1,487 research outputs found

    Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    Full text link
    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the resulting quality factor Q for cantilever and bridge micro- and nanoresonators in close proximity to an underlying substrate are derived and the relevance of the mechanism is investigated, demonstrating its importance when nanometric gaps are involved

    A numerical study of a method for measuring the effective in situ sound absorption coefficient

    Get PDF
    The accuracy of a method [Wijnant et al., ā€œDevelopment and applica- tion of a new method for the in-situ measurement of sound absorptionā€, ISMA 31, Leuven, Belgium (2010).], for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assump- tion, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields

    Simulations of Time-Resolved X-Ray Diffraction in Laue Geometry

    Full text link
    A method of computer simulation of Time-Resolved X-ray Diffraction (TRXD) in asymmetric Laue (transmission) geometry with an arbitrary propagating strain perpendicular to the crystal surface is presented. We present two case studies for possible strain generation by short-pulse laser irradiation: (i) a thermoelastic-like analytic model; (ii) a numerical model including effects of electron-hole diffusion, Auger recombination, deformation potential and thermal diffusion. A comparison with recent experimental results is also presented.Comment: 9 pages, 11 figure

    Simultaneous determination of position and mass in the cantilever sensor using transfer function method

    Get PDF
    We present the simultaneous measurement of mass and position of micro-beads attached to the cantilever-based mass sensors using the transfer function method. 10 ??m diameter micro-beads were placed on micro-cantilevers and the cantilevers were excited by lead-zirconate-titanate through low-pass filtered random voltages. The cantilever vibration was measured via a laser Doppler vibrometer before and after applying the beads. From the measured transfer function, the bead position was identified using its influence on the cantilever kinetic energy. The bead mass was then obtained by analyzing the wave propagation near the beads. The predicted position and mass agreed well with actual values.open0

    Optimization of inhomogeneous electron correlation factors in periodic solids

    Full text link
    A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term which is compatible with crystal symmetry is used and the energy is minimized with respect to all parameters using a rapidly convergent iterative approach, based on Monte Carlo sampling of the energy and fitting energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the energy derivatives and the resulting one- and two-body terms of the wave function are found to be well-determined. The largest calculations performed require the optimization of over 3000 parameters. The inhomogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron separation, but exhibit some inhomogeneity at short- and intermediate-range, whereas those in graphite are found to be homogeneous at short-range, but inhomogeneous and anisotropic at intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR

    An Assessment of the Commissionā€™s Proposal on Privacy and Electronic Communications:Study for the LIBE Committee

    Get PDF

    Synchrotron X-Ray radiography of vanadium redox flow batteries ā€“ Time and spatial resolved electrolyte flow in porous carbon electrodes

    Get PDF
    A porous carbon electrode fully saturated with electrolyte is one crucial aspect of vanadium redox flow battery efficiency. It determines the electrochemically active surface area, provides more active sites for the reaction during operation, and prevents local degradation due to inhomogeneities in electrolyte distribution. We investigate the electrolyte invasion and distribution at open-circuit potential in heat-treated carbon felt electrodes at varying compression ratios and flow field configurations, using synchrotron X-ray radiography. The quantitative analysis yields time-resolved saturation values of the injection and resolves local changes in saturation to detect areas of lower electrolyte accessibility. Compression ratios of 50% and above lead to a high electrode utilization with more than 97% saturation over the felt thickness. In contrast, carbon felts at 25% and 17% compression only reach 49% and 15% saturation near the flow fields. However, increasing the flow velocity after the injection causes the boundary area next to the flow field to fill even at low compressions. This area is especially critical for the electrode utilization since it is invaded after the bulk. Depending on the compression level, it does not reach full saturation

    Impulsive light-scattering by coherent phonons in LaAlO3: Disorder and boundary effects

    Get PDF
    Pump-probe measurements of coherent-phonon-induced changes of refractive index in LaAlO3 are dominated by normally weak boundary effects. Atomic displacements in the range 50ā€“500 Ī¼ā„« were generated and probed by femtosecond laser pulses through impulsive Raman scattering. The absence of a bulk contribution is ascribed to phase mismatch due to domain disorder. Selection rules are consistent with a Raman model considering reflection and transmission at interfaces. Intensities and phonon parameters as a function of temperature agree well with incoherent Raman data

    An exchange-correlation energy for a two-dimensional electron gas in a magnetic field

    Full text link
    We present the results of a variational Monte Carlo calculation of the exchange-correlation energy for a spin-polarized two-dimensional electron gas in a perpendicular magnetic field. These energies are a necessary input to the recently developed current-density functional theory. Landau-level mixing is included in a variational manner, which gives the energy at finite density at finite field, in contrast to previous approaches. Results are presented for the exchange-correlation energy and excited-state gap at Ī½=\nu = 1/7, 1/5, 1/3, 1, and 2. We parameterize the results as a function of rsr_s and Ī½\nu in a form convenient for current-density functional calculations.Comment: 36 pages, including 6 postscript figure
    • ā€¦
    corecore