301 research outputs found

    Peptides, DNA and MIPs in gas sensing. From the realization of the sensors to sample analysis

    Get PDF
    Detection and monitoring of volatiles is a challenging and fascinating issue in environmental analysis, agriculture and food quality, process control in industry, as well as in ‘point of care’ diagnostics. Gas chromatographic approaches remain the reference method for the analysis of volatile organic compounds (VOCs); however, gas sensors (GSs), with their advantages of low cost and no or very little sample preparation, have become a reality. Gas sensors can be used singularly or in array format (e.g., e-noses); coupling data output with multivariate statical treatment allows un-target analysis of samples headspace. Within this frame, the use of new binding elements as recognition/interaction elements in gas sensing is a challenging hot-topic that allowed unexpected advancement. In this review, the latest development of gas sensors and gas sensor arrays, realized using peptides, molecularly imprinted polymers and DNA is reported. This work is focused on the description of the strategies used for the GSs development, the sensing elements function, the sensors array set-up, and the application in real cases

    Chemical and physical influences in bone and cartilage regeneration: a review of literature

    Get PDF
    Nowadays several studies demonstrate the influence of chemical and physical stimulation to bone and cartilage exist. The first studies date back to the 50s and for a long time, they did not have a strong impact on clinical practice. In recent times, however, the findings arising from these studies are increasingly used to address clinical problems such as osteoarthritis or non-unions. The aim of this article is to make a review of the literature of the state of the art about physical and chemical influences on bone and cartilage

    Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis

    Get PDF
    Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given

    Molecular Networking: A Useful Tool for the Identification of New Psychoactive Substances in Seizures by LC–HRMS

    Get PDF
    New Psychoactive Substances (NPS) are a global concern since they are spreading at an unprecedented rate. Despite their commerce still being limited compared to traditional illicit drugs, the identification of NPS in seizures may represent a challenge because of the variety of possible structures. In this study we report the successful application of molecular networking (MN) to identify unexpected fentanyl analogs in two seizures. The samples were extracted with 1 mL of methanol and analyzed with an untargeted data-dependent acquisition approach by LC–HRMS. The obtained data were examined using the MN workflow within the Global Natural Product Search (GNPS). A job was submitted to GNPS by including both seizures and standard mixtures containing synthetic cannabinoids and fentanyls raw files; spectra obtained from standards were used to establish representative networks for both molecular classes. All synthetic cannabinoids in the mixture were linked together resulting in a molecular network despite their different fragmentation spectra. Looking at fentanyls, all the molecules with the typical 188.143 and 105.070 fragments were combined in a representative network. By exploiting the standard networks two unexpected fentanyls were found in the analyzed seizures and were putatively annotated as para-fluorofuranylfentanyl and (iso)butyrylfentanyl. The identity of these two fentanyl analogs was confirmed by NMR analysis. Other m/z ratios in the seizures were compatible with fentanyl derivatives; however, they appeared to be minor constituents, probably impurities or synthetic byproducts. The latter might be of interest for investigations of common fingerprints among different seizures

    New 3,4-seco-ent-kaurene dimers from Croton micans.

    Get PDF
    From the stems of Croton micans Sw., five new 3,4- seco-ent-kaurene dimers: micansinoic acid (1), isomicansinoic acid (2), and the dimethyl (3), monomethyl (4) and monoethyl ester (5) of micansinoic acid were isolated. The structures of the new compounds were elucidated by spectroscopic data interpretation, mainly 1D and 2D NMR experiments and MS. These compounds are the first 3,4- seco-ent-kaurene dimers from a Croton species
    • …
    corecore