623 research outputs found

    Intraoperative cerebral ultrasound for third ventricle colloid cyst removal: case report

    Get PDF
    To assess the usefulness of intraoperative Ultrasound (ioUS) and Echo-Color-Doppler (ECD) for the surgical removal of a specific deep-sited lesion. Case report of a woman underwent surgery of a third ventricle colloid cyst removal. The ioUS technique depicted the deep intraventricular lesion and all the anatomical structures surrounding the lesion; helping us defining the best trajectory for the safest surgical removal. In our experience ioUS and ECD have demonstrated to be a reliable and useful intraoperative tool in neurosurgery, not only for superficial tumors but for deep intraventicular lesions as well

    Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab

    Get PDF
    Controversial results on the predictive value of programmed death ligand 1 (PD-L1) status in lung tumor tissue for response to immune checkpoint inhibitors do not allow for any conclusive consideration. Liquid biopsy might allow real-time sampling of patients for PD-L1 through the course of the disease. Twenty-four stage IV NSCLC patients included in the Expanded Access Program with Nivolumab were enrolled. Circulating tumor cells (CTCs) were analyzed by CellSearch with anti-human B7-H1/PD-L1 PE-conjugated antibody. PD-L1 expressing CTCs were assessed at baseline, at 3 and 6 months after starting therapy, and correlated with outcome. At baseline and at 3 months of treatment, the presence of CTCs and the expression of PD-L1 on their surface were found associated to poor patients outcome. Nevertheless, the high frequency of PD-L1 expressing CTCs hampered to discriminate the role of PD-L1 in defining prognosis. Conversely although CTCs were found in all patients 6 months after treatment, at this time patients could be dichotomized into two groups based PD-L1 expression on CTCs. Patients with PD-L1 negative CTCs all obtained a clinical benefit, while patients with PD-L1 (+) CTCs all experienced progressive disease. This suggests that the persistence of PD-L1(+) CTCs might mirror a mechanism of therapy escape

    Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain

    Get PDF
    Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons

    Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities.

    Get PDF
    Dynactin subunit 1 is the largest subunit of the dynactin complex, an activator of the molecular motor protein complex dynein. Reduced levels of DCTN1 mRNA and protein have been found in sporadic amyotrophic lateral sclerosis (ALS) patients, and mutations have been associated with disease, but the role of this protein in disease pathogenesis is still unknown. We characterized a Dynactin1a depletion model in the zebrafish embryo and combined in vivo molecular analysis of primary motor neuron development with live in vivo axonal transport assays in single cells to investigate ALS-related defects. To probe neuromuscular junction (NMJ) function and organization we performed paired motor neuron-muscle electrophysiological recordings and GCaMP calcium imaging in live, intact larvae, and the synapse structure was investigated by electron microscopy. Here we show that Dynactin1a depletion is sufficient to induce defects in the development of spinal cord motor neurons and in the function of the NMJ. We observe synapse instability, impaired growth of primary motor neurons, and higher failure rates of action potentials at the NMJ. In addition, the embryos display locomotion defects consistent with NMJ dysfunction. Rescue of the observed phenotype by overexpression of wild-type human DCTN1-GFP indicates a cell-autonomous mechanism. Synaptic accumulation of DCTN1-GFP, as well as ultrastructural analysis of NMJ synapses exhibiting wider synaptic clefts, support a local role for Dynactin1a in synaptic function. Furthermore, live in vivo analysis of axonal transport and cytoskeleton dynamics in primary motor neurons show that the phenotype reported here is independent of modulation of these processes. Our study reveals a novel role for Dynactin1 in ALS pathogenesis, where it acts cell-autonomously to promote motor neuron synapse stability independently of dynein-mediated axonal transport

    Is quarantine for covid-19 pandemic associated with psychological burden in primary ciliary dyskinesia?

    Get PDF
    Background: Information on psychological impact of COVID-19 quarantine in primary ciliary dyskinesia (PCD), a chronic disorder with recurrent pulmonary exacerbations, is lacking. Psychological well-being was prospectively assessed during COVID-19 lockdown in Italy in a PCD population. Methods: we recruited 27 PCD patients and 27 healthy controls. To assess psychological well-being, psychological general well-being index and parenting stress index-short questionnaires were administered to participants ≥15 years-old and to mothers of participants <15 years-old, respectively. The PCD exacerbations since outbreak onset and frequency of quarantine weekly chest physiotherapy were compared to the same period of 2019. Outcomes: 70% of PCD mothers and 90% of PCD patients did not show parental stress levels or distress levels, respectively, and these groups showed no significant difference in stress compared to controls. The PCD pulmonary exacerbations occurred less frequently and weekly chest physiotherapy sessions significantly increased compared to the same period during 2019 (p < 0.05). Interpretation: During COVID-19 quarantine, a PCD population showed psychological well-being. Low exacerbation rate, explained by lower infectious exposure or improved compliance to chest physiotherapy, likely contributed to psychological well-being. Evaluating psychological burden and parental stress is a valuable tool for measuring the emotional impact of PCD and improving PCD medical care

    The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes.

    Get PDF
    Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture

    Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer

    Get PDF
    Tregs can contribute to tumor progression by suppressing antitumor immunity. Exceptionally, in human colorectal cancer (CRC), Tregs are thought to exert beneficial roles in controlling pro-tumor chronic inflammation. The goal of our study was to characterize CRC-infiltrating Tregs at multiple levels, by phenotypical, molecular and functional evaluation of Tregs from the tumor site, compared to non-tumoral mucosa and peripheral blood of CRC patients. The frequency of Tregs was higher in mucosa than in blood, and further significantly increased in tumor. Ex vivo, those Tregs suppressed the proliferation of tumor-infiltrating CD8(+) and CD4(+) T cells. A differential compartmentalization was detected between Helioshigh and Helios(low) Treg subsets (thymus-derived versus peripherally induced): while Helios(low) Tregs were enriched in both sites, only Helios(high) Tregs accumulated significantly and specifically in tumors, displayed a highly demethylated TSDR region and contained high proportions of cells expressing CD39 and OX40, markers of activation and suppression. Besides the suppression of T cells, Tregs may contribute to CRC progression also through releasing IL-17, or differentiating into Tfr cells that potentially antagonize a protective Tfh response, events that were both detected in tumor-associated Tregs. Overall, our data indicate that Treg accumulation may contribute through multiple mechanisms to CRC establishment and progression
    corecore