7,358 research outputs found
Proposal of a methodology for implementing a service-oriented architecture in distributed manufacturing systems
As envisioned by Intelligent Manufacturing Systems (IMS), Next Generation Manufacturing Systems (NGMS) will satisfy the needs of an increasingly fast-paced and demanding market by dynamically integrating systems from inside and outside the manufacturing firm itself into a so-called extended enterprise. However, organizing these systems to ensure the maximum flexibility and interoperability with those from other organizations is difficult. Additionally, a defect in the system would have a great impact: it would affect not only its owner, but also its partners. For these reasons, we argue that a service-oriented architecture (SOA) would be a good candidate. It should be designed following a methodology where services play a central role, instead of being an implementation detail. In order for the architecture to be reliable enough as a whole, the methodology will need to help find errors before they arise in a production environment. In this paper we propose using SOA-specific testing techniques, compare some of the existing methodologies and outline several extensions upon one of them to integrate testing techniques
The Ring Imaging Cherenkov detector (RICH) of the AMS experiment
The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the
International Space Station (ISS) will be equipped with a proximity focusing
Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and
velocity of the charged cosmic particles. A RICH prototype consisting of 96
photomultiplier units, including a piece of the conical reflector, was built
and its performance evaluated with ion beam data. Preliminary results of the
in-beam tests performed with ion fragments resulting from collisions of a 158
GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported.
The collected data included tests to the final front-end electronics and to
different aerogel radiators. Cherenkov rings for a large range of charged
nuclei and with reflected photons were observed. The data analysis confirms the
design goals. Charge separation up to Fe and velocity resolution of the order
of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India
HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results
In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology.
In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology
Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region.
A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself.
The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature.
A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout.
In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown
Heat in optical tweezers
Laser-induced thermal effects in optically trapped microspheres and single cells have been investigated by Luminescence Thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of microns, in agreement with previous theoretical models. Solvent absorption has been identified as the key parameter to determine laser-induced heating, which can be reduced by establishing a continuous fluid flow of the sample. Our experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This has been corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. Minimum intracellular heating, well below the cytotoxic level (43 °C), has been demonstrated to occur for optical trapping with 820 nm laser radiation, thus avoiding cell damage
The AMS-RICH velocity and charge reconstruction
The AMS detector, to be installed on the International Space Station,
includes a Ring Imaging Cerenkov detector with two different radiators, silica
aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to
provide very precise measurements of velocity and electric charge in a wide
range of cosmic nuclei energies and atomic numbers. The detector geometry, in
particular the presence of a reflector for acceptance purposes, leads to
complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The
results of different reconstruction methods applied to test beam data as well
as to simulated samples are presented. To ensure nominal performances
throughout the flight, several detector parameters have to be carefully
monitored. The algorithms developed to fulfill these requirements are
presented. The velocity and charge measurements provided by the RICH detector
endow the AMS spectrometer with precise particle identification capabilities in
a wide energy range. The expected performances on light isotope separation are
discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F.
Bara
The RICH detector of the AMS-02 experiment: status and physics prospects
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be
installed on the International Space Station (ISS) for at least 3 years, is a
detector designed to measure charged cosmic ray spectra with energies up to the
TeV region and with high energy photon detection capability up to a few hundred
GeV. It is equipped with several subsystems, one of which is a proximity
focusing RICH detector with a dual radiator (aerogel+NaF) that provides
reliable measurements for particle velocity and charge. The assembly and
testing of the AMS RICH is currently being finished and the full AMS detector
is expected to be ready by the end of 2008. The RICH detector of AMS-02 is
presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle,
Particle, Space Physics, Detectors and Medical Physics Applications (Como
2007). Presenter: Rui Pereir
The PAU Survey: Photometric redshifts using transfer learning from simulations
In this paper we introduce the \textsc{Deepz} deep learning photometric
redshift (photo-) code. As a test case, we apply the code to the PAU survey
(PAUS) data in the COSMOS field. \textsc{Deepz} reduces the
scatter statistic by 50\% at compared to existing algorithms.
This improvement is achieved through various methods, including transfer
learning from simulations where the training set consists of simulations as
well as observations, which reduces the need for training data. The redshift
probability distribution is estimated with a mixture density network (MDN),
which produces accurate redshift distributions. Our code includes an
autoencoder to reduce noise and extract features from the galaxy SEDs. It also
benefits from combining multiple networks, which lowers the photo- scatter
by 10 percent. Furthermore, training with randomly constructed coadded fluxes
adds information about individual exposures, reducing the impact of photometric
outliers. In addition to opening up the route for higher redshift precision
with narrow bands, these machine learning techniques can also be valuable for
broad-band surveys.Comment: Accepted versio
Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells
Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.info:eu-repo/semantics/publishedVersio
- …