407 research outputs found

    Identification and quantification of PAH in bitumen by GC-Ion-Trap MS and HPLC-fluorescent detectors

    Get PDF
    Bitumen is a complex product with a large matrix of heavy aliphatic/naphthenic/aromatic hydrocarbons as well as a large number of isomeric compounds such as polycyclic aromatic compounds (PACs). Some PACs and derivatives are known to have a mutagenic and carcinogenic activity, and there is no generally satisfactory clean-up method for separating PACs from this very complex hydrocarbon matrix. Moreover, from an analytical point of view, the isomeric compounds usually co-elute in the same gas chromatography (GC) retention range, GC being one of the most widely used techniques in this area. However, the use of a suitable clean-up procedure for isolating the aromatic fractions, combined with two selective detection techniques such as mass spectrometry (GC-Ion Trap MS) and HPLC-Fluorescent detector (HPLC-FL), is expected to provide an effective tool for accurately determining certain PAC species in bitumen. In this paper we compare two quantitative extractions to analyse the 16 PAHs that occur in bitumen according to the US EPA reference list. Two clean-up protocols are assessed and compared by using both GC-Ion Trap MS and HPLC-FL chromatographic/detection techniques. The first extraction method combines well-established and proven clean-up operations with an automatic fractionation by semi-preparative HPLC (certification test program for PAHs in sewage sludge, in creosote-contaminated soil and in harbour sediment organised by the Community Bureau of Reference, BCR). The second method uses a multiple step-by-step liquid/liquid and liquid/solid extraction clean-up procedure. After the bitumen extracts are cleaned up, only the use of both GC-MS &amp; HPLC-FL can provide reliable results. The more sensitive FL provides enhanced fluorescent selectivity signals that facilitate identification of PAH compounds. However, for their quantification, the capillary GC-ion trap mass spectrometric technique is preferred because of the insufficient resolution of the HPLC column and the possible quenching or co-elution effect of matrix compounds. Both detection techniques are regarded as complementary. [Authors]]]> Polycyclic Hydrocarbons, Aromatic ; Gas Chromatography, Mass Spectrometry ; Spectrometry, Mass, Electrospray Ionization oai:serval.unil.ch:BIB_99E6734EF740 2022-05-07T01:23:31Z <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> https://serval.unil.ch/notice/serval:BIB_99E6734EF740 Sleep and dreaming Siclari , Francesca Tononi, Giulio info:eu-repo/semantics/bookPart incollection 2015-11-05 The neurology of consciousness info:eu-repo/semantics/altIdentifier/isbn/0128009489 eng oai:serval.unil.ch:BIB_99E74779D4BD 2022-05-07T01:23:31Z <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> https://serval.unil.ch/notice/serval:BIB_99E74779D4BD Julian Charrière http://www.sikart.ch/kuenstlerInnen.aspx?id=13342783 Gunti, Claus info:eu-repo/semantics/article article 2019-08-19 SIKART - Dictionnaire de l'art suisse, pp. en ligne Julian Charrière, art, écologie, géologie, Suisse fre oai:serval.unil.ch:BIB_99BA8179E536 2022-05-07T01:23:30Z <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> https://serval.unil.ch/notice/serval:BIB_99BA8179E536 Anti-CD2 receptor antibodies activate the HIV long terminal repeat in T lymphocytes info:eu-repo/semantics/altIdentifier/pmid/1680914 Bressler, P. Pantaleo, G. Demaria, A. Fauci, A. S. info:eu-repo/semantics/article article 1991-10 Journal of Immunology, vol. 147, no. 7, pp. 2290-4 info:eu-repo/semantics/altIdentifier/pissn/0022-1767 <![CDATA[The CD2 T lymphocyte glycoprotein surface molecule mediates both cell to cell adhesion and T cell activation, two processes that are involved in the spread of HIV infection. Treatment of chronically HIV-infected PBMC with anti-CD2 mAb has been shown to induce the expression of infectious virus from these cultures. In this study we investigated the mechanisms whereby anti-CD2 antibodies stimulate viral production. We demonstrate that treatment of transiently transfected T lymphocytes with anti-CD2 antibodies results in activation of the HIV long terminal repeat. Furthermore, CAT assays using mutated HIV long terminal repeat-CAT constructs and gel shift assays demonstrate that this activation is dependent on the NF-kappa B enhancer. These studies suggest that interaction of CD2 with its natural ligand, LFA-3, may play a role in regulation of HIV expression

    Crystal Structure of Staphylococcus aureus Cas9

    Get PDF
    Summary The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent mot if (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5′-TTGAAT-3′ PAM and the 5′-TTGGGT-3′ PAM, at 2.6 and 2.7 Å resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5′-NNGRRT-3′ PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.National Institute of General Medical Sciences (U.S.) (Grant T32GM007753)National Institutes of Health (U.S.) (Award 1DP1-MH100706

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states

    In vivo gene editing in dystrophic mouse muscle and muscle stem cells

    Get PDF
    Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.National Institute of General Medical Sciences (U.S.) (Grant T2GM007753)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institutes of Health (U.S.) (Grant 5R01DK097768-03

    Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors

    Get PDF
    The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.Harvard University. Society of FellowsNational Human Genome Research Institute (U.S.) (Center for Excellence in Genomics Science P50 HG003170)United States. Dept. of Energy (Genomes to Life DE-FG02-02ER63445)United States. Defense Advanced Research Projects Agency (W911NF-08-1-0254, G.M.C.)Wyss Institute of Biologically Inspired EngineeringNational Institutes of Health (U.S.) (Transformative R01 (R01 NS073124-01))European School of Molecular Medicine (predoctoral fellowship

    A Multiwavelength Study of Stephan's Quintet

    Get PDF
    Stephan's Quintet (SQ) is a compact group that we find in an atypical moment when a high velocity intruder is passing through it. The intrusion is particularly interesting because a previous intruder had stripped most of the gas from the group members. This debris field was shocked in the ongoing collision with the new intruder. This evolutionary history agrees well with observations and explains how a strongly interacting system can show low levels of star formation. We present new multiwavelength data including previously unpublished ROSAT X-ray, Ha interference filter/FP, ISO MIR/FIR and radio line and continuum images. These observations and previously published data provide new insights as well as support for some previous hypotheses. 1) FP and HI velocities allow us to unambiguously distinguish between gas associated with SQ and the new intruder. 2) Most detected emission regions are found in the remnant ISM of the NI which allows us to infer its size and present physical state. 3) The few emission regions associated with the stripped ISM of SQ include the best candidate tidal dwarf galaxy. 4) Multiwavelength data suggest that strong MIR/FIR emission from the Seyfert 2 nucleus of NGC7319 comes from dust heated directly by a power-law continuum rather than a starburst. 5) The correspondance between extended X-ray/radio continuum/forbidden optical emission confirms the existence of a large scale shock in SQ.Comment: In press in AJ. 44 pages, 10 Postscript figures, uses aastex.st

    Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    Get PDF
    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome

    Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies

    Get PDF
    BACKGROUND: SFTS virus (SFTSV) is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS) in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs) recognized the nucleocapsid (N) protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection

    Hollow mesoporous silica nanoparticles for intracellular delivery of fluorescent dye

    Get PDF
    In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized using the sol-gel/emulsion approach and its potential application in drug delivery was assessed. The HMSNs were characterized, by transmission electron microscopy (TEM), Scanning Electron Microscopy (SEM), nitrogen adsorption/desorption and Brunauer-Emmett-Teller (BET), to have a mesoporous layer on its surface, with an average pore diameter of about 2 nm and a surface area of 880 m2/g. Fluorescein isothiocyanate (FITC) loaded into these HMSNs was used as a model platform to assess its efficacy as a drug delivery tool. Its release kinetic study revealed a sequential release of FITC from the HMSNs for over a period of one week when soaked in inorganic solution, while a burst release kinetic of the dye was observed just within a few hours of soaking in organic solution. These FITC-loaded HMSNs was also found capable to be internalized by live human cervical cancer cells (HeLa), wherein it was quickly released into the cytoplasm within a short period of time after intracellular uptake. We envision that these HMSNs, with large pores and high efficacy to adsorb chemicals such as the fluorescent dye FITC, could serve as a delivery vehicle for controlled release of chemicals administered into live cells, opening potential to a diverse range of applications including drug storage and release as well as metabolic manipulation of cells

    De novo domestication of wild tomato using genome editing

    Get PDF
    Breeding of crops over millennia for yield and productivity1 has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost2. We devised a CRISPR–Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants
    corecore