation of monetite under certain conditions. Li+ was detected in the remaining pore solution in significant amounts after the completion of hydration. Isothermal calorimetry results showed an accelerating effect of Li+, especially for low concentration of the setting retarder (phytic acid). A decrease of initial and final setting times with increasing amount of Li+ was detected and setting times could be well adjusted by varying the setting retarder concentration. The cements presented compressive mechanical strength within the ranges reported for cancellous bone. In vitro assays using hASCs showed normal metabolic and proliferative levels. The immunodetection and gene expression profile of osteogenic-related markers highlight the incorporation of Li+ for increasing the in vivo bone density. The osteogenic potential of Li-doped brushite cements may be recommended for further research on bone defect repair strategies.This study was funded by the Portuguese Foundation for Science and Technology (FCT) and the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) for the transnational cooperation FCT/DAAD 2018-2019. FRM acknowledges her contract under the Transitional Rule DL 57/2016 (CTTI-57/18-I3BS(5)) attributed by the FCT. VPR acknowledges the Junior Researcher contracts (POCI-01-0145-FEDER-031367; POCI-01-0145-FEDER-029139) under the projects Fun4TE project (PTDC/EMD-EMD/31367/2017) and BLiver (PTDC/EMD-EMD/29139/2017) attributed by the FCT. The authors also thank the funds provided under the distinctions attributed to JMO (IF/01285/2015) and SP (CEECIND/03673/2017). Furthermore, funding by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant Nr. HU 2498/1-1; GB 1/22-1, is acknowledged
    corecore