127 research outputs found

    wGrapeUNIPD-DL: An open dataset for white grape bunch detection

    Get PDF
    National and international Vitis variety catalogues can be used as image datasets for computer vision in viticulture. These databases archive ampelographic features and phenology of several grape varieties and plant structures images (e.g. leaf, bunch, shoots). Although these archives represent a potential database for computer vision in viticulture, plant structure images are acquired singularly and mostly not directly in the vineyard. Localization computer vision models would take advantage of multiple objects in the same image, allowing more efficient training. The present images and labels dataset was designed to overcome such limitations and provide suitable images for multiple cluster identification in white grape varieties. A group of 373 images were acquired from later view in vertical shoot position vineyards in six different Italian locations at different phenological stages. Images were then labelled in YOLO labelling format. The dataset was made available both in terms of images and labels. The real number of bunches counted in the field, and the number of bunches visible in the image (not covered by other vine structures) was recorded for a group of images in this dataset

    Impact of Conservation Agriculture on Soil Erosion in the Annual Cropland of the Apulia Region (Southern Italy) Based on the RUSLE-GIS-GEE Framework

    Get PDF
    The processes of soil erosion and land degradation are more rapid in the case of inappropriate agricultural management, which leads to increased soil loss rates. Moreover, climatic conditions are one of the most important determining factors affecting agriculture, especially in the Mediterranean areas featuring irregular rainfall and high summer temperatures. Conservation agriculture (CA) can make a significant contribution to reducing soil erosion risk on the annual cropland (ACL) of the Mediterranean region in comparison with conventional management (CM). The objective of this study is to provide soil loss rate maps and calculate the values for each altitude and slope class and their combination for the Apulia region in four annual production cycles for the scenarios CM and CA. The present study estimates the significance of the adoption of CA on soil erosion assessment at regional scale based on the Revised Universal Soil Loss Equation (RUSLE) model. The parameters of the RUSLE model were estimated by using remote sensing (RS) data. The erosion probability zones were determined through a Geographic Information System (GIS) and Google Earth Engine (GEE) approach. Digital terrain model (DTM) at 8 m, ACL maps of the Apulia region, and rainfall and soil data were used as an input to identify the most erosion-prone areas. Our results show a 7.5% average decrease of soil loss rate during the first period of adoption of the four-year crop cycle—from 2.3 t ha−1 y−1 with CM to 2.1 t ha−1 y−1 with the CA system. CA reduced soil loss rate compared to CM in all classes, from 10.1% in hill class to 14.1% for hill + low slope class. These results can therefore assist in the implementation of effective soil management systems and conservation practices to reduce soil erosion risk in the Apulia region and in the Mediterranean basin more generally

    L-dopa and dopamine-(R)-alpha-lipoic acid conjugates as multifunctional codrugs with antioxidant properties

    Get PDF
    A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-R-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)- H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the “in vivo” dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson’s disease, characterized by an evident decrease of DA concentration in the brain

    Codrugs linking L-Dopa and sulfur-containing antioxidants: new pharmacological tools against Parkinson’s Disease

    Get PDF
    A series of multifunctional codrugs (1-6) were synthesized to overcome the pro-oxidant effect associated with L-dopa (LD) therapy. Target compounds release LD and dopamine (DA) in human plasma after enzymatic hydrolysis, displaying an antioxidant effect superior to that of N-acetylcysteine (NAC). After intracerebroventricular injection of codrug 4, the levels of DA in the striatum were higher than those in LD-treated groups, indicating that this compound has a longer half-life in brain than LD
    corecore