1,737 research outputs found

    Measurement of surface roughness slope

    Get PDF
    Instrument, consisting of isolator, differentiator, absolute value circuit, and integrator, uses output signal from surface texture analyzer profile-amplifier to calculate surface roughness slope. Calculations provide accurate, instantaneous value of the slope. Instrument is inexpensive and applicable to any commerical surface texture analyzer

    Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Get PDF
    ACKNOWLEDGMENTS MW and RVD have been supported by the German Federal Ministry for Education and Research (BMBF) via the Young Investigators Group CoSy-CC2 (grant no. 01LN1306A). JFD thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. JK acknowledges the IRTG 1740 funded by DFG and FAPESP. MT Gastner is acknowledged for providing his data on the airline, interstate, and Internet network. P Menck thankfully provided his data on the Scandinavian power grid. We thank S Willner on behalf of the entire zeean team for providing the data on the world trade network. All computations have been performed using the Python package pyunicorn [41] that is available at https://github.com/pik-copan/pyunicorn.Peer reviewedPreprin

    Recurrence networks - A novel paradigm for nonlinear time series analysis

    Get PDF
    This paper presents a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. It is demonstrated that there are fundamental relationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis

    Disentangling different types of El Ni\~no episodes by evolving climate network analysis

    Get PDF
    Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series in various scientific disciplines. In this work, we apply the recently proposed climate network approach for characterizing the evolving correlation structure of the Earth's climate system based on reanalysis data of surface air temperatures. We provide a detailed study on the temporal variability of several global climate network characteristics. Based on a simple conceptual view on red climate networks (i.e., networks with a comparably low number of edges), we give a thorough interpretation of our evolving climate network characteristics, which allows a functional discrimination between recently recognized different types of El Ni\~no episodes. Our analysis provides deep insights into the Earth's climate system, particularly its global response to strong volcanic eruptions and large-scale impacts of different phases of the El Ni\~no Southern Oscillation (ENSO).Comment: 20 pages, 12 figure

    Quasiperiodic graphs: structural design, scaling and entropic properties

    Get PDF
    A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy

    Fermi-Hubbard physics with atoms in an optical lattice

    Full text link
    The Fermi-Hubbard model is a key concept in condensed matter physics and provides crucial insights into electronic and magnetic properties of materials. Yet, the intricate nature of Fermi systems poses a barrier to answer important questions concerning d-wave superconductivity and quantum magnetism. Recently, it has become possible to experimentally realize the Fermi-Hubbard model using a fermionic quantum gas loaded into an optical lattice. In this atomic approach to the Fermi-Hubbard model the Hamiltonian is a direct result of the optical lattice potential created by interfering laser fields and short-ranged ultracold collisions. It provides a route to simulate the physics of the Hamiltonian and to address open questions and novel challenges of the underlying many-body system. This review gives an overview of the current efforts in understanding and realizing experiments with fermionic atoms in optical lattices and discusses key experiments in the metallic, band-insulating, superfluid and Mott-insulating regimes.Comment: Posted with permission from the Annual Review of of Condensed Matter Physics Volume 1 \c{opyright} 2010 by Annual Reviews, http://www.annualreviews.or

    Ambiguities in recurrence-based complex network representations of time series

    Full text link
    Recently, different approaches have been proposed for studying basic properties of time series from a complex network perspective. In this work, the corresponding potentials and limitations of networks based on recurrences in phase space are investigated in some detail. We discuss the main requirements that permit a feasible system-theoretic interpretation of network topology in terms of dynamically invariant phase-space properties. Possible artifacts induced by disregarding these requirements are pointed out and systematically studied. Finally, a rigorous interpretation of the clustering coefficient and the betweenness centrality in terms of invariant objects is proposed
    corecore