1,614 research outputs found
Jamming Criticality Revealed by Removing Localized Buckling Excitations
Recent theoretical advances offer an exact, first-principle theory of jamming
criticality in infinite dimension as well as universal scaling relations
between critical exponents in all dimensions. For packings of frictionless
spheres near the jamming transition, these advances predict that nontrivial
power-law exponents characterize the critical distribution of (i) small
inter-particle gaps and (ii) weak contact forces, both of which are crucial for
mechanical stability. The scaling of the inter-particle gaps is known to be
constant in all spatial dimensions -- including the physically relevant
and 3, but the value of the weak force exponent remains the object of
debate and confusion. Here, we resolve this ambiguity by numerical simulations.
We construct isostatic jammed packings with extremely high accuracy, and
introduce a simple criterion to separate the contribution of particles that
give rise to localized buckling excitations, i.e., bucklers, from the others.
This analysis reveals the remarkable dimensional robustness of mean-field
marginality and its associated criticality.Comment: 12 pages, 4 figure
Weak Convergence in the Prokhorov Metric of Methods for Stochastic Differential Equations
We consider the weak convergence of numerical methods for stochastic
differential equations (SDEs). Weak convergence is usually expressed in terms
of the convergence of expected values of test functions of the trajectories.
Here we present an alternative formulation of weak convergence in terms of the
well-known Prokhorov metric on spaces of random variables. For a general class
of methods, we establish bounds on the rates of convergence in terms of the
Prokhorov metric. In doing so, we revisit the original proofs of weak
convergence and show explicitly how the bounds on the error depend on the
smoothness of the test functions. As an application of our result, we use the
Strassen - Dudley theorem to show that the numerical approximation and the true
solution to the system of SDEs can be re-embedded in a probability space in
such a way that the method converges there in a strong sense. One corollary of
this last result is that the method converges in the Wasserstein distance,
another metric on spaces of random variables. Another corollary establishes
rates of convergence for expected values of test functions assuming only local
Lipschitz continuity. We conclude with a review of the existing results for
pathwise convergence of weakly converging methods and the corresponding strong
results available under re-embedding.Comment: 12 pages, 2nd revision for IMA J Numerical Analysis. Further minor
errors correcte
Out-of-equilibrium dynamical fluctuations in glassy systems
In this paper we extend the earlier treatment of out-of-equilibrium
mesoscopic fluctuations in glassy systems in several significant ways. First,
via extensive simulations, we demonstrate that models of glassy behavior
without quenched disorder display scalings of the probability of local two-time
correlators that are qualitatively similar to that of models with short-ranged
quenched interactions. The key ingredient for such scaling properties is shown
to be the development of a critical-like dynamical correlation length, and not
other microscopic details. This robust data collapse may be described in terms
of a time-evolving Gumbel-like distribution. We develop a theory to describe
both the form and evolution of these distributions based on a effective
sigma-model approach.Comment: 20 pages, RevTex, 9 figure
Assembly of hard spheres in a cylinder: a computational and experimental study
Hard spheres are an important benchmark of our understanding of natural and
synthetic systems. In this work, colloidal experiments and Monte Carlo
simulations examine the equilibrium and out-of-equilibrium assembly of hard
spheres of diameter within cylinders of diameter . Although in such a system phase transitions formally do not exist,
marked structural crossovers are observed. In simulations, we find that the
resulting pressure-diameter structural diagram echoes the densest packing
sequence obtained at infinite pressure in this range of . We also observe
that the out-of-equilibrium self-assembly depends on the compression rate. Slow
compression approximates equilibrium results, while fast compression can skip
intermediate structures. Crossovers for which no continuous line-slip exists
are found to be dynamically unfavorable, which is the source of this
difference. Results from colloidal sedimentation experiments at high P\'eclet
number are found to be consistent with the results of fast compressions, as
long as appropriate boundary conditions are used. The similitude between
compression and sedimentation results suggests that the assembly pathway does
not here sensitively depend on the nature of the out-of-equilibrium dynamics.Comment: 11 pages, 8 figures and 63 reference
The ABC\u27s of Building Information Partnerships: Factors for Success in Building Active and Engaged Partnerships
Building strong information partnerships is an essential first step to effective information literacy programs and services. The overall goal of this paper is to highlight several factors that are especially useful for establishing productive relationships with a range of potential partners including students, faculty, and other campus or community partners. Five key factors for success will be discussed to help guide the development of active and engaged partnerships
Hubble Space Telescope times-series photometry of the planetary transit of HD189733: no moon, no rings, starspots
We monitored three transits of the giant gas planet around the nearby K dwarf
HD 189733 with the ACS camera on the Hubble Space Telescope. The resulting
very-high accuracy lightcurve (signal-to-noise ratio near 15000 on individual
measurements, 35000 on 10-minute averages) allows a direct geometric
measurement of the orbital inclination, radius ratio and scale of the system: i
= 85.68 +- 0.04, Rpl/R*=0.1572 +- 0.0004, a/R*=8.92 +- 0.09. We derive improved
values for the stellar and planetary radius, R*=0.755+- 0.011 Rsol, Rpl=1.154
+- 0.017 RJ, and the transit ephemerides, Ttr=2453931.12048 +- 0.00002 + n
2.218581 +- 0.000002$. The HST data also reveal clear evidence of the planet
occulting spots on the surface of the star. At least one large spot complex
(>80000 km) is required to explain the observed flux residuals and their colour
evolution. This feature is compatible in amplitude and phase with the
variability observed simultaneously from the ground. No evidence for satellites
or rings around HD 189733b is seen in the HST lightcurve. This allows us to
exlude with a high probability the presence of Earth-sized moons and
Saturn-type debris rings around this planet. The timing of the three transits
sampled is stable to the level of a few seconds, excluding a massive second
planet in outer 2:1 resonance.Comment: revised version. Significant updates and new figures; to appear in
Astronomy and Astrophysic
The Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b
We have used Spitzer and its IRAC camera to search for the transit of the
super-Earth HD 40307b. The transiting nature of the planet could not be firmly
discarded from our first photometric monitoring of a transit window because of
the uncertainty coming from the modeling of the photometric baseline. To obtain
a firm result, two more transit windows were observed and a global Bayesian
analysis of the three IRAC time series and the HARPS radial velocities was
performed. Unfortunately, any transit of the planet during the observed phase
window is firmly discarded, while the probability that the planet transits but
that the eclipse was missed by our observations is nearly negligible (0.26%).Comment: Submitted to A&
Hard sphere crystallization gets rarer with increasing dimension
We recently found that crystallization of monodisperse hard spheres from the
bulk fluid faces a much higher free energy barrier in four than in three
dimensions at equivalent supersaturation, due to the increased geometrical
frustration between the simplex-based fluid order and the crystal [J.A. van
Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here,
we analyze the microscopic contributions to the fluid-crystal interfacial free
energy to understand how the barrier to crystallization changes with dimension.
We find the barrier to grow with dimension and we identify the role of
polydispersity in preventing crystal formation. The increased fluid stability
allows us to study the jamming behavior in four, five, and six dimensions and
compare our observations with two recent theories [C. Song, P. Wang, and H. A.
Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in
press (2009)].Comment: 15 pages, 5 figure
Studying the atmosphere of the exoplanet HAT-P-7b via secondary eclipse measurements with EPOXI, Spitzer and Kepler
The highly irradiated transiting exoplanet, HAT-P-7b, currently provides one
of the best opportunities for studying planetary emission in the optical and
infrared wavelengths. We observe six near-consecutive secondary eclipses of
HAT-P-7b at optical wavelengths with the EPOXI spacecraft. We place an upper
limit on the relative eclipse depth of 0.055% (95% confidence). We also analyze
Spitzer observations of the same target in the infrared, obtaining secondary
eclipse depths of 0.098+/-0.017%, 0.159+/-0.022%, 0.245+/-0.031% and
0.225+/-0.052% in the 3.6, 4.5, 5.8 and 8.0 micron IRAC bands respectively. We
combine these measurements with the recently published Kepler secondary eclipse
measurement, and generate atmospheric models for the day-side of the planet
that are consistent with both the optical and infrared measurements. The data
are best fit by models with a temperature inversion, as expected from the high
incident flux. The models predict a low optical albedo of ~< 0.13, with
subsolar abundances of Na, K, TiO and VO. We also find that the best fitting
models predict that 10% of the absorbed stellar flux is redistributed to the
night side of the planet, which is qualitatively consistent with the
inefficient day-night redistribution apparent in the Kepler phase curve. Models
without thermal inversions fit the data only at the 1.25 sigma level, and also
require an overabundance of methane, which is not expected in the very hot
atmosphere of HAT-P-7b. We also analyze the eight transits of HAT-P-7b present
in the EPOXI dataset and improve the constraints on the system parameters,
finding a period of P = 2.2047308+/-0.0000025 days, a stellar radius of R* =
1.824+/-0.089Rsun, a planetary radius of Rp = 1.342+/-0.068RJup and an
inclination of i = 85.7+3.5-2.2 deg.Comment: 21 pages, 8 figures, accepted by the Astrophysical Journa
- …