5,020 research outputs found

    Trajectory attractors for the Sun-Liu model for nematic liquid crystals in 3D

    Full text link
    In this paper we prove the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik) for a nonlinear PDE system coming from a 3D liquid crystal model accounting for stretching effects. The system couples a nonlinear evolution equation for the director d (introduced in order to describe the preferred orientation of the molecules) with an incompressible Navier-Stokes equation for the evolution of the velocity field u. The technique is based on the introduction of a suitable trajectory space and of a metric accounting for the double-well type nonlinearity contained in the director equation. Finally, a dissipative estimate is obtained by using a proper integrated energy inequality. Both the cases of (homogeneous) Neumann and (non-homogeneous) Dirichlet boundary conditions for d are considered.Comment: 32 page

    Pi-K Scattering in Full QCD with Domain-Wall Valence Quarks

    Get PDF
    We calculate the pi+ K+ scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b=0.125 fm, lattice spatial size of L =2.5 fm and at pion masses of m_pi=290, 350, 490 and 600 MeV. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full pi K scattering amplitude at threshold. Extrapolating to the physical point gives m_pi a_3/2 = -0.0574 (+- 0.0016)(+0.0024 -0.0058) and m_pi a_1/2 = 0.1725 (+- 0.0017)(+0.0023 -0.0156) for the I=3/2 and I=1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic due to truncation of the chiral expansion.Comment: 14 pages, 9 figure

    Microglial cell-mediated anti-Candida activity: temperature, ions, protein kinase C as crucial elements.

    Get PDF
    An in vitro established microglial cell line, BV-2, constitutively exhibits high levels of anti-Candida activity. To elucidate the cascade of events leading to the accomplishment of such activity, we studied its dependence on temperature and ion availability. The role of protein kinases has also been studied by the specific inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and N-(2-guanidinoethyl)-5-isoquinoline sulfonamide hydrochloride (HA 1004). We found that (a) the BV-2 cell/Candida conjugate formation is a discrete step, temperature-, ion- and protein kinase-independent; (b) the phagocytic event, which is protein kinase-independent, is significantly impaired by temperature decrease and ion deprivation; (c) the fulfillment of anti-Candida effects is strictly dependent upon temperature, ion availability and functional protein kinase. Functional protein kinase C, but not other kinases, is required for the accomplishment of anti-Candida activity, which, in fact, is selectively abrogated by H7 but not HA. Furthermore, protein kinase C activators, such as 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1-oleoyl-2-acetyl glycerol (OAG), consistently potentiate BV-2 cell-mediated anti-Candida activity, the phenomena being dose-dependent. These results indicate that the multistep events leading a microglial cell to express anti-Candida activity can be dissected and differentiated for biochemical and biological demands, the latest along the cascade being the most demanding steps

    On a non-isothermal model for nematic liquid crystals

    Full text link
    A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of three basic state variables: the {\it absolute temperature} \teta, the {\it velocity field} \ub, and the {\it director field} \bd, representing preferred orientation of molecules in a neighborhood of any point of a reference domain. The time evolution of the velocity field is governed by the incompressible Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients of the velocity and of the director field \bd, where the transport (viscosity) coefficients vary with temperature. The dynamics of \bd is described by means of a parabolic equation of Ginzburg-Landau type, with a suitable penalization term to relax the constraint |\bd | = 1. The system is supplemented by a heat equation, where the heat flux is given by a variant of Fourier's law, depending also on the director field \bd. The proposed model is shown compatible with \emph{First and Second laws} of thermodynamics, and the existence of global-in-time weak solutions for the resulting PDE system is established, without any essential restriction on the size of the data

    Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex

    Get PDF
    Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi

    Entomological Origin of Honey Discriminated by NMR Chloroform Extracts in Ecuadorian Honey

    Get PDF
    Honeys are produced by Apis mellifera and stingless bees (Meliponini) in Ecuador. We studied honey produced in beeswax combs by Apis mellifera, and honey produced in pots by Geotrigona and Scaptotrigona bees. Chloroform extracts of honey were obtained for fast NMR spectra. The 1D spectra were acquired at 298 K, with a 600 MHz NMR Bruker instrument, using a modified double pulsed field gradient spin echoes (DPFGSE) sequence. Signals of 1H NMR spectra were integrated and used as inputs for PCA, PLS-DA analysis, and labelled sets of classes were successfully identified, enhancing the separation between the three groups of honey according to the entomological origin: A. mellifera, Geotrigona and Scaptotrigona. This procedure is therefore recommended for authenticity test of honey in Ecuador
    • …
    corecore