384 research outputs found

    Negative ion production near a divertor plate

    Get PDF

    Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas

    Get PDF
    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ∼10^7 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ∼10^9 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B^3) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.Fil: Mancinelli, Beatriz Rosa. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; ArgentinaFil: Prevosto, Leandro. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Chamorro Garcés, Juan Camilo. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; ArgentinaFil: Minotti, Fernando Oscar. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kelly, Hector Juan. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentin

    Single Crystal X-Ray Structural Investigation of Alluaudite Related Monophosphate Na2FeMn2(PO4)3

    Get PDF
    The compound Na2FeMn2(PO4)3 has been successfully isolated with the alluaudite structural type. Accurate single crystal X-ray diffraction has allowed solving the structure with reliability factors of R1 and Rw equal to 0.0322 and 0.0790 respectively. It was found that the symmetry is monoclinic with a space group of C2/c and lattice parameters: a = 12.180(2) Å, b = 12.660(2) Å, c = 6.500(2) Å, B = 114.528(3)(°), unit cell volume = 911.8(3) Å3, Z = 8 and dcal.=3.618 g.cm-3. Three-dimensional network is formed by the [MnO6] octahedra linked in pairs to form Mn-based octahedral dimers: ([Mn2O10]). Each dimer shares six vertices with six tetrahedra [P(2)O4] to form sheets within the plane (100). The latter are connected by tetrahedra [P(1)O4] delimiting cages and tunnels which house either Fe3+ or Na+ cations. Each [FeO6] octahedron is linked to two [Mn2O10] dimers belonging to two adjacent sheets to form mixed Fe-Mn chains of the type: - Fe3+ - Mn2+ - Mn2+ - Fe3+ - Mn2+ - Mn2+ - Fe3+ - ..., running along the direction [101]

    Open system approach to the internal dynamics of a model multilevel molecule

    Full text link
    A model multilevel molecule described by two sets of rotational internal energy levels of different parity and degenerate ground states, coupled by a constant interaction, is considered, by assuming that the random collisions in a gas of identical molecules, provoke transitions between adjacent energy levels of the same parity. The prescriptions of the continuous time quantum random walk are applied to the single molecule, interpreted as an open quantum system, and the master equation driving its internal dynamics is built for a general distribution of the waiting times between two consecutive collisions. The coherence terms and the populations of the energy levels relax to the asymptotics with inverse power laws for relevant classes of non-Poissonian distributions of the collision times. The stable asymptotic equilibrium configuration is independent of the distribution. The long time dynamics may be hindered by increasing the tail of the distribution density. This effect may be interpreted as the appearance of the quantum Zeno effect over long time scales

    The ESA "Plasma Laboratory in Space" study

    Get PDF
    The European Space Agency has initiated, in the context of its General Studies Programme, a study of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by “space plasma physics”. A team of experts has been set-up to review a broad range of area including industrial plasma physics and pure plasma physics, astrophysical and solar-terrestrial areas. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on spatial scale (102 to104 m) intermediate between what is achievable on ground experiment and usual solar system plasma observations

    An investigation of CO2 splitting using nanosecond pulsed corona discharge: effect of argon addition on CO2 conversion and energy efficiency

    Get PDF
    The plasma chemical splitting of carbon dioxide (CO2) to produce carbon monoxide (CO) in a pulsed corona discharge was investigated from both an experimental and a numerical standpoint. High voltage nanosecond pulses were applied to a stream of pure CO2 and its mixture with argon, and the gaseous products were identified using Fourier transform infrared spectroscopy. Due to the shape of pulses, the process of CO2 splitting was found to proceed in two phases. The first phase is dominated by ionization, which generates a high electron density. Then, during the second phase, direct electron impact dissociation of CO2 contributes to a large portion of CO production. Conversion and energy efficiency were calculated for the tested conditions. The conversions achieved are comparable to those obtained using other high pressure non-thermal discharges, such as dielectric barrier discharge. However, the energy efficiencies were considerably higher, which are favorable to industrial applications that require atmospheric conditions and elevated gas flow rates

    Plasma kinetics issues in an ESA study for a plasma laboratory in space

    Get PDF
    A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities, MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates

    Atomic and molecular data for spacecraft re-entry plasmas

    Get PDF
    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered
    corecore