1,334 research outputs found
Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory
A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments
Science Mission Definition Studies for TROPIX
This document summarizes the results of mission definition studies for solar electric propulsion missions that have been carried out over the last approximately three years. The major output from the studies has been two proposals which were submitted to NASA in response to Announcements of Opportunity for missions and an ongoing Global Magnetospheric Dynamics mission study. The bulk of this report consists of copies of the proposals and preliminary materials from the GMD study that will be completed in the coming months
Probing photoinduced spin states in spin-crossover molecules with neutron scattering
We report a neutron scattering investigation of the spin crossover compound \rm [Fe(ptz)6](BF4)2 which undergoes an abrupt thermal spin-transition from high-spin (HS) S=2 to low-spin (LS) S=0 around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60 \%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near infrared light. With inelastic neutron scattering (INS) we have observed, for the first time in a photo-induced phase, magnetic transitions arising from the metastable HS S=2 state split by crystal field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting (ZFS) of the S=2 ground state. The obtained parameters are D \approx -1.28 \pm 0.03 meV and |E| \approx 0.08 \pm 0.03 meV. The present results show that in situ magnetic inelastic neutron scattering investigations on a broad range of photomagnetic materials are now possible
Strawberries in South Dakota
The strawberry is a popular small fruit that is adapted to a wide range of soil and climatic conditions and may be grown in most parts of South Dakota. Strawberries are very productive plants for the space they occupy. The fruit is high in vitamin C and contains ellagic acid, an anticarcinogen. A planting of 50 Junebearing strawberries will fill a 100 foot matted row and should produce 50-60 quarts of fruit. Everbearing plants grown in a raised bed can produce one half to one quart of berries per plant
Fruit Cultivars for South Dakota
This guide has been prepared to help growers choose fruits for home as well as commercial growing
AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations
This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event
Electric field control of multiferroic domains in NiVO imaged by X-ray polarization enhanced topography
The magnetic structure of multiferroic NiVO has been investigated
using non-resonant X-ray magnetic scattering. Incident circularly polarized
X-rays combined with full polarization analysis of the scattered beam is shown
to yield high sensitivity to the components of the cycloidal magnetic order,
including their relative phases. New information on the magnetic structure in
the ferroelectric phase is obtained, where it is found that the magnetic
moments on the "cross-tie" sites are quenched relative to those on the "spine"
sites. This implies that the onset of ferroelectricity is associated mainly
with spine site magnetic order. We also demonstrate that our technique enables
the imaging of multiferroic domains through polarization enhanced topography.
This approach is used to image the domains as the sample is cycled by an
electric field through its hysteresis loop, revealing the gradual switching of
domains without nucleation.Comment: 9 pages, 6 figure
A new, temporarily confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period
On August 27, 1996, a two-hour energetic heavy ion event (∼1 MeV) was detected at 8:25 UT at apogee (∼9 Re and an invariant latitude of ∼80°), by the Charge and Mass Magnetospheric Ion Composition Experiment onboard POLAR. The event, with a maximum spin averaged peak flux of ∼150 particles/(cm²-sr-s-MeV), showed three local peaks corresponding to three localized regions; the ion pitch angle distributions in the three regions were different from an isotropic distribution and different from each other. No comparable flux was observed by the WIND spacecraft. The appearance of lower energy He++ and O \u3e +2 during the event period indicates a solar source for these particles. From region 1 to 2 to 3, the helium energy spectra softened. A distorted magnetic field with three local minima corresponding to the three He peak fluxes was also observed by POLAR. A possible explanation is that the energetic He ions were energized from lower energy helium by a local acceleration mechanism that preferred smaller rigidity ions in the high altitude polar cusp region
First energetic neutral atom images from Polar
Energetic neutral atoms are created when energetic magnetospheric ions undergo charge exchange with cold neutral atoms in the Earth\u27s tenuous extended atmosphere (the geocorona). Since they are unaffected by the Earth\u27s magnetic field, these energetic neutrals travel away in straight line trajectories from the points of charge exchange. The remote detection of these particles provides a powerful means through which the global distribution and properties of the geocorona and ring current can be inferred. Due to its 2 × 9 RE polar orbit, the Polar spacecraft provides an excellent platform from which to observe ENAs because it spends much of its time in the polar caps which are usually free from the contaminating energetic charged particles that make observations of ENAs more difficult. In this brief report, we present the first ENA imaging results from Polar. Storm-time ENA images are presented for a northern polar cap apogee pass on August 29, 1996 and for a southern polar cap perigee pass on October 23, 1996. As well, we show with a third event (July 31, 1996) that ENA emissions can also be detected in association with individual substorm
- …