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Abstract: Detection and monitoring of volatiles is a challenging and fascinating issue in 
environmental analysis, agriculture and food quality, process control in industry, as well as in ‘point 
of care’ diagnostics. Gas chromatographic approaches remain the reference method for the analysis 
of volatile organic compounds (VOCs); however, gas sensors (GSs), with their advantages of low 
cost and no or very little sample preparation, have become a reality. Gas sensors can be used 
singularly or in array format (e.g., e-noses); coupling data output with multivariate statical 
treatment allows un-target analysis of samples headspace. Within this frame, the use of new binding 
elements as recognition/interaction elements in gas sensing is a challenging hot-topic that allowed 
unexpected advancement. In this review, the latest development of gas sensors and gas sensor 
arrays, realized using peptides, molecularly imprinted polymers and DNA is reported. This work 
is focused on the description of the strategies used for the GSs development, the sensing elements 
function, the sensors array set-up, and the application in real cases. 
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1. Introduction 

The discovery of genes encoding receptor ‘odour’ proteins, from the rhodopsin-like family, has 
been crucial to figure out how ‘smell’ works in humans. The odour perception mechanism at the gene 
and protein levels has been discussed by Buck [1]. Different authors have stated that an olfactory 
receptor (OR) can recognize numerous odorants with different affinity, thus, a single molecule can 
bind different receptor proteins [2-4]. More recently, Abaffy [5] discovered that odorous substances 
are able to bind receptor proteins, contained in olfactory glomeruli, that allow recognition. Humans 
have 851 olfactory receptor genes for the identification of thousands of different odours [6]. A 
complex receptor code, derived by the excitation of a set of olfactory neurons, results in perception, 
identification, detection of concentration changes as well as adaptation to particular odours. Each 
neuron has only one type of receptor. These studies have represented the starting point for the 
development of olfaction-inspired bioreceptors [7,8].  

Advances in nano/micro-engineering and molecular biology have enabled the elaboration and 
development of devices that mimic the human olfactory system through the use of arrays of gas 
sensors (GSs) associated with signal-processing tools [2,3], the so-called E-noses. The e-nose concept 
started with the idea to mimic the olfactory system; thus, the basic set-up can be described using the 
following four elements: the sensors equipped with appropriate recognition elements (olfactory 
receptors), the transducers (bipolar neurons network), data elaboration (brain), and data 
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interpretation (odour perception). The concept of an instrument consisting of an intelligent sensor 
array able of odour classification (model nose) was introduced by Persaud and Dodd [9]; the main 
challenges in the development of such devices were identified in finding the appropriate recognition 
(selectivity) and transducer (sensitivity) elements. An exhaustive definition of e-nose was given by 
Gardner and Bartlett [10]: ’an electronic nose is an instrument, which comprises an array of electronic 
chemical sensors with partial specificity and an appropriate pattern-recognition system, capable of 
recognizing simple or complex odours’. In 2000, Göpel [4] reported on the problems generated by 
drifts in the signal and lack of sensitivity for certain classes of molecules. Improvements in more 
recent years have been characterized by progress in the development of new chemically sensitive 
materials, adaptable transducers, or by the combination of different sensitive materials and 
transducers in multielement modular sensor systems that may mimic the human odour panels. 
Furthermore, to reduce the drift effect in the GSs, new algorithms have been developed. Some 
approaches use multivariate analysis such as principal component analysis (PCA, see later) to 
compensate for drift [11-13]. Liu et al. [14], interestingly, used an active learning (AL) methodology, 
which allowed them to solve the sensor drift problem. This method can select a certain number of 
incoming samples and update the classifiers reliably.  

Different components of the biological olfactory system have been used as sensitive material to 
obtain GSs. The use of biological elements involved in the animals’ and humans olfactory receptors 
system has been reported in the literature, particularly odorant-binding proteins (OBP) [15,16], insect 
antennae [17] and olfactory neurons [18]. These represent the first obvious choice to mimic the 
binding ability for volatile compounds using the biological material selected by nature. On the other 
hand, it is worth to mention that other organic natural compounds as porphyrins, chemically 
synthesized and functionalized to have different binding ability within an array have been 
extensively and successfully used [19-22]. More recently, other binding elements have appeared in 
the gas sensors scenario, in particular for the development of gas sensors arrays. 

Regardless of the transducer employed, the differences in the interaction of individual sensors 
with the same gas phase, maximized by a rational selection of the binding elements, represent a 
keystone for the success of the e-nose application. Therefore, a statistical data treatment needs to be 
carefully selected to interpret the GSs output, in particular for an array of sensors. The analysis of the 
outputs is generally directed to search for similarities and differences in the data set through a 
reduction in dimensionality. It is possible to use a classification approach grouping the information 
by discriminating features (i.e., inter-class distance); alternatively, explorative methods (i.e., variance) 
can associate the information obtained with the structure of the data. The appropriate statistical 
algorithm depends on the number of objects and their variables, the complexity of the problem, and 
the computational capabilities of the software [23]. Most of the statistical approaches for sensor arrays 
use multivariate data analysis, such as principal components analysis (PCA), discriminant analysis 
(DA), and clustering analysis (CA). PCA is a signal representation technique that generates 
projections along with the directions of maximum variance. DA is an explanatory and predictive 
analysis. Two different models of DA can be used to obtain different information: i) to which group 
an observation will belong to ii) if the groups to which the observations belong are distinct. A linear 
model can be used if the covariance matrices are assumed to be identical, while a quadratic model is 
used when the covariance matrices differ in at least two groups [24,25]. CA is used to split data into 
groups depending on the similarities or distances between points in the data set. Other methods that 
allow to study the results obtained from gas sensors are high-order statistics (HOS). These methods 
allow the extraction of more information than signal analysis and may lead to significant 
improvements in selectivity and sensitivity of sensor responses [26]. A detailed description of the 
proper use and different performances of these approaches are out of the scope of this review and is 
reported elsewhere, in particular regarding the output data interpretation of GSs arrays [27,28]. 

This review will focus on the realization and application of gas sensing systems recently 
developed using cutting edge binding elements as peptides, DNA, and molecularly imprinted 
polymers (MIPs). These binding elements are unique and useful tools for designing GSs resulting  
particularly appealing for sensors arrays set-up via molecular modeling, because of the ease of 
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synthetic pathway and the low cost compared to the natural biological elements. Hence, they 
represent in our opinion, a new valid and alternative approach for the realization and boosting of 
GSs and e-noses, able to offer potential infinitive opportunities able to solve analytical and real-life 
challenges. Since GSs transducers represent a key element for the development of e-noses and GSs, 
and their modifications contribute significantly to the final GSs performance, in this review a brief 
description of the transducing systems used in conjunction with peptides, DNA and MIPs will be 
also given. Moreover, attention will be devoted even to immobilization, synthesis, and selection of 
the binding elements, as well as at the analytical application of the described devices. 

2. Transducers 

The relevant requirements of GSs and GSs arrays (e-noses) are, as for other chemical sensors, 
sensitivity, stability of the signal, repeatability of the output, reversibility (in terms of recovery time) 
[29]. As already reported in the introduction is very relevant to reduce sensor drift; in fact, the sensors 
are expected to work on real samples in the long term to build a robust multivariate statistical model 
(using real samples) to calibrate the array. Moreover, GSs that are modified with elements as 
peptides, DNA or MIPs are expected to work properly at temperatures not higher than 40 °C, to avoid 
denaturation/damage of the recognition elements. The material and structure, as well as the eventual 
modification (e.g. by using nanomaterials), of the surface of the transducer, is also crucial since a 
proper immobilization and orientation of the recognition element is necessary. A scheme of the main 
transducers used in conjunction with peptides, DNA and MIPs are sketched in Figure 1 and briefly 
described below:  

• Field-effect transistors (FETs): FETs are devices controlling drain current by a gate voltage 
applied. They exhibit gas sensing ability when the metal gate is modified with proper material. 
The latter needs to electronically communicate with the gate and interact with the gas. The 
current/voltage variation can return information on the gas composition [30]. Metal oxide 
semiconductors (MOS) have been introduced in the e-nose technology to modify the FET’s gate. 
In MOSFETs, the threshold voltage of the sensor is sensitive to the interaction of certain gases 
on the gate material, usually a catalytic metal, because of the corresponding changes in the work 
functions of the metal and the oxide layers. The changes in the work functions are induced by 
the polarization of the surface and interface of the catalytic metal and oxide layers caused by the 
gas interacting with the catalytically active surface. Moreover, when the metal-insulator 
interface interacts with the gas, physical changes in the sensor occurs. Therefore, a porous gas-
sensitive gate material is used to facilitate diffusion of gas into the material. Gas sensing 
MOSFETs are produced by standard microfabrication techniques, which incorporate the 
deposition of gas-sensitive catalytic metals onto the silicon dioxide gate layer [31,32]. Moreover, 
the FET gate modification with MOS allows the functionalization with biomolecules, allowing 
them to work at low temperatures [33]. However, another type of material can be used to modify 
the FET’s gate, graphene. It has been shown that these sensors can have different strengths such 
as high electrical conductivity, surface-volume ratio, low thermal resistance, and relatively low 
1/f noise and the ability to strongly tune the conductivity of the gate. These aspects make these 
sensors promising for gas detection applications [34]; at the moment no application on peptides, 
MIPs or DNA sensors have been reported. 

• Piezoelectric sensors: piezoelectric crystals can be used in different fields, including 
optoelectronics, electronics, liquid, and gas detection devices. Two kinds of piezoelectric sensors 
are used in gas sensing: surface acoustic wave (SAW) and quartz crystal microbalances (QCMs). 
The working principle is that a change in the mass of the piezoelectric sensor coating, caused by 
absorption of a volatile, gives a change in the resonant frequency. An input (transmitting) and 
output (receiving) interdigital transducer deposited on the top of the piezoelectric substrate are 
present in SAWs. The sensitive element is between the transducers, an acoustic two-dimensional 
wave propagates since potential is applied to the input transducer; frequencies are in the 100–
400 MHz range [35,36]. Quartz crystal microbalances (QCM) are the most used piezoelectric 
sensors and are of great importance in fields as material science, environmental monitoring, 
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electrochemistry, and biosensors. They are generally realized with an ‘AT cut’ quartz layer 
having 2 gold electrodes on each side; the crystal is forced to oscillate at the fundamental 
frequency using an alternating current [37]. When an external electric field is applied to the 
quartz, the frequency decay is proportional to the mass bound to the crystal [38]. The 
relationship between frequency change and film deposition efficiency that interacts with 
different VOCs is expressed by the Sauerbrey equation [39]. These sensors can be easily modified 
with biological elements using techniques such as drop-casting, spin coating and dip coating. 
The ease of realization, low costs, ability to work in real-time and the short analysis times make 
this type of transducers very attractive in the sensors field [40].  

• Surface Plasmon Resonance (SPR): SPR is among the most used techniques for characterization 
and analysis molecular interactions particularly in biosensors; it has recently been used in gas 
sensing [41-43]. SPR is induced by the resonant coupling of photons from polarized light to the 
oscillation of metal-free electrons; this produces an evanescent electromagnetic wave through to 
the surface of the metal [44,45]. The binding of a target analyte to a bioreceptor on the sensor 
surface influences the wave and can be monitored through the variation of the angle of the 
reflected light onto an appropriate SPR sensor. The sensitivity of the SPR depends on the sensor 
configuration and particularly on the functionalization of the sensor surface [41]. Recent 
applications of surface plasmonic waves include surface plasmon-enhanced Raman scattering 
(SERS) [46,47], localized SPR (LSPR) [48-50], surface plasmon field-enhanced fluorescence 
spectroscopy (SPFS) [51]. The most used configuration for the SPR sensors is the Kretschmann 
configuration ATR coupling introduced by Kretschmann and Raether after the pioneering work 
of Otto in 1968 [52]. This configuration is also used as an excitation method in current SPR 
imaging (SPRi) sensors [53]. SPRi has been largely used for the development of biochips for 
monitoring biomolecular binding events. Brenet et al., have demonstrated for the first time that 
SPRi is very efficient for the development of e-noses for sensing VOCs in the gas phase [54]. 
Using imaging technology, it is possible, in principle, to simultaneously monitor hundreds of 
biofunctionalized spots in a micro-array format on the surface of the entire biochip [54]. 

 

Figure 1. Sketch of the most used transducers in peptides, DNA and MIPs modified gas sensors. 
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3. Peptides, DNA and MIPs as Sensing Elements  

Technical solutions to improve the sensitivity and selectivity of artificial noses have been 
recently extensively reviewed by Hurot et al. [55]. In this excellent work, the authors give an overview 
of e-noses dedicated to the detection of volatile organic compounds (VOCs) and to biomimetic 
strategies to improve the design of the detection materials, their immobilization on the sensor surface, 
the sampling strategies, and data processing. In this review we report complementary information 
on the development of GSs based on oligopeptides, DNA and MIPs, focusing on their assembly and 
setup strategies, illustrating performances, target volatiles compounds, and applications, when 
reported, in real samples.  

The sensing elements in GSs are supposed to give a certain degree of selectivity versus the target 
compounds, as for classical bio-sensors working in liquid media; at the same time, they should be 
independent of physico-chemical changes occurring during the measurement (mainly temperature 
and humidity).  

A key element that differs from classical liquid phase affinity sensors is related to the 
reversibility of the signal; in fact, the signal should be rapid and reproducible, and no regeneration 
procedure should be required. Moreover, the immobilization on the transducer should be carefully 
selected to maximize the sensing element exposure. Sensing molecules can be immobilized directly 
on the transducer or onto supports that can then be fixed onto the transducer. Parameters affecting 
immobilization and the response are molecule size, working area, polarity, shape, presence of 
functional groups, orientation after immobilization, and storage conditions [5].  

The sensing elements oligopeptides, MIPs, and DNA used for gas sensing are treated in the 
following paragraphs, reporting initially cases of GSs and arrays where standards volatiles are 
analyzed focusing later on the performances on real samples. A table (Tables 1–3) summarizing the 
main features of the sensors in terms of the binding element, analyte/sample, transducer, 
immobilization strategies, VOCs detected amount is reported at the end of each paragraph.  

3.1. Peptides  

Peptides are ideal to mimic the molecular recognition mechanism occurring in biomolecules 
such as enzymes, antibodies, receptors (including olfactory) and transmembrane proteins. The design 
of peptide-based artificial receptors able of highly specific recognition is widely used to obtain 
inhibitors, drugs, reagents for affinity purification systems, and, also, active elements for gas sensing 
[55]. In particular, short peptides represent an excellent opportunity for the design of artificial 
receptors, because of the impressive number of different combinations that can be obtained using the 
20 natural amino acids. Figure 2 reports examples of oligopeptides structures. 

 
Figure 2. Sketches of oligopeptides. 

Easy and automated synthesis, low cost and the possibility of rapid screening in virtual libraries 
[56,57] are also relevant issues for their selection. Peptide sequences for VOCs detection were initially 
developed in the early 2000s based on animal receptors. The first olfactory receptors-based peptide 
sequences were designed to maintain the olfactory receptor regions of dogs for VOC binding [15]. 
For the sake of clarity, the peptides reported below will be numbered using the symbol ‘Ps’ and 
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consecutive numbers, the corresponding aminoacidic composition is reported in the ‘abbreviation’ 
list. The obvious choice to obtain a peptide for a gas sensor is to start from sequences already present 
in olphactory receptors. In this respect, Panigrahi et al. [58] studied the ability of the octapeptide Ps1 
to detect acetic acid at low concentrations starting from the primary structure of the receptor protein 
P 30953 (from the Swiss prot G databank). After simulating to assess the binding ability to acetic acid, 
Ps1 was immobilized onto 10 MHz QCMs. Covalent immobilization was achieved by the formation 
of a self-assembled monolayer (SAM) onto the gold electrode of the QCM taking advantage of the 
presence of the thiol group of the cysteinyl end residue. This is a standard strategy to obtain a stable 
monolayer immobilization of biomolecules on gold. A linear increase of the response was observed 
in the 10–100 ppm range with a sensitivity slightly higher than 1 Hz/ppm. No data on selectivity are 
reported despite the authors stated that a signal was achieved also in presence of alcohols and 
ketones.  

Wasilewski et al. [59] used peptides mimicking the aldehyde binding regions in a hydrophobic 
cavity of the HarmOBP7 protein, identified as a pheromone-binding protein (PBP), present in the 
antennae of the Helicoverpa armigera moth. In the first paper [60] the binding ability of the peptide 
Ps2, constituted by 17 amino acids, versus 15 compounds (listed in Table 1) was predicted 
computationally. Ps2, thanks to a final cysteine, was anchored on the QCMs transducer by SAM. 
Maximum sensitivity was achieved for nonanal, helional and octanal with a frequency shift of 1.29, 
0.77, and 0.69 Hz/ppm, respectively. No interactions were found for 100 ppm of formaldehyde, 
acetaldehyde, glyoxal, benzaldehyde, propanal, and hexanal. The in silico data correlated well with 
experimental results. Different shorter peptides Ps3, Ps4, Ps5, and Ps6 coming from the same 
HarmOBP7 receptor were also used to realize similar peptide GSs that were challenged against 
different odorous compounds (octanal, acetaldehyde, benzaldehyde, ethanol, acetone, dimethyl 
sulphide, trimethyl amine, and toluene). Adsorption of octanal on Ps6 was more favorable than for 
other sensors. However, a major drawback resulted in the long adsorption/desorption time which 
led to long times for the recovery of the signal. The Ps6 based sensor was the only returning 
significant signals, but for amounts of VOCs in the order of magnitude of thousands of ppm. 

Lu et al. [61] in 2009 used a 10 MHz QCMs array of sensors based on four short synthetic 
oligopeptides and two conducting polymers for the simultaneous detection and identification of 
VOCs such as acetic acid, butyric acid, ammonia, dimethylamine, benzene, chlorobenzene, and their 
mixtures. The four polypeptide sequences Ps7, Ps8, Ps9, and Ps10 were from the dog olfactory protein 
OLFD-canfa’s (Swiss Prot G databank); spin coating was used to immobilize the peptides onto QCMs. 
The two conducting polymers were: monobenzo-15-crown-5 (B15C5) and poly [n-butyl methacrylate 
(PBMA)]. The amino acid sequences were selected according to the calculation of the binding affinity 
using virtual screening. The sensitivity of the array was tested with butyric acid. Ps7 and Ps8 had 
higher absorption towards butyric acid with respect to the conductive polymers. The sensitivity of 
the response of the two polypeptides towards various concentrations of butyric acid (1–3 ppm) in 
terms of slope of the response curve had the following sequence: Ps8 > Ps7 > Cp1, demonstrating that 
polypeptides have higher sensitivity than conductive polymers, as expected. Interestingly, the sensor 
array demonstrated selectivity for the discrimination of odour profiles characterized by all the VOCs 
tested. 

An array of GSs based on the structurally related series of the well-known tripeptide glutathione 
(Ps11, Ps12, Ps13, Ps14, Ps15, Ps16) was developed by Compagnone et al. [62]. The aim was to exploit 
the ability of similar peptidic structures to discriminate among different VOCs, without any reference 
to olfactory receptors. Considering the very low response obtained by immobilization via SAM onto 
20 MHz QCMs, the peptides were anchored to gold nanoparticles (AuNPs) that were then drop-
casted onto the sensors. This increased the number of binding sites because of the large 
surface/volume ratio of the AuNPs. Typical aromas of foods as cis-3-hexenol, isopentyl acetate, ethyl 
acetate, and terpinen-4-ol dissolved in different solvents were tested. The resulting sensitivity pattern 
for all the peptides indicated different sensing abilities despite a similar structure. The intraday RSD 
was in the 1–10% range and interday RSD was in the 3–16% range for all the peptide QCM sensors. 
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The feasibility of SPR for detection in the gaseous phase was demonstrated in the early 1980s 
[63,64]. In 2018, Brenet et al. [54] developed an optoelectronic nose using peptides onto microarrays 
of a surface plasmon resonance imaging (SPRi) system. SPRi allows the immobilization of up to 
hundreds of sensing molecules on the same chip for the creation of a large sensor array. SPRi 
technology allows measurements using a fixed refraction angle called the working angle θw. Using 
an angle of incidence at the maximum slope of the plasmon curves, changes in resonance conditions 
can produce large variations in the intensity of reflectivity. In this system, the authors used a 16-bit 
video camera (CCD) to capture the interaction images between the VOCs and the sensor array. 18 
different peptides and organic molecules such as thiols with diverse physicochemical properties 
(hydrophobic, hydrophilic, charged, neutral, etc.) were used as sensing materials. VOCs from 
different chemical families having different properties and distinct smells (alcohols, esters, carboxylic 
acids, ketones, hydrocarbons, aldehydes, and amines) were tested. The array was able to differentiate 
among VOCs of similar molecular structure. Two sets of homologous VOCs were analyzed (six 
alcohols with carbon chain lengths from C3 to C8, and five carboxylic acids from C1 to C6). PCA and 
Hierarchical Clustering on Principal Components (HCPC) were used to elaborate the dataset. Using 
PCA a good separation, particularly for alcohols, was achieved. The peptide sequences were not 
given for confidentiality reasons.  

Maho et al. [65] recently used this new technology to study the enantioselectivity of (R) and (S) 
limonene and (R) and (S) carvone. 19 different sensing materials have been deposited on the surface 
of the prism, 17 of them being peptides. The two remaining sensing materials were achiral molecules 
and were used as a control for the study. An automatic gas sampling system was used to create data 
sets (≥100 samples/class). Different lines were used for ambient air, for chiral forms of carvone and 
limonene, and butanol as control. The array was able to discriminate limonene and carvone 
enantiomers. A specific algorithm has been also proposed to assess which are the sensors more 
relevant for the discrimination. Moreover, Weerakkody et al., [66] and Brenet et al., [66] highlighted 
the importance of characterization of the optical system in the SPRi before depositing the array on 
the prism. 

One of the attractive features of peptides is the possibility to obtain a particular binding ability 
designing a sequence by molecular modeling. Using this concept and starting from a sequence in the 
P 30953 receptor protein (Swiss prot G databank) in 2011, Sankaran et al. [67] obtained the synthetic 
peptide Ps17 designed for alcohols. Ps17 was immobilized onto 10 MHz QCMs by SAM and tested 
with hexanol and pentanol. A linear range from 2 to 100 ppm was obtained for both VOCs with a 
sensitivity of 0.05 Hz/ppm for hexanol and 0.03 Hz/ppm for pentanol, respectively. Despite no 
selectivity data are reported in the paper the data demonstrated that a peptide sequence can be 
designed to bind selected VOCs. 

Sim et al. [68] very recently, reported a novel carbon nanotubes (CNT) FET functionalized with 
12-mer peptides identified using a virtual screening approach (the peptide sequences are not 
reported). The authors used four different peptides to functionalize the SWCNTs without additional 
covalent conjugation linkers or surface modifications. Four breath-related VOC biomolecules—
isopropyl alcohol (IPA), acetone, isoprene, and toluene were tested. Fabrication of the CNT FETs was 
achieved using peptide-functionalized CNT suspensions (1 ppm); the peptide-functionalized CNT-
FETs were exposed to VOCs (10 ppm). The outputs of each sensor were analysed in terms of 
magnitude and response time of the resistance change. The resistance levels varied depending on the 
peptide sequence. The 4 peptide-functionalized CNT FETs had different responses for each VOC.  

Mascini et al. [69-72] developed a semi-combinatorial virtual approach to have a library of 
peptides potentially useful for GS arrays. The peptide library was built challenging the binding 
properties towards five different chemical classes (alcohols, aldehydes, esters, hydrocarbons, and 
ketones). By maximizing the differences of binding affinity among chemical classes, a subset of 120 
tripeptides was used as scaffolds for generating a combinatorial library of 7912 tetrapeptides. 
Different peptides were selected depending on their virtual affinity and cross-reactivity to validate 
experimentally the approach (Ps18, Ps19, Ps20, Ps21, Ps22, Ps23). The peptides, added with a terminal 
cysteine, were covalently bound to AuNPs and deposited onto 20 MHz QCMs [62]. The array was 
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able to discriminate 13 volatile compounds (2-propanol, ethanol, hex-3-en-1-ol, terpinen-4-ol, 
nonanal, octanal, ethyl acetate, ethyl butanoate, ethyl octanoate, isopentyl acetate, hexane, acetone, 
and butane-2,3-dione) on the base of hydrophobic/hydrophilic nature and molecular weight. The 
Ps18 designed, according to the simulation, for compounds having long alkyl chain with carbonyl 
group, had the highest response for all compounds followed by Ps22 except for 2-propanol and 
butane-2,3-dione for which Ps21 had a slightly higher response. The lowest response was in all cases 
given by the Ps19 that was designed for the recognition of small alcohols. The data obtained 
confirmed the efficacy of the virtual approach. Similar considerations applied for the same set of 
peptides immobilized onto zinc oxide nanoparticles (ZnONPs) [70]. The use of ZnONPs to 
immobilize the peptides resulted in a more stable background signal and in the absence of drift in  
presence of samples with high water content.  

The use of a library of peptides to realize GSs has been also reported by Ju et al. [73]. Ps24, Ps25, 
Ps26 generated by an ‘m13 phage display’ library, were selected for the binding of benzene, toluene, 
and xylene. The detector was, in this case, a microcantilever system consisting of four compartments, 
including three cantilevers each. Each compartment was independently functionalized with a 
peptide via SAM; the fourth was used as reference. Upon binding of the VOCs the resonant frequency 
of the signaling cantilevers downshifted more than the reference as a result of the selectively bound 
target molecules; the differential signal between the two cantilevers was expected to correspond to 
the concentration of target molecules in the gas sample. Ps24 was very selective toward benzene over 
toluene and xylene. On the contrary, Ps25 did not show specific binding toward benzene but had a 
high affinity toward toluene and xylene. Ps26 had significant interactions with benzene and toluene, 
but not with xylene. Ps24 was able to detect benzene down to 0.1 ppm, while Ps25 was quantitatively 
detecting toluene and xylene at 2 and 28 ppm.  

3.1.1 Applications in Real Samples 

In 2014 Di Natale et al. [74] reviewed the development of gas sensors devoted to ‘breath 
analysis’. Breath is a widely challenging studied field in gas sensing because the breath sample 
collection is non-invasive and then, it is potentially considered a point of care testing. The gas sensors 
may be considered as the natural complement to breath analysis, matching the non-invasiveness with 
typical sensor features such as low cost, ease of use, portability, and integration with the information 
networks. This will potentially allow the screening of large populations for the early diagnosis of 
pathologies.  

To the best of our knowledge, only two examples of the use of gas sensor arrays based on 
peptides as medical diagnostic tool have been proposed. One of the first studies was reported in 2001 
by Lin et al. [75] for the diagnosis of uremia. Six 12 MHz QCMs were dip-coated with peptides 
(sequences are not reported) designed by simulating the olfactory receptor protein (ORP) docking 
with the target gas molecules. A simulated structure of the ORP was modeled by comparing the 
primary sequences with protein G coupled receptor, which have known structures in the Protein data 
bank. The target molecules were dimethylamine (DMA), trimethylamine (TMA), monomethylamine 
(MMA), and ammonia, which are commonly found in the breath of patients with uremia. In a clinical 
test, the exhaled breath of patients in hemodialysis with chronic renal insufficiency (CRI), chronic 
renal failure (CRF) were collected and stored in sampling bags for the assay. The GSs array allowed 
clear discrimination between the samples from healthy subjects and subjects with chronic renal 
insufficiency/chronic renal failure.  

Ninety-six patients in an intensive care unit were tested by Shih et al., [76] using an array of 
peptide-based sensors. The sensor array was based on piezoelectric 10 MHz QCMs equipped with 24 
different peptide chains grouped in hydrophilic and acidic, hydrophilic and basic, hydrophobic and 
acidic and hydrophobic and basic; each group was composed by 6 peptide sequences (sequences 
were not reported). The analysis of 128 breath samples was compared with bacteria culturing of saliva 
samples. Very interestingly six different bacterial pathogens (Pseudomonas aeruginosa, Acinetobacter 
baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Acinetobacter lwoffii) were identified and 
grouped into clusters by multiple discriminant analysis (MDA); that is a multivariate dimensionality 
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reduction technique. This method allows objects to be allocated consistently and most appropriately 
to groups for which representatives have already been selected [77]. The GSs array allowed a 
classification with 98% accuracy.  

The assessment of the quality of agricultural and food products is still routinely judged based 
on consumer preferences by visual inspection and subjective satisfaction levels. E-noses technology 
provides new options for assessing non-destructively the quality of agricultural and food products. 
This is particularly true when analysis should be compared with conventional methods such as GC-
MS in which sample preparation and analysis requires time and skilled personnel [78]. Recently, 
peptide modified gas sensors arrays have been used for the evaluation of the aromas of different food 
matrices at the University of Teramo. Starting from the virtual library approach reported in [69-72] 
the pentapeptides developed have been used to assess quality, to classify different products, and to 
evaluate processes occurring in food.  

Using peptide-AuNPs functionalized with the glutathione series reported in [62] and adding a 
heptapeptide to improve variability in binding ability, Compagnone et al. [72] classified different 
commercial categories of olive oils as extra virgin, virgin, and lampante. With a similar approach, the 
performance of an array consisting of 6 peptide sensors (Ps15, Ps12, Ps27, Ps28, Ps29, Ps30, Ps27) has 
been compared with a metalloporphyrin based array for the evaluation of chocolate off-flavours 
potentially occurring during storage, transport and production. Off-flavoured samples of cocoa 
butter containing 125 ppm of 3-methylbutanal, phenylacetaldehyde (typical by-products of 
fermentation), acetic acid (produced in conching), tetramethylpyrazine, 2- acetylpyrrole (roasting), 2-
nonenal and 2,4-decadienal (fat oxidation) have been prepared in the lab and tested [79]. A 
multivariate PLS-DA analysis was made to discriminate acceptable vs. off-flavour samples of dark, 
milk, and white chocolate. The peptides-based sensors performed better than the metalloporphyrin 
based array assigning correctly 98% of the samples (vs. 70%) demonstrating that this e-nose can be 
used in quality control of the samples at industrial scale. 

The same sensor array was used to investigate the influence of the composition on the release 
and sensory perception of aroma compounds from strawberry flavoured candy model systems by 
Pizzoni et al., [80]. Gummy candies were prepared according to industrial manufacturing procedures 
using different gelling agents: gelatin, Arabic gum and pectin. Two types of strawberry flavours, 
natural and nature-identical (chemically synthesized) were used. The results obtained from GC-MS 
analysis showed a quite different and significant effect in aroma release due to the gelling agent. The 
peptide-based e-nose was able to discriminate the different gelling agents. More interestingly, for 
gelatin and Arabic gum strawberry candies, it was possible to clearly distinguish the natural from 
the chemically synthesized flavour, using a simple PCA. A panel test analysis was not able to give 
the same output.  

Rocchi et al. [81] used this type of GSs array to characterize and discriminate origin, drying, and 
age of 35 saffron samples. The pentapeptides (Ps18, Ps19, Ps20, Ps21, Ps22, Ps23) were tested with 35 
saffron samples of different origin collected during the harvesting period 2012–2016. The 
identification of the volatile profile of saffron was achieved using GC-MS analysis. A PLS-DA 
analysis showed good discrimination by the GSs peptides array based on the origin of saffron 
samples with 81% of the samples correctly assigned in cross-validation. 

AuNPs have been replaced by ZnONPs in [70] because of the improved performance in samples 
containing a high amount of water. As a proof of concept, an array of four different pentapeptides 
(Ps18, Ps19, Ps20, and Ps22) was tested on different samples of apricot, pear, and peach fruit juice. 
The same array was challenged with thermally sterilized carrots [82]. Sterilized samples were stored 
at three different temperatures: 25 °C, 4 °C and −18 °C. The signals were very stable and reproducible 
(inter-day RSD ≤ 15). The data outputs, elaborated by PCA, demonstrated that the array can monitor 
the evolution of the VOCs in carrots.  

A further application reported on food has been the evaluation of the volatile profile of pasta 
samples [83]. The final quality of pasta is strongly dependent on the quality of semolina and the 
drying step. The thermal damage of pasta is generally assessed by measuring, using HPLC, the extent 
of Maillard reaction and, in particular, by the amount of furosine, an Amadori compound formed 
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during the early stage of the Maillard reaction. Twenty-seven samples of commercial pasta of 
different prices and different brands were analysed. GC-MS analysis of the headspace was evaluated 
by PCA. The score plot clearly distinguished between the low-price pasta (below 1 €/Kg) and high-
price pasta samples. This separation can be associated with some aldehydes, alcohols, lactamide, and 
only one furanic compound (2-pentylfuran). Some compounds, markers of oxidative processes of 
lipids (indicating the low quality of the starting product) were detected only in low price pasta 
samples. The peptide-based e-nose was able to discriminate clearly among high and low/price pasta, 
indicating a possible use for the control of the quality of the semolina used.  

A new technology developed by Aribal Technologies and CEA-LETI Laboratory from Grenoble 
has been recently used to create an optoelectronic nose coupled to a miniaturized silicon pre-
concentration unit; this was applied to the discrimination of volatile organic compounds emitted by 
flavored waters [84]. The pre-concentration unit coupled to the SPRi based e-nose was filled with 
around 7 mg of Tenax-TA adsorbent (mesh 80–100) and a thermo-resistive Ti/Pt film heater allowing 
the quick heating to 200 °C for the thermal desorption of the trapped VOCs. Nonane was used as a 
VOC model to characterize the signal amplification capacity of the pre-concentration unit. The 
headspace of flavored waters: grapefruit, lemonade, lemon, white peach, organic strawberry, 
strawberry, organic apple, mango and passion fruit were then tested. Before the thermo-desorption 
measurement, samples are disconnected, and the unit purged with ambient air. Total desorbed VOCs 
concentration of headspaces was measured with a photoionization detector. Only grapefruit (111 
ppm) and organic apple (67 ppm) had enhanced different levels of VOCs, the other samples gave 
equivalent signals (10–17 ppm). PCA confirmed the results, grapefruit and organic apple samples 
were separated from the others.  

An overview of the different peptide-based gas sensors’ main features and applications are 
reported in Table 1. 

Table 1. Gas sensors equipped with peptides sequences: main features and strategies. 

Peptides Analyte Transducer Immobilization 
Technique 

VOCs Concentration 
Measured 

Application Ref 

Ps1 Acetic acid QCM 
Self-assembly 

monolayer 10 ppm - [58] 

Ps3, Ps4, 
Ps5, Ps6 

Octanal, acetaldehyde, 
benzaldehyde, ethanol, 

acetone, dimethyl 
sulphide, trimethyl 
amine, and toluene 

QCM 
Self-assembly 

monolayer 

Octanal 1435 ppm; 
benzaldehyde 2198 

ppm; trimethyl 
amine 1594 ppm; 

acetaldehyde 4007 
ppm; acetone 3028 

ppm 

- [59] 

Ps2 

Aliphatic aldehydes, 
formaldehyde, 

acetaldehyde, propanal, 
pentanal, 

hexanal, heptaldehyde, 
octanal, 
nonanal, 
decanal, 

undecanal. 
dialdehyde-glyoxal; 
aromatic aldehydes-

benzaldehyde, 
p-tolualdehyde, 
panisaldehyde, 

helional. 

QCM 
Self-assembly 

monolayer 
>100 ppm - [60] 

Ps7, Ps8, 
Ps9, Ps10 

Acetic acid, butyric acid, 
ammonia, 

dimethylamine, benzene, 
chlorobenzene, and their 

mixtures 

QCM Spin coating - - [61] 

Ps11, Ps12, 
Ps13, Ps14, 
Ps15, Ps16 

cis-3-Hexenol, isopentyl 
acetate, ethyl acetate, 

terpinen-4-ol 
QCM 

Self-assembly 
monolayer 

- - [62] 

- 
Alcohols, esters, 

carboxylic acids, ketones, SPRi 
Micro spotting 

robot 

2-methylpyrazine 
290 ppm; phenol 34 

ppm; isoamyl 
- [54] 
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hydrocarbons, aldehydes, 
and amines 

butyrate 70 ppm; 1-
pentanoic acid 51 

ppm; 1-pentanol 47 
ppm; and 1-octanol 8 

ppm 

- 
(R) and (S) limonene; 
(R) and (S) carvone SPRi 

Micro spotting 
robot -  [65] 

Ps17 Hexanol and pentanol QCM 
Self-assembly 

monolayer 
Hexanol 2–3 ppm; 
pentanol 3–5 ppm  - [67] 

- 

IPA,  
acetone,  
isoprene,  
toluene 

SWCTs-FET - 10 ppm Breath tests [68] 

Ps18, Ps19, 
Ps20, Ps21, 
Ps22, Ps23 

2-Propanol, ethanol, 
hex-3-en-1-ol, terpinen-4-

ol, nonanal, octanal, 
ethyl acetate, ethyl 

butanoate, ethyl 
octanoate, isopentyl 

acetate, hexane, 
acetone, butane-2,3-dione 

QCM Drop casting - - 
[69,7
0,72] 

Ps24, Ps25, 
Ps26 

Benzene, toluene, and 
xylene 

Cantilever 
array 

Self-assembly 
monolayer 

Benzene 0.012 ppm 
toluene 2 ppm 
xylene 28 ppm 

- [73] 

- 

Dimethylamine, 
trimethylamine, 

monomethylamine, 
and ammonia 

QCM Dip-coated - Breath tests [75] 

- - QCM  - 

Bacterial 
infection: 

Pseudomonas 
aeruginosa, 

Acinetobacter 
baumannii, 
Klebsiella 

pneumoniae, 
Staphylococcus 

aureus, and 
Acinetobacter 

lwoffii 

[76] 

Ps11, Ps12, 
Ps13, Ps14, 
Ps15, Ps16 

cis-3-Hexenol, isopentyl 
acetate, ethyl acetate, 

terpinen-4-ol- 
QCM 

Self-assembly 
monolayer - Olive oil 

[62] 

[72] 

Ps15, Ps12, 
Ps27, Ps28, 
Ps29, Ps30, 

Ps27 

3-Methylbutanal, 
phenylacetaldehyde, 

acetic acid tetramethyl-
pyrazine, 2-acetyl-
pyrrole, 2-nonenal 
and 2,4-decadienal 

QCM 
Self-assembly 

monolayer 
- 

Dark, milk, 
and white 
chocolate 

[79] 

Ps15, Ps12, 
Ps27, Ps28, 
Ps29, Ps30, 

Ps27 

- QCM Self-assembly 
monolayer 

- Gummy 
candies [79] 

Ps18, Ps19, 
Ps20, Ps21, 
Ps22, Ps23 

- QCM Drop casting - Saffron [81] 

Ps18, Ps19, 
Ps20, and 

Ps22 
- QCM Drop casting - Fruit juice [70] 

Ps18, Ps19, 
Ps20, Ps21, 
Ps22, Ps23 

- QCM Drop casting - Carrots [82] 

Ps18, Ps19, 
Ps20, Ps21, 
Ps22, Ps23 

- QCM Drop casting - Pasta [83] 

- Nonane SPRi 
Micro spotting 

robot 
10–111 ppm 

Flavored 
waters [84] 

3.2. MIPs 

Molecularly imprinted polymers (MIPs) are cross-linked synthetic materials with artificially 
generated recognition sites able to selectively bind a target molecule [85]. Molecular imprinting 
involves the preparation of a “mold”, that is achieved using monomers that are polymerized around 
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the target compound. After polymerization, the target molecule is removed by extensive and specific 
washing steps to leave recognition sites that are supposed to be complementary to the model 
molecule in terms of size, shape, and position of the functional groups. The synthesis of MIPs is 
relatively cheap and simple: basically, it requires the target molecule, one or more functional 
monomers, a cross-linker, an initiator, a porogenic solvent, and a solvent for mold extraction after 
complex polymerization. Different strategies for the realization of the MIPs can be carried out 
depending on the nature of the target molecules and the envisaged use of the MIPs within the assay 
format (i.e., for solid-phase extraction or sensor surface modification). These approaches and the use 
and classification of MIPs (often reported as ‘plastic antibodies’) have been extensively studied and 
reviewed in the literature [86-88]. Figure 3 shows a graphical schematization of the MIPs assembling. 

 
Figure 3. Graphical scheme of MIPs assembling. 

Feng et al. [89] in 2005 reported the first use of a MIP in GS for the detection of the toxic gaseous 
formaldehyde. The MIP was prepared using methacrylic acid (MAA) as functional monomer, 
ethylene glycol dimethacrylate (EGDMA) as crosslinker, and 2,2-azobis (2,4-dimethyl) valeronitrile 
as initiator. The mixture was polymerized under UV light onto one side of 9 MHz QCMs. As usual 
for MIPs, nonimprinted polymers (NIPs) were also synthesized as control. Saturation of the response 
was achieved at ~2 ppm. The selectivity of the MIP for formaldehyde was confirmed using other 
similar VOCs (benzaldehyde, acetone, acetic ether, and ether) and comparing the response with the 
NIP GSs. Another work for the detection of formaldehyde has been reported more recently. Hussain 
et al. [90] realised a different MIP QCMs introducing styrene into the MAA polymer to reduce the 
polarity. The polymerization occurred by UV irradiation after the spin-coating of the oligomer 
solution onto 10 MHz QCMs. The frequency shift was selectively dependent on formaldehyde 
concentration in the 1–100 ppm range.  

Matsuguchi et al. [91], interestingly, prepared MIPs based on methyl methacrylate (MMA) in the 
presence of toluene and p-xylene as porogens and evaluated the molecular imprinting ability vs the 
solvents. Divinylbenzene (DVB) was the cross-linking agent and benzoyl peroxide the radical 
initiator. The MIPs were deposited by spin-coating onto 4 MHz QCMs before polymerization. The 
sensor response was measured at 540 ppm for toluene and 170 ppm for p-xylene vapours. The change 
in the frequency of the crystal caused by the VOC vapor sorption was in accordance with the 
Sauerbrey equation. Using this approach selectivity of the MIPs-QCM sensors for the porogen solvent 
used to synthesize the polymer was achieved. 

Terpenes are an important class of plant constituents deriving from different combinations of 
C5 isoprene subunits. They are known to possess various medicinal and pharmacological properties 
[92]. Larger terpenes exist as waxes and resins, as well as oxygenated terpenoids [93]. 

Kikuchi et al. [94] developed MIP-QCMs for the detection of terpenes. Poly-MAA MIPs (and 
NIPs) for α-pinene, limonene, and limonene-oxide were developed by drop-casting the oligomeric 
solution onto 10 MHz QCMs; 2,2-azobisisobutyronitrile (AIBN) was used as an initiator in this case. 
To remove the templates, the QCMs were washed in methanol (15 wt%) and acetic acid (0.5 wt%). 
The sensors exposed to limonene, limonene oxide, and a-pinene at 10 ppm of concentration exhibited 
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larger shifts in frequency for the target gas. The MIP-QCM response for limonene oxide was higher 
than the other 2 terpenes-based MIP-QCMs, this was attributed to oxygen-related interaction among 
polymer and template.  

The detection of terpenes was also reported by Iqbal et al. [95], using a similar approach. A six 
channels array of 10 MHz QCMs was coated with MIPs prepared using terpenes typical of fresh and 
dried species of the Lamiaceae family, as rosemary, basil, and sage. MIPs were synthesized using 
styrene as functional monomer, DVB as cross-linker, AIBN as radical initiator, and diphenylmethane 
as porogen. α-pinene, limonene, eucalyptol, β-pinene, terpinene, and estragole were used as 
templates. The selectivity tested at 50 ppm concentration for each terpene demonstrated that each 
sensor was selective for the template used and that the array was able to discriminate all the 
molecules including isomeric compounds as α-pinene and β-pinene.  

PolyMAA MIPs-QCMs for terpenes (α-pinene, γ-terpinene and limonene) were also used by 
Hawari et al. [96] considering the aromatic volatile compounds emitted by Harumanis mango (a 
popular green eating mango variety which has been planted commercially in the State of Perlis, 
Malaysia). The highest response (in Hz) was obtained for α-pinene followed by γ-terpinene and 
limonene. The limonene MIP-QCM sensor was not selective in their array. Still on terpenes originated 
by mango Ghatak et al., [97] developed similar MIP-QCM for a marker of Mangifera indica L variety. 
The GS detected 3-carene in the 5 ppm to 1000 ppm range, with a selectivity factor of 91%. 

Wang et al. [78] realised a terpenes MIPs-based QCM gas sensor array potentially useful for 
discrimination of P. orientalis trunks infested by the two insects Symmorphus bifasciatus and 
Phloeosinus aubei. GC-MS analysis of infected plants was used to identify four markers VOCs (α-
pinene, β-phellandrene, 3-carene and cis-thujopsene) as molecular templates. The MIPs and NIPs 
were PMAA based. The NIPs coated QCM gold electrode had slight responses towards α-pinene, β-
phellandrene, 3-carene, cis-thujopsene, D-limonene, p-cymene, γ-terpinene and hexanal, and no 
selectivity to these analytes compared with other MIPs-based QCM gas sensors. The four MIPs-
QCMs were selective for the template and able to work in a 1–80 ppm range, demonstrating stability 
for at least one month. 

Jha et al. [98] prepared three polyacrylic acid (PAA)-based MIP films using three VOCs 
(propenoic acid, hexanoic acid and octanoic acid) as templates on QCMs. The polymeric films were 
coated onto the surface of QCM by spin coating. The authors tested the array with different amounts 
of the single compounds and with binary mixtures of the organic acids. The average response (Hz) 
of the sensors to propenoic acid vapours was higher than the other two VOCs. For the binary 
mixtures, the highest average response was for propenoic acid + octanoic acid combination. The same 
research group [99] attempted a similar strategy for the identification of hexanal, heptanal, and 
nonanal in single, binary, and tertiary mixtures independently, and simultaneously in presence of 
humidity as the main interferent. The average sensor response (Hz) was maximum for the sensor 
with the heptanal MIP. The sensors’ performance was evaluated based on sensitivity, response time, 
and their ability to discriminate between different aldehydes using the pattern recognition methods: 
PCA and support vector machine (SVM). PCA results showed fair discrimination of binary, and 
tertiary mixtures further validated using the SVM classifier analysis of PC score matrices. 

3.2.1 Applications in Real Samples 

Ghatak et al. [100], following the work of Jha and Hayashi [99], developed a GS for furaneol, one 
of the flavor-enhancing aromas of mango, considering that furaneol flavor in mango vanishes during 
treatment of the fruit with calcium carbide (CaC2) for artificial ripening. Two groups of three different 
mango varieties (Amrapaly, Himsagar, and Langda) were studied; naturally ripened and CaC2 
treated mango. When the headspace of the samples was analysed, the sensors had different frequency 
shifts for naturally ripened fruits; the signal was not significant for the samples treated with carbide. 
This was attributed to the lack of furaneol. 

A very interesting approach for the discrimination of different essential oils from ginger 
(Zingimber officinale Roscoe) was realised by Hardoyono et al. [101]. PAA-MIPs on 9 MHz QCMs were 
prepared (by drop-casting) using as template borneol, citral, and geraniol aromas contained in 
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essential oils from different varieties of ginger (i.e., Zingiber officinale var. amarum, SWG; Zingiber 
officinale var. officinale, BWG; Zingiber officinale var. rubrum, RG). Samples were firstly analysed using 
solid-phase micro-extraction (SPME)/GC-MS. Different amounts of the bioactive compounds were 
present. The data, analysed using principal component analysis (PCA) and linear discriminant 
analysis (LDA) indicated different groups of samples (SWG, BWG, and RG) distinguished from 
negative controls. Identification of borneol, citral, and geraniol using a MIPs-QCMs sensor array can, 
thus, represent a useful tool to identify the major components in essential oils and herbal samples. 

An overview of the different MIP-based gas sensors’ main features and applications is reported 
in Table 2. 

Table 2. Gas sensors equipped with Molecular Imprinted Polymers: main features and strategies. 

Molecular 
Imprinted 
Polymers 

Analyte Transducer Immobilization 
Technique 

VOCs 
Concentration 

Measured 
Application Ref 

MAA-MIP Formaldehyde QCM Micro-syringe ≤ 2 ppm - [89] 

MAA-MIP Formaldehyde QCM Spin-coating 1–100 ppm - [90] 

PMMA-MIP 
Toluene, 
p-xylene 

QCM Spin-coating 
Toluene 540 ppm; 

p-xylene 
170 ppm 

- [91] 

MAA-MIP 
α-Pinene, limonene, 

limonene oxide 
QCM SAM 10 ppm - [94] 

PDMS-MIP 
α-Pinene, limonene, 
eucalyptol, β-pinene, 
terpinene, estragole 

QCM Spin-coating 50 ppm Fresh herb [95] 

MAA-MIP 
α-Pinene, 
γ-terpinene, 

limonene 
QCM Spin-coating - Harumanis mango [96] 

MAA-MIP 
3-Carene, 
Furaneol QCM Drop-casting 5–1000 ppm 

Mangifera indica  var. 
: Langda, 

Amrapaly, 
Himsagar 

[97,100] 

MAA-MIP 

α-Pinene, 
β-phellandrene, 

3-carene, 
cis-thujopsene 

QCM Drop-casting 25 ppm 
Symmorphus 

bifasciatus and 
Phloeosinus  aubei 

[78] 

PAA-MIP 
Propenoic acid, 

hexanoic acid, octanoic 
acid 

QCM Spin-coating - - [98] 

PAA-MIP 

Propenoic acid, 
hexanoic acid, octanoic 

acid 
hexanal, 
heptanal, 
nonanal 

QCM Spin-coating - - [99] 

PAA-MIP 

Borneol, 
neral, 

geraniol, 
citral 

QCM Drop-casting - 

Zingiber officinale var. 
amarum; Zingiber 

officinale var. 
officinale, 

Zingiber officinale var. 
rubrum 

[101] 

3.3. DNA 

Nucleotidic acid sequences have been extensively used in sensors design, fabrication and 
application, in the past decade, providing new impulses to analytical research [102]. DNA sequences 
and structures, rationally designed, enable high-affinity interactions with a wide range of ligands, 
including vapor-phase odorants [103]. Chao et al. [104] briefly reviewed the history of DNA 
nanotechnology, summarizing the recent progress in DNA nanotechnology-based biosensors 
including the mechanisms and discussing the prospective development of DNA nanotechnology for 
the design and fabrication of advanced biosensors. The large majority of DNA-based sensors are 
designed to work in liquids [105]. The use of oligonucleotide sequences in gas sensing is still limited. 
However, as in the case of peptides, DNA in single-stranded structures can give rise to many 
combinations, offering modulable interaction. Folding of single-stranded structures, as for aptamers, 
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and interaction with other nucleic acids chain (i.e., double-stranded, triple-stranded structures), 
allows targeting the desired interactions. Figure 4 shows examples of hairpin DNA structures. 

 

Figure 4. Sketch of Hairpin DNA structures with different loop dimensions. 

One of the first papers in which DNA was used in gas sensing involved the fabrication of silver 
nanowires with a DNA template. In this work, Zhao et al. [103] used chemical reduction to fabricate 
Ag nanowires with DNA as a template (the DNA sequence was not reported). DNA was placed in a 
solution with AgNO3; the Ag+ coordinates with the negatively charged phosphate groups of DNA. 
The reduction bath induces the formation of metallic Ag nano-clusters on DNA molecules. The DNA-
templated silver nanowires were deposited onto a gold interdigitated electrode to realise the sensors. 
Ammonia, hydrogen, ethanol, methanol, and acetone were tested and only ammonia gave a response. 
The electronic properties of the sensing materials are changed with the adsorption of gas molecules 
and change in conductance. No explanation about selectivity is reported.  

Shi et al. [106] proposed, for the first time, DNA for the development of organic field-effect 
transistor (OFET) for the detection of NO2. Genomic DNA from fish sperm was spray-coated to 
deposit DNA interlayer on the sensors. FETs without DNA were used as reference. NO2 ranging from 
10 to 50 ppm was tested. The rapid increase in the response for the DNA OFET suggested that the 
sensing performance was higher compared to the reference FET. No other volatile compound was 
tested.  

Carbon nanotubes decorated with DNA have been also used as sensing element for the detection 
of volatile organic compounds. Khamis et al. [107] realised carbon nanotubes-based FETs decorated 
with DNA with favorable properties for gas sensing as rapid response, full recovery of the baseline 
(seconds), sensitivity towards many common odorants at low concentration (from ppb to ppm level). 
Single-walled carbon nanotubes (SWCNTs) grown by catalytic chemical vapor deposition on a 
SiO2/Si substrate were used. The FETs were constituted by Cr/Au source and drain electrodes 
patterned using optical lithography. A doped silicon substrate was used as a back gate. The 
oligonucleotides sequences were selected based on a precedent paper [108]. The 16 DNA sequences 
tested (Seq1, Seq2, Seq3, Seq4, and Seq5 having 21 bases; Seq6, Seq7, Seq8, Seq9. Seq10, Seq11, and 
Seq12 having 24 bases; Seq13, Seq14, Seq15, and Seq16 having 21 bases; see the abbreviation list at 
the end of the manuscript) were adsorbed onto the sensors by drop-casting. The mechanism 
underlying changes in SWCNTs conduction is supposed to be mainly because of electrostatic 
coupling among single-stranded DNA and the volatiles. Binding the odorant molecules indicates 
alteration of the conductance of the SWCNTs. DNA-SWCNTs resulted able to discriminate closely 
related analytes, for example among the homologous carboxylic acids: propanoic acid, hexanoic acid, 
and octanoic acid. Octanal, nonanal, and decanal were also discriminated and the response was 
correlated to the solubility of each compound in water. DNA-SWCNTs based on Seq1 was also able 
to differentiate between limonene and carvone enantiomers. 

Kybert et al., [109] developed an array of vapor sensors consisting of CNT field-effect transistors 
functionalized with single-stranded DNA (DNA-SWCNTs). For the fabrication of this device, the 
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electrical contacts for FETs with channels 10 μm long and 25 μm wide were patterned by 
photolithography and metalized with Cr/Au via thermal evaporation. Semiconducting SWCNTs 
were deposited by drop-casting onto the surface of the chip and the DNA in water was added. Four 
different DNA oligomers were used in this work: Seq17 with 21 bases, Seq18, Seq19, and Seq20 with 
24 bases (see list of abbreviations). No indication about the selection of the sequences is given in the 
paper. The sensors reacted to dimethyl sulfone and isovaleric acid at concentrations ranging from 
0.05 to 4 ppm. The responses were rapid and reversible. The DNA-SWCNTs sensors were also able 
to differentiate analytes with very similar molecular structure: limonene and three isomers of pinene, 
that has two structural isomers, each of which has a pair of enantiomers. The response of DNA-
SWCNTs based on Seq17 to the enantiomers of limonene demonstrated clear discrimination between 
these highly similar molecules, also the isomers of pinene (at 130 ppm) were clearly distinguished by 
DNA-SWCNTs. 

The possibility of using oligonucleotides with a particular hairpin conformation (for VOC-
detection) has recently been demonstrated. Hairpin DNA (hpDNA) is composed of a stem (used to 
orientate the immobilization onto the sensor) and a loop, that can interact with the VOCs. The loop 
size and nucleotidic sequence allow modulation of the interaction.  

In this respect, Mascini et al. [110] developed a gas sensor array with different hpDNAs 
conjugated with AuNPs onto 20 MHz QCMs modified via drop-casting. The purified 
oligonucleotides also had a thiol spacer having six carbons (C6) attached to 5′ phosphate end of the 
hpDNA for the binding with AuNPs. The hpDNAs loop binding ability was calculated in silico. Eight 
different VOCs (ethanol, 3-methylbutan-1-ol, 1-pentanol, octanal, nonanal, ethyl acetate, ethyl 
octanoate, and butane-2,3-dione) were tested using seven different sequences selected for their 
different binding scores. Sequences with the loop of different sized were employed (tetramer loop, 
pentamer loop, and hexamer loop): HpDNA3, HpDNA4, HpDNA6, HpDNA7, HpDNA8, HpDNA9, 
HpDNA10 (see the abbreviations list at the end of the manuscript). The piezoelectric sensorgram 
obtained was similar for all hpDNA-AuNP and VOCs, showing a rapid decrease of the signal when 
the target analyte was sent into the e-nose chamber; followed by a slower raise up to the steady-state. 
The calculations of the binding constants for the eight VOCs resulted in a very similar binding affinity 
for the tetrameric loops. The tetramer HpDNA10 exhibited a slightly better affinity for aldehydes 
leading to a significant correlation with simulated results. 1-pentanol and 3-methylbutan-1-ol 
resulted to be bound by the pentamer HpDNA6. The other DNA pentamer loop, HpDNA4, had the 
lowest binding affinity for all molecules. Hexameric loops HpDNA8 and HpDNA7 showed a 
significant interaction with ligands, which was approximately two-fold higher than the smaller DNA 
loop. These results were in good agreement with the prediction by virtual screening. 

Gaggiotti et al. [111] reported also the realization of an optoelectronic nose, where the GSs array 
was composed of the above-mentioned hairpin DNA sequences in combination with peptides 
selected by the virtual screening [69]. The authors evaluated the performance of the SPRi 
optoelectronic nose for the analysis of different VOCs: 1-butanol, 1-pentanol, 1-hexanal, 1-nonanal, 
trans-2-nonenal, and 1-hexanoic acid. Six sequences of peptides (Ps18, Ps19, Ps20, Ps21, Ps22, Ps231), 
three sequences of hpDNA with unpaired tetramer loops (HpDNA1, HpDNA2, HpDNA3), three 
pentamers (HpDNA4, HpDNA5, HpDNA6), and three hexamers (HpDNA7, HpDNA8, HpDNA9) 
loops were spotted onto the prisms. The dataset obtained in real-time was normalized and elaborate 
with PCA and Hierarchical Clustering (AHC) analysis. Different reactivity pattern was noticed for 
peptides and hpDNAs with peptides having larger discriminating ability than DNA. The AHC 
analysis allowed to discriminate very similar molecules (VOCs of the same family with only 1-carbon 
difference) demonstrating that peptides and hpDNA contributes synergistically to the property of 
the array. The experiments with all VOCs tested were conducted over two weeks repeatability was 
good (inter-day CVs 10–15%). 

3.3.1 Applications in Real Samples 

To the best of our knowledge, only two applications on real samples have been reported for 
DNA-based GSs in carrot and hemp samples. The same sensor array developed in [110] was used by 
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Gaggiotti et al.[112] to monitor volatiles profile change in carrots. A single batch of fresh carrots was 
blanched to inactivate enzymes and stored at different temperatures for 26 days. The headspace of 
the samples was analysed by SPME/GC-MS and the GSs array in parallel. The most represented 
volatile compounds α-pinene and γ-terpinolene were detected in all samples stored at the different 
temperatures, except for samples stored at 40 °C. Butane-2,3-diol, acetoin and lactamide, were the 
volatiles present in storage at 25 °C from the 8th day and during storage at 40 °C. Fermentation during 
the storage was supposed because of the presence of acetoin and butane-2,3-diol. The data of the 
hpDNA array analysed using PCA, were very similar to SPME/GC-MS. This study demonstrated, for 
the first time, the ability of a hpDNA based gas sensor array to evaluate volatile organic compounds 
headspace in solid food matrices. 

A second application was related to the comparison of the performance of hpDNA and peptide 
QCMs arrays for the detection of terpenes of hemp samples [113]. In this case, the sensor array was 
composed of Ps18, Ps19, Ps20, Ps21, Ps22, Ps23, and HpDNA1, HpDNA6, HpDNA4, HpDNA8, 
HpDNA. The terpenes volatile fraction in different hemp samples purchased from three Italian 
regions was initially determined using SPME/GC-MS to classify the samples. Samples were classified 
into two groups. Among the different VOCs identified there were monoterpenes (19 in total). Nine 
sesquiterpenes included one alcohol, one epoxide, and three aromatics. A Pearson coefficients 
analysis gave a higher correlation for hpDNA than the peptides toward the VOCs significant to 
classify the samples. HpDNA6 and HpDNA4 were anticorrelated with β-caryophyllene, L-borneol, 
and α-terpineol. A positive correlation was observed for HpDNA8 and p-mentha-8-thiol-3-one and 
HpDNA7 with both L-borneol and α-terpineol. These two alcohols correlated also with the peptide 
Ps19 that was the only peptide showing a significant correlation with the VOCs significant to classify 
the hemp samples.  

Using PCA a similar recognition performance was observed for all the peptides. On the other 
hand, hpDNA loops played an important role in the separation of the hemp samples. These data 
demonstrate the different interaction ability of hpDNA and peptides for terpenes. The authors 
concluded that a mixed set of binding elements can provide a synergistic response in the detection of 
VOCs. Table 3 provides an overview of the different DNA-based gas sensors’ main features and 
applications. 

Table 3. Gas sensors equipped with DNA sequences: main features and strategies. 

DNA Analyte/Samples Transducer 
Immobilization 

Technique Concentration of VOCs Application Ref 

Ag nanowires 
DNA-template 

Ammonia 
Gold 

interdigitate 
electrode 

- 200 ppm - [103] 

DNA-fish NO2 FET  10–50 ppm  [106] 

DNA-SWCNTs 
Propanoic acid, 
hexanoic acid, 
octanoic acid 

FET - 

Propanoic acid 1100 
ppm: hexanoic acid 

1100 ppm: 
octanoic acid 790 ppm; 

limonene 0.3–1500 ppm: 
0.05-carvone 250 ppm  

- [107] 

DNA-SWCNT 

Dimethyl-sulfone, 
isovaleric acid 
α-pinene 
β-pinene 

FET - 

Dimethyl-sulfone and 
isovaleric acid0.05–0.4 

ppm; 
pinene 130 ppm 

- [109] 

HpDNA3, 
HpDNA4, 
HpDNA6, 
HpDNA7, 
HpDNA8, 
HpDNA9, 
HpDNA10 

Ethanol, 
3-methylbutan-1-ol, 

1-pentanol, 
octanal, 
nonanal, 

ethyl acetate, 
ethyl octanoate, 
butane-2,3-dione 

QCM Drop casting - - [110] 

HpDNA1, 
HpDNA2, 
HpDNA3, 
HpDNA4, 

1-Butanol, 
1-pentanol, 
1-hexanal, 
1-nonanal, 

trans-2-nonenal 

SPRi 
Micro spotting 

robot 

1-butanol 55 ppm; 1-
pentanol 31 ppm; 1-
hexanal 90 ppm; 1-

nonanal 4 ppm; trans-2-
nonenal 7 ppm 

- [111] 
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HpDNA5, 
HpDNA6, 
HpDNA7, 
HpDNA8, 
HpDNA9 

and 1-hexanoic acid 

HpDNA1, 
HpDNA2, 
HpDNA3, 
HpDNA4, 
HpDNA5, 
HpDNA6, 
HpDNA7, 
HpDNA8, 
HpDNA9 

Terpenes, 
alcohol, 

aldehydes, 
ketones 

QCM Drop casting - Fresh carrots [112] 

HpDNA1, 
HpDNA6, 
HpDNA4, 
HpDNA8, 
HpDNA7 

Terpenes QCM Drop casting - 
Cannabis 
sativa L. [113] 

4. Conclusions 

This review aimed to provide a state of the art in the development of GSs based on peptides, 
DNA and MIPs, paying particular attention to their applications. Looking at the reported papers we 
can say that remarkable activities have been reported for all the three selected sensing elements. 

The use of peptides as gas sensing elements is in a more advanced status since they represent 
the “natural” extension of the use of olfactory receptors. Moreover, they have greater variability of 
the response towards different VOCs since larger different potential combinations of amino acids in 
the final sequence. In this respect, many efforts have been devoted to searching for affinity for a 
particular volatile or a class of volatiles taking advantage of the possibility to predict the interactions 
“in silico”. The studies generally confirmed affinity (and selectivity) for the targets. Particularly 
significant appears the use of array of peptides having different binding ability to discriminate very 
similar molecules (i.e. among series of organic acids or enantiomers of terpenes). These very relevant 
data can be achieved using either a computationally designed library or a whole set of peptides 
having different behaviors. It should be also noticed that oligopeptides are very flexible and have 
been used in conjunction with all the transducers reported, thus, are useful for devices having 
different sensitivity. Most of the works take advantage of the formation of SAM onto the sensor 
surface by using a cysteinyl end residue, in some cases immobilization on nanomaterials is carried 
out to improve the number of binding sites and maximizing the binding element exposure to VOCs.  

The use of MIPs in GSs gave interesting data as well; in the majority of the papers, the MIP GSs 
were reported to have very high selectivity (i.e. for enantiomeric terpenes) as for MIPs used in 
solution either on sensors or in microextraction. All the developed sensors used QCMs as transducer 
realising the polymer directly onto the sensor surface. This is probably due to the major limitation 
that is represented by the polymerization step; in fact, it is hard to control the thickness of the film 
onto the sensor surface to have a working transducer and a number of binding sites able to measure 
the volatiles. In this respect, QCMs appear a straightforward approach since it measures directly the 
“mass” adsorbed onto the microbalance. Few attempts have been made to develop GSs arrays, none 
to use different polymers for the same volatile pattern, neither the rationalization of the binding in 
silico. 

The use of DNA in gas sensing is more recent and should be still explored in more detail. Few 
attempts have been done using the “natural” property of the double helix to give recognition because 
of the conformation of the double-strand. Both stabilization and transducing ability have been given 
in conjunction with metal or carbon nanomaterials. The use of particular sequences to develop arrays 
has given interesting results for different classes of VOCs. Despite the lower intrinsic variability of 
DNA sequence with respect to peptides, recent works demonstrated that a synergistic effect can be 
achieved using mixed peptide-DNA arrays. 

The stability of these gas sensors in the long-term was examined by few authors. The lifetime of 
these sensors depends on the sensitive element, the method of deposition on the surface of the sensor, 
and their use in terms of number of measures. Some authors such as Mascini et al. [70] tested the 
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stability of peptide-based sensors on different days of analysis, Wang et al. [78] tested the stability of 
the sensors, based on MIPs, exposing them every 5 days to known concentrations of target gas up to 
a maximum of 30 days obtaining the same response, Gaggiotti et al. [112] tested the reproducibility 
of the hpDNA-based sensor array using octanal as the target gas over three months. By these few 
examples we can affirm that gas sensors based on peptides, MIPs and DNA appear stable enough to 
be used for robust detection in the long-term. However, more studies are necessary to assess the 
effective long-term stability for measurements on real samples in continuous use.  

The target gases analysed by the sensors are VOCs (apart from ammonia and nitrogen dioxide) 
that are potentially useful in many applications: health, food, environment, process control in 
industry, traceability etc. However, the application on real samples are still limited, very few on 
breath-test and mostly on food. This represents a crucial point for the validation of the GSs realized 
and for the possibility to introduce devices based on this kind of sensors in the market. It should be 
pointed out that applying the GSs to real cases is very challenging; in fact, sampling should be 
designed, a parallel analysis for the identification and quantification of the analytes is necessary 
(often by GC-MS), and a very high number of samples is mandatory to build and validate the model 
for multivariate data analysis.  

Looking in a perspective way to this field of research, it is possible to see potential improvement 
in the performance of this GSs, the recent introduction of a portable SPRi, may give further input to 
the potential application of both peptide-based and DNA-based GS arrays since the same chemistry 
can be used to realize the arrays. The use of the virtual libraries already developed or the calculated 
affinity different classes of VOCs may help in the realizations of arrays used for specific applications 
(i.e. the volatile pattern of breath is different from foods) improving the performance of the analysis 
and reducing the complexity of the statistical treatment of the data. The mixed approach (different 
types of binding elements) can further help in this respect.  

The use of MIPs appears more complex and should be better investigated, particularly for the 
realization of arrays and for their possible use in conjunction with transducers others than QCMs. 
However, considering their large use in liquid phase and the recently developed methods to obtain 
nanodispersions or for the synthesis of thin-films, there is room, in our opinion, for their use in GSs 
and GS arrays since they can provide selectivity and robustness. 

This review demonstrates that peptides, MIPs and DNA can be successfully used in GSs and GS 
arrays and have great potential to be binding elements of election for the development of GSs and 
GS-arrays for future applications. More studies directed to improve the performance of the array are 
needed particularly in real cases. In conclusion, we can affirm that these sensors can play a crucial 
role in the analysis of real samples in different fields such as medicine, food quality, or environmental 
analysis. Moreover, their use in combination with emerging technologies as microengineering, 
nanotechnologies, and advanced rational design will certainly bring resolving further challenging 
analytical and real-life issues in the near future. 
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Abbreviations 

List 
AIBN 2,2-Azobisisobutyronitrile 
AL Active learning 
ANN Artificial neural network 
AuNPs Gold nanoparticles 
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BWG Zingiber officinale var. officinale 
CA Clustering analysis 
Cp1 Monobenzo-15-crown-5 (B15C5) 
Cp2 Poly [n-butyl methacrylate] (PBMA) 
DA Discrimination analysis 
DVB Divinylbenzene 
E-nose Electronic nose 
EGDMA Ethylene glycol dimethacrylate 
FETs Field effect transistor 
GC-MS Gas chromatography-mass spectrometry 
GSs Gas sensors 
GS-Ar Gas sensors array 
HCPC Hierarchical Clustering on Principal Components 
HpDNA1 CGGG 
HpDNA2 GTTG 
HpDNA3 CCAG 
HpDNA4 TAAGT 
HpDNA5 AAGTA 
HpDNA6 CCCGA 
HpDNA7 CATGTC 
HpDNA8 ATAATC 
HpDNA9 CTGCAA 
HpDNA10 TTCT 
MAA Methacrylic acid 
MIP Molecular imprinted polymer 
MOS Metal oxide semiconductor 
NIP Non-imprinted polymer 
NT Nanotubes 
OBP Odorant binding protein 
OFET Organic field-effect transistor 
OR Olfactory receptors 
PAA Polyacrylic acid 
PCA Principal component analysis 
PDMS Polydimethylsiloxane 
Ps Peptide sequences 
Ps1 RVNEWVIC 
Ps2 KLLFDSLTDLKKKMSEC 
Ps3 LEKKKKDC-NH2 
Ps4 LFDSLTDLKC-NH2 
Ps5 LFDSLTDLKKKMSEC-NH2 
Ps6 KLLFDSLTDLKKKMSEC-NH2 
Ps7 LHYTTIC 
Ps8 TIMSPKLC 
Ps9 DLESC 
Ps10 EPLPGCG 
Ps11 C 
Ps12 Glutathione 
Ps13 g-C  
Ps14 CG 
Ps15 TGA 
Ps16 CGHGGPS 
Ps17 VFSILSPLPLIIPFVC 
Ps18 IHRIC 
Ps19 KSDSC 
Ps20 LAWHC 
Ps21 LGFDC 
Ps22 TGKFC 
Ps23 WHVSC 
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Ps24 DSWAADIP 
Ps25 DNPIQAVP 
Ps26 DRNESSVP 
Ps27 CIHAP 
Ps28 CIGPV 
Ps29 CG 
Ps30 CAGVP 
P-MIP α-Pinene-MIP 
RG Zingiber officinale var. rubrum 
L-MIP Limonene-MIP 
LO-MIP Limonene Oxide-MIP 
QCM Quartz crystal microbalance 
Seq1 5’ GAG TCT GTG GAG GAG GTA GTC 3’ 
Seq2 5’ AAA ACC GGG GGG GGG GTT TTT 3’ 
Seq3 5’ GAG UCU GUG GAG GAG GUA GUC 3’ 
Seq4 5’ CGA GGG AGT TGT ACT TGG AGG 3’ 
Seq5 5’ TGA TGT GGG TGC CGA AGG TGA 3’ 
Seq6 5’ CTT CTG TCT TGA TGT TTG TCA AAC 3’ 
Seq7 5’ AAA ACC CCC GGG GTT TTT TTT TTT 3’ 
Seq8 5’-AT-CT-GT-TT-3’ 
Seq9 5’ CUU CUG UCU UGA UGU UUG UCA AAC 3’ 
Seq10 5’ TAC TGT CTC ATT CTG GAT ATT CTG 3’ 
Seq11 5’ GAA TAT GTA CTT GTC CCT GTT CTT 3’ 
Seq12 5’ GTG TGT GTG TGT GTG TGT GTG TGT 3’ 
Seq13 5’ AAA AAA AAA AAA AAA AAA AAA 3’ 
Seq14 5’ CCC CCC CCC CCC CCC CCC CCC 3’ 
Seq15 5’ GGG GGG GGG GGG GGG GGG GGG 3’ 
Seq16 5’ TTT TTT TTT TTT TTT TTT TTT 3’ 
Seq17 5’ GAG TCT GTG GAG GAG GTA GTC 3’ 
Seq18 5’ CTT CTG TCT TGA TGT TTG TCA AAC 3’ 
Seq19 5’ GCG CAT TGG GTA TCT CGC CCG GCT 3’ 
Seq20 5’ CCC GTT GGT ATG GGA GTT GAG TGC 3’ 
SPR Surface plasmon resonance 
SPRi Surface plasmon resonance imaging 
SWG Zingiber officinale var. amarum 
SWCTs Single-walled carbon nanotubes 
VOC Volatile organic compounds 
ZnONPs Oxide zinc nanoparticles 
Amino Acid 
A Alanine 
R Arginine 
N Asparagin 
D Aspartic acid 
C Cysteine 
Q Glutamine 
E Glutamic acid 
G Glycine 
H Histidine 
I Isoleucine 
L Leucine 
K Lysine 
M Methionine 
F Phenylalanine 
P Proline 
S Serine 
T Threonine 
W Tryptophan 
Y Tyrosine 
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V Valine 
DNA       Bases 
A Adenine 
C Cytosine 
G Guanine 
T Thymine 
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