1,231 research outputs found
Pojava i odreÄivanje Thermoanaerobacterium i Thermoanaerobacter u konzerviranoj hrani u limenkama
In order to determine the reason for loss of vacuum in canned food, obligately anaerobic, spore forming thermophilic organisms were isolated from shelf-stable canned food containing vegetables, noodles and potatoes as main ingredients. Thermophilic bacteria from 44 canned food samples that had been stored under anaerobic conditions at 37 °C for at least 7 days were isolated. In addition, organic fertilizer used for the cultivation of some of the foodsâ ingredients was examined and anaerobic, thermophilic bacteria could also be isolated from this source. Identification of bacterial strains was carried out by partial and complete 16S-rRNA-gene sequencing. Some of the obtained gene sequences showed a high level of similarity to existing 16S-rRNA gene sequences towards strains of the genera Thermoanaerobacter, Thermoanaerobium and Thermoanaerobacterium respectively, which have not yet been reported to be of importance as food spoilers. In the course of identification of these thermophilic bacteria we developed genera specific PCR-based approaches for detecting isolates belonging to the genera Thermoanaeroacterium and Thermoanaerobacter. Direct capturing of free DNA from contaminated samples using oligonucleotides coupled with paramagentic beads allowed the reduction of the detection time to six hours with a lower limit of 104 cells/mL.Da bi se odredio uzrok nestanka vakuuma u limenkama konzervirane hrane, obligatni anaerobi, termofilni organizmi koji stvaraju spore, izolirani su iz hrane u limenkama s glavnim sastojcima: povrÄe, rezanci i krumpir. Izolirane su termofilne bakterije iz 44 uzorka limenki uskladiĆĄtenih pod anaerobnim uvjetima pri 37 °C barem 7 dana. Osim toga, ispitana su organska gnojiva upotrijebljena za uzgoj navedenog povrÄa pa su i iz tog izvora izolirane anaerobne termofilne bakterije. Identifikacija bakterijskih sojeva provedena je djelomiÄnim i potpunim sekvencioniranjem 16S-rRNA gena. Neke od dobivenih genskih sekvencija pokazale su visoki stupanj sliÄnosti s postojeÄim sekvencijama 16S-rRNA gena sojeva rodova Thermoanaerobacter, Thermoanaerobium i Thermoanaerobacterium. Do sada joĆĄ nije bila ustanovljena vaĆŸnost tih sojeva kao oneÄiĆĄÄavaÄa hrane. Tijekom identifikacije navedenih termofilnih bakterija autori su razvili genetiÄki specifiÄan pristup utemeljen na PCR za odreÄivanje izolata koji pripadaju rodovima Thermoanaerobacterium i Thermoanaerobacter.
Izravno vezanje slobodne DNA iz oneÄiĆĄÄenih uzoraka, koristeÄi oligonukleotide povezane s paramagnetskim zrncima omoguÄilo je smanjenje vremena detekcije na 6 sati s donjom granicom od 104 stanica/mL
SxsA, a novel surface protein mediating cell aggregation and adhesive biofilm formation of Staphylococcus xylosus
Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces, and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared with the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, Staphylococcus paraxylosus, and Staphylococcus nepalensis and additionally encoded in a small group of Staphylococcus cohnii and Staphylococcus saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.Peer Reviewe
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids
Effect of High Pressure and Heat on Bacterial Toxins
Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C) on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa) of cholera toxin (CT) from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL) from Bacillus cereus, and Escherichia coli (STa) were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs). Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21) % after 30 min and to (44±0.3) % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa) of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C) and pressure (0.1 to 800 MPa) treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C), and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time
Magnetic field experiment Pioneers 6, 7 and 8
Magnetometer systems on Pioneers 6, 7, and 8 to study interplanetary magnetic field
Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents in structural biology. Even though a large variety of detergents have been developed in the last century, the challenge remains to identify guidelines that allow fine-tuning of detergents for individual applications in membrane protein research. Addressing this challenge, here we introduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS) reveals that the modular OGD architecture offers the ability to control protein purification and to preserve interactions with native membrane lipids during purification. In addition to a broad range of bacterial membrane proteins, OGDs also enable the purification and analysis of a functional G-protein coupled receptor (GPCR). Moreover, given the modular design of these detergents, we anticipate fine-tuning of their properties for specific applications in structural biology. Seen from a broader perspective, this represents a significant advance for the investigation of membrane proteins and their interactions with lipids
Firms' investment under financial constraints: a Euro area investigation
In this paper we describe a model of optimal investment of various types of financially constrained firms. We show that the resulting relationship between internal funds and investment is non-monotonic. In particular, the magnitude of the cash flow sensitivity of the investment is lower for firms with credit rationing compared to firms that are able to obtained short-term external financing. The inverse relationship is driven by the leverage multiplier effect. A positive cash flow shock increases the short-term borrowing capacity of the firm, which in turn has a positive effect on investment and firm's growth. Moreover, the leverage multiplier effect is the highest for firms relying on short-term credits and it is lower for firms that are able to obtain long-term financing. Analysing a large euro area data set we find strong empirical support for our theoretical predictions. The results also help to explain some contrasting findings in the financial constraints literature
- âŠ