605 research outputs found

    Fourth order indirect integration method for black hole perturbations: even modes

    Full text link
    On the basis of a recently proposed strategy of finite element integration in time domain for partial differential equations with a singular source term, we present a fourth order algorithm for non-rotating black hole perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations induced by a particle plunging in. The forward time value at the upper node of the (r,t)(r^*,t) grid cell is obtained by an algebraic sum of i) the preceding node values of the same cell, ii) analytic expressions, related to the jump conditions on the wave function and its derivatives, iii) the values of the wave function at adjacent cells. In this approach, the numerical integration does not deal with the source and potential terms directly, for cells crossed by the particle world line. This scheme has also been applied to circular and eccentric orbits and it will be object of a forthcoming publication.Comment: This series of papers deals with EMRI for LISA. With the respect to the v1 version, the algorithm has been improved; convergence tests and references have been added; v2 is composed by 23 pages, and 6 figures. Paper accepted by Class. Quantum Gravity for the special issue on Theory Meets Data Analysis at Comparable and Extreme Mass Ratios (Capra and NRDA) at Perimeier Institute in June 201

    Discounting in LTL

    Full text link
    In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given specification, reasoning about quality addresses the question of \emph{how well} the system satisfies the specification. One direction in this effort is to refine the "eventually" operators of temporal logic to {\em discounting operators}: the satisfaction value of a specification is a value in [0,1][0,1], where the longer it takes to fulfill eventuality requirements, the smaller the satisfaction value is. In this paper we introduce an augmentation by discounting of Linear Temporal Logic (LTL), and study it, as well as its combination with propositional quality operators. We show that one can augment LTL with an arbitrary set of discounting functions, while preserving the decidability of the model-checking problem. Further augmenting the logic with unary propositional quality operators preserves decidability, whereas adding an average-operator makes some problems undecidable. We also discuss the complexity of the problem, as well as various extensions

    Characterization of a 450-km Baseline GPS Carrier-Phase Link using an Optical Fiber Link

    Get PDF
    A GPS carrier-phase frequency transfer link along a baseline of 450 km has been established and is characterized by comparing it to a phase-stabilized optical fiber link of 920 km length, established between the two endpoints, the Max-Planck-Institut f\"ur Quantenoptik in Garching and the Physikalisch-Technische Bundesanstalt in Braunschweig. The characterization is accomplished by comparing two active hydrogen masers operated at both institutes. The masers serve as local oscillators and cancel out when the double differences are calculated, such that they do not constitute a limitation for the GPS link characterization. We achieve a frequency instability of 3 x 10^(-13) in 30 s and 5 x 10^(-16) for long averaging times. Frequency comparison results obtained via both links show no deviation larger than the statistical uncertainty of 6 x 10^(-16). These results can be interpreted as a successful cross-check of the measurement uncertainty of a truly remote end fiber link.Comment: 14 pages, 6 figure

    Integrated Structure and Semantics for Reo Connectors and Petri Nets

    Full text link
    In this paper, we present an integrated structural and behavioral model of Reo connectors and Petri nets, allowing a direct comparison of the two concurrency models. For this purpose, we introduce a notion of connectors which consist of a number of interconnected, user-defined primitives with fixed behavior. While the structure of connectors resembles hypergraphs, their semantics is given in terms of so-called port automata. We define both models in a categorical setting where composition operations can be elegantly defined and integrated. Specifically, we formalize structural gluings of connectors as pushouts, and joins of port automata as pullbacks. We then define a semantical functor from the connector to the port automata category which preserves this composition. We further show how to encode Reo connectors and Petri nets into this model and indicate applications to dynamic reconfigurations modeled using double pushout graph transformation

    Holonomy in the Schwarzschild-Droste Geometry

    Get PDF
    Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We also examine radial holonomy and extend the analysis to spinors and to the Reissner-Nordstr\"om metric, where we find qualitatively different behavior for the extremal (Q=MQ = M) case. Our calculations provide a toolbox that will hopefully be useful in the investigation of quantum parallel transport in Hilbert-fibered spacetimes.Comment: 18 Latex pages, 3 figures. Second replacement. This version as published in CQG with some misprints correcte

    Основні закономірності зародження і росту втомних тріщин в алюмінієвих пластинах із зміцненими отворами

    Get PDF
    The method of modeling stress-strain state for holes burnishing using FEM has been analyzed. A series of fatigue tests were carried out using plates containing plain holes and cold expanded holes in aluminium For various diameters of holes and cold expansion degree there exists a certain correlation between the stress range or maximum stress on the edge of hole on the entrance face of plate and lifetime of fatigue crack initiation

    On the Analysis of Simple Genetic Programming for Evolving Boolean Functions

    Get PDF
    This work presents a first step towards a systematic time and space complexity analysis of genetic programming (GP) for evolving functions with desired input/output behaviour. Two simple GP algorithms, called (1+1) GP and (1+1) GP*, equipped with minimal function (F) and terminal (L) sets are considered for evolving two standard classes of Boolean functions. It is rigorously proved that both algorithms are efficient for the easy problem of evolving conjunctions of Boolean variables with the minimal sets. However, if an extra function (i.e. NOT) is added to F, then the algorithms require at least exponential time to evolve the conjunction of n variables. On the other hand, it is proved that both algorithms fail at evolving the difficult parity function in polynomial time with probability at least exponentially close to 1. Concerning generalisation, it is shown how the quality of the evolved conjunctions depends on the size of the training set s while the evolved exclusive disjunctions generalize equally badly independent of s

    Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class

    Full text link
    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. The spin model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.Comment: 17 pages, 5 figure
    corecore