515 research outputs found

    Stability of Ge-related point defects and complexes in Ge-doped SiO_2

    Full text link
    We analyze Ge-related defects in Ge-doped SiO_2 using first-principles density functional techniques. Ge is incorporated at the level of ~ 1 mol % and above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency, with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and O vacancies binding strongly to Ge impurities. All the centers considered exhibit potentially EPR-active states, candidates for the identification of the Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure

    The digital girls response to pandemic: Impacts of in presence and online extracurricular activities on girls future academic choices

    Get PDF
    In the last few years, several initiatives based on extracurricular activities have been organized in many countries around the world, with the aim to reduce the digital gender gap in STEM (Science, Technology, Engineering, Math) fields. Among them, the Digital Girls summer camp, organized every year since 2014 by two Italian universities with the aim to attract female students to ICT (Information and Communication Technologies) disciplines, represents quite a unique initiative for its characteristics of long-duration (3–4 entire weeks) and complete gratuitousness for the participants. The COVID-19 emergency imposed severe changes to such activities, that had to be modified and carried out in the online mode as a consequence of social distancing. However, on one hand, the general lack of high-quality evaluations of these initiatives hinders the possibility to understand the actual impact of extracurricular activities on the future academic choices of the participants. On the other hand, the availability of data collected over different editions of Digital Girls has allowed us to analyze the summer camp impact and to evaluate the pros and cons of in-presence and online activities. The main contribution of this paper is twofold. First, we present an overview of existing experiences, at the national (Italian) and international levels, to increase female participation in integrated STEM and ICT fields. Second, we analyze how summer camp participation can influence girls’ future academic choices, with specific attention to ICT-related disciplines. In particular, the collection of a significant amount of data through anonymous surveys conducted before and after the camp activities over the two editions allowed us to evidence the different impacts of in-presence and online extracurricular activities

    A new digital divide threatening resilience: exploring the need for educational, firm-based, and societal investments in ICT human capital

    Get PDF
    The knowledge, skills, and abilities that human capital offers create tangible and intangible assets that equip organizations to thrive. In particular, in today’s Industry 4.0 environment, training, recruiting, and retaining highly qualified ICT-ready professionals remains a problem for many organizations including educational, governmental, healthcare, and business organizations. The COVID-19 pandemic revealed the importance of digital assets to our economies, and it is also demonstrating that there is potentially a new digital divide with even worse implications for companies, economies, and society, which is threatening the resilience of business, governance, and society. In this paper, we respond to the question “how can we develop ICT human capital in our global economy in an equitable, inclusive, and purposeful manner such that not organizations thrive, but also to promote social justice and equity in our global economy?”

    Electrodes' Configuration Influences the Agreement between Surface EMG and B-Mode Ultrasound Detection of Motor Unit Fasciculation

    Get PDF
    Muscle fasciculations, resulting from the spontaneous activation of motor neurons, may be associated with neurological disorders, and are often assessed with intramuscular electromyography (EMG). Recently, however, both ultrasound (US) imaging and multichannel surface EMG have been shown to be more sensitive to fasciculations. In this study we combined these two techniques to compare their detection sensitivity to fasciculations occurring in different muscle regions and to investigate the effect of EMG electrodes' configuration on their agreement. Monopolar surface EMGs were collected from medial gastrocnemius and soleus with an array of 32 electrodes (10 mm Inter-Electrode Distance, IED) simultaneously with b-mode US images detected alongside either proximal, central or distal electrodes groups. Fasciculation potentials (FP) were identified from single differential EMGs with 10 mm (SD1), 20 mm (SD2) and 30 mm (SD3) IEDs, and fasciculation events (FE) from US image sequences. The number, location, and size of FEs and FPs in 10 healthy participants were analyzed. Overall, the two techniques showed similar sensitivities to muscle fasciculations. US was equally sensitive to FE occurring in the proximal and distal calf regions, while the number of FP revealed by EMG increased significantly with the IED and was larger distally, where the depth of FE decreased. The agreement between the two techniques was relatively low, with a percentage of fasciculation classified as common ranging from 22% for the smallest IED to 68% for the largest IED. The relevant number of events uniquely detected by the two techniques is discussed in terms of different spatial sensitivities of EMG and US, which suggest that a combination of US-EMG is likely to maximise the sensitivity to muscle fasciculations

    High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope

    Full text link
    In February 2014, the SHARK-VIS (System for High contrast And coronography from R to K at VISual bands) Forerunner, a high contrast experimental imager operating at visible wavelengths, was installed at LBT (Large Binocular Telescope). Here we report on the first results obtained by recent on-sky tests. These results show the extremely good performance of the LBT ExAO (Extreme Adaptive Optics) system at visible wavelengths, both in terms of spatial resolution and contrast achieved. Similarly to what was done by (Amara et al. 2012), we used the SHARK-VIS Forerunner data to quantitatively assess the contrast enhancement. This is done by injecting several different synthetic faint objects in the acquired data and applying the ADI (angular differential imaging) technique. A contrast of the order of 5×1055 \times 10^{-5} is obtained at 630 nm for angular separations from the star larger than 100 mas. These results are discussed in light of the future development of SHARK-VIS and compared to those obtained by other high contrast imagers operating at similar wavelengths.Comment: Astronomical Journal - Accepted for publicatio

    Spreading in narrow channels

    Full text link
    We study a lattice model for the spreading of fluid films, which are a few molecular layers thick, in narrow channels with inert lateral walls. We focus on systems connected to two particle reservoirs at different chemical potentials, considering an attractive substrate potential at the bottom, confining side walls, and hard-core repulsive fluid-fluid interactions. Using kinetic Monte Carlo simulations we find a diffusive behavior. The corresponding diffusion coefficient depends on the density and is bounded from below by the free one-dimensional diffusion coefficient, valid for an inert bottom wall. These numerical results are rationalized within the corresponding continuum limit.Comment: 16 pages, 10 figure

    Insight into the Molecular Model in Carbon Dots through Experimental and Theoretical Analysis of Citrazinic Acid in Aqueous Solution

    Get PDF
    The molecular emission model is the most accredited one to explain the emission properties of carbon dots (CDs) in a low-temperature bottom-up synthesis approach. In the case of citric acid and urea, the formation of a citrazinic acid (CZA) single monomer and oligomers is expected to affect the optical properties of the CDs. It is therefore mandatory to elucidate the possible role of weak bonding interactions in determining the UV absorption spectrum of some molecular aggregates of CZA. Although this carboxylic acid is largely exploited in the synthesis of luminescent CDs, a full understanding of its role in determining the final emission spectra of the produced CDs is still very far to be achieved. To this aim, by relying on purely first-principles density functional theory calculations combined with experimental optical characterization, we built and checked the stability of some molecular aggregates, which could possibly arise from the formation of oligomers of CZA, mainly dimers, trimers, and some selected tetramers. The computed vibrational fingerprint of the formation of aggregates is confirmed by surface-enhanced Raman spectroscopy. The comparison of experimental data with calculated UV absorption spectra showed a clear impact of the final morphology of the aggregates on the position of the main peaks in the UV spectra, with particular regard to the 340 nm peak associated with n-π∗ transition

    Proof of the thermodynamical stability of the E' center in SiO2

    Full text link
    The E' center is a paradigmatic radiation-induced defect in SiO2 whose peculiar EPR and hyperfine activity has been known since over 40 years. This center has been traditionally identified with a distorted, positively-charged oxygen vacancy V_O+. However, no direct proof of the stability of this defect has ever been provided, so that its identification is still strongly incomplete. Here we prove directly that distorted V_O+ is metastable and that it satisfies the key requirements for its identification as E', such as thermal and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure

    Physical and electrophysiological motor unit characteristics are revealed with simultaneous high-density electromyography and ultrafast ultrasound imaging

    Get PDF
    Electromyography and ultrasonography provide complementary information about electrophysiological and physical (i.e. anatomical and mechanical) muscle properties. In this study, we propose a method to assess the electrical and physical properties of single motor units (MUs) by combining High-Density surface Electromyography (HDsEMG) and ultrafast ultrasonography (US). Individual MU firings extracted from HDsEMG were used to identify the corresponding region of muscle tissue displacement in US videos. The time evolution of the tissue velocity in the identified region was regarded as the MU tissue displacement velocity. The method was tested in simulated conditions and applied to experimental signals to study the local association between the amplitude distribution of single MU action potentials and the identified displacement area. We were able to identify the location of simulated MUs in the muscle cross-section within a 2 mm error and to reconstruct the simulated MU displacement velocity (cc > 0.85). Multiple regression analysis of 180 experimental MUs detected during isometric contractions of the biceps brachii revealed a significant association between the identified location of MU displacement areas and the centroid of the EMG amplitude distribution. The proposed approach has the potential to enable non-invasive assessment of the electrical, anatomical, and mechanical properties of single MUs in voluntary contractions
    corecore