
 
 

 

 
Agronomy 2022, 12, 281. https://doi.org/10.3390/agronomy12020281 www.mdpi.com/journal/agronomy 

Article 

Impact of Conservation Agriculture on Soil Erosion in the  
Annual Cropland of the Apulia Region (Southern Italy) Based 
on the RUSLE-GIS-GEE Framework 
Matteo Petito 1, Silvia Cantalamessa 2, Giancarlo Pagnani 2, Francesco Degiorgio 3, Barbara Parisse 4  
and Michele Pisante 2,* 

1 Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 
Viale dell’Università 16, 35020 Legnaro, Italy; matteo.petito@phd.unipd.it 

2 Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via 
Balzarini, 1, 64100 Teramo, Italy; scantalamessa@unite.it (S.C.); gpagnani@unite.it (G.P.) 

3 Regione Puglia, Direzione Dipartimento Agricoltura, Sviluppo Rurale e Ambientale, Lungomare Nazario 
Sauro, 4, 70121 Bari, Italy; f.degiorgio@regione.puglia.it 

4 Council for Agricultural Research and Economics (CREA), Agriculture and Environment, Via della  
Navicella 4, 00185 Roma, Italy; barbara.parisse@crea.gov.it 

* Correspondence: mpisante@unite.it 

Abstract: The processes of soil erosion and land degradation are more rapid in the case of 
inappropriate agricultural management, which leads to increased soil loss rates. Moreover, climatic 
conditions are one of the most important determining factors affecting agriculture, especially in the 
Mediterranean areas featuring irregular rainfall and high summer temperatures. Conservation 
agriculture (CA) can make a significant contribution to reducing soil erosion risk on the annual 
cropland (ACL) of the Mediterranean region in comparison with conventional management (CM). 
The objective of this study is to provide soil loss rate maps and calculate the values for each altitude 
and slope class and their combination for the Apulia region in four annual production cycles for the 
scenarios CM and CA. The present study estimates the significance of the adoption of CA on soil 
erosion assessment at regional scale based on the Revised Universal Soil Loss Equation (RUSLE) 
model. The parameters of the RUSLE model were estimated by using remote sensing (RS) data. The 
erosion probability zones were determined through a Geographic Information System (GIS) and 
Google Earth Engine (GEE) approach. Digital terrain model (DTM) at 8 m, ACL maps of the Apulia 
region, and rainfall and soil data were used as an input to identify the most erosion-prone areas. 
Our results show a 7.5% average decrease of soil loss rate during the first period of adoption of the 
four-year crop cycle—from 2.3 t ha−1 y−1 with CM to 2.1 t ha−1 y−1 with the CA system. CA reduced 
soil loss rate compared to CM in all classes, from 10.1% in hill class to 14.1% for hill + low slope 
class. These results can therefore assist in the implementation of effective soil management systems 
and conservation practices to reduce soil erosion risk in the Apulia region and in the Mediterranean 
basin more generally. 

Keywords: agriculture management system; altitude; Mediterranean; remote sensing; slope; soil 
loss rate 
 

1. Introduction 
Soil erosion is one of the main parameters for assessing soil quality [1–3]. It is defined 

as “the movement and transport of soil by various agents, particularly water, wind, and 
mass movement” [4]. In addition, soil quality is defined “the capacity of a soil to function, 
within natural or managed ecosystem boundaries, to sustain plant and animal 
productivity, to maintain or enhance water and air quality, and support human health 
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and habitation” [5]. Soil erosion and soil quality are strongly correlated phenomena. Soil 
quality affects the rate of soil loss and is in tum affected by it. Erosion effects on soil quality 
are determined by land use, farming system and management, spatial variability in 
erosional processes, and inherent soil properties [6]. Erosion affects soil quality and 
productivity, reducing infiltration rates, organic matter, nutrients, water-holding 
capacity, soil biota, and depth with considerable impacts on soil environment [7,8]. Soil 
erosion also has a negative impact on ecosystem services such as water quality and 
quantity, biodiversity, and crop yields [9,10]. 

Land degradation by water mainly affects Southern Italian regions, where fragile 
soils are exposed to long periods of drought followed by heavy bursts of erosive rainfall 
falling on steep slopes, resulting in considerable amounts of soil loss rate [11,12]. 

Soil erosion by water refers to the depletion of the ground surface by water and 
gravity which results in dislodgment of soil particles and their entrainment, transport, 
and deposition [13]. It occurs when either rain splashes or water flows over the surface, 
thus causing the particles of soil to detach and drift [14]. Climate change and intensive 
agricultural practices are current drivers increasing soil erosion risk and reducing soil 
functions [15,16], which result in a general degradation of soil quality [17–19]. Regions 
already affected by climate change are the drought-affected areas of the EU, especially in 
the Mediterranean, such as in Spain, Greece, and Southern Italy, where climate change 
has already had visible impacts on yields and soils [20]. In addition, European soils suffer 
from high degradation rates because of the use of intensive agricultural practices that are 
unsustainable in the long term [21]. Moreover, land-use management decisions have a 
direct impact on the soil loss rate, especially in arable land [22]. In 2006, the European 
Commission (EC) classified soil erosion as the first among eight major threats to soil in its 
topic-specific Soil Thematic Strategy [23]. 

Agricultural land-use practices including erosion-prone ground cover or crops 
providing inadequate ground cover significantly accelerate soil erosion phenomena 
[24,25]. Among these practices is included CM, which is based on mechanical tillage, 
monoculture, or, alternatively, a crop sequence, crop residues burned, buried, or removed 
[26,27]. In this context, the adoption of sustainable agricultural systems such as CA 
represents an effective and viable option for reducing erosion and land degradation. CA 
is an agricultural practice based on three interlinked principles: (i) continuous no or 
minimum mechanical soil disturbance; (ii) permanent maintenance of soil mulch cover; 
and (iii) diversification of cropping system. The adoption of CA has proved to be 
beneficial to the soil and to reduce erosion, while also increasing organic matter and 
fertility, as well as water infiltration and retention, thus reducing runoffs, improving 
water quality, and increasing water holding capacity [28–30]. Usually, significant 
measurable benefits of CA in annual cropland and the rehabilitation of soil-related 
ecosystem functions and services may take a longer time to take effect—roughly three to 
seven years [31]. 

Acknowledgement of threats such as erosion, compaction, and salinization led to the 
implementation of new sustainability objectives in the renewed Common Agricultural 
Policy (CAP) 2014–2020 in the European Union (EU) and in accordance with the new EU 
soil strategy for 2030 (https://ec.europa.eu/environment/publications/eu-soil-strategy-
2030_en, accessed on 13 January 2022) and also the Farm to Fork strategy 
(https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en, accessed on 13 
January 2022). Policies supporting CA can be found in the so-called second pillar of the 
CAP, which aims to contribute “to the development of an agricultural sector of the Union 
characterized by a greater territorial and environmental balance and more respectful of 
the climate, resilient, competitive and innovative” and also to the “development of rural 
territories” (EU Reg. 1305/2013). CA regulations are defined within European policy 
guidelines that can be found within the Rural Development Program (RDP) under the 
sub-measure 10.1 (M10.1), whose adoption is compulsory. This measure “aims to preserve 
and promote the necessary changes to agricultural practices that make a positive 
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contribution to the environment and climate” (EU Reg. 1305/2013). Taking stock of these 
considerations, the present contribution is concerned with monitoring and evaluating 
how the adoption of CA contributes to reduce or stop soil erosion risk caused by water. 
Several modeling approaches have been conducted so far to assess soil erosion, for exam-
ple, the Pan-European Soil Erosion Risk Assessment (PESERA) model and erosion rates 
based on runoff plot data [32,33]. However, as pointed out by Panagos et al. [32], such 
models do not capture the effects of conservation practices and their potential to mitigate 
soil erosion risk. Thus, even the effectiveness of policies that promote such practices can-
not be addressed adequately. On the other hand, this becomes possible by adopting other 
models, such as the RUSLE, which has been used in the past years to monitor erosion, and 
which is specific to the EU context [34]. Moreover, soil erosion is one of the agro-environ-
mental indicators adopted by the European Commission services for monitoring agricul-
tural and environmental policies. This model can capture the impact of land-use changes, 
and thus highlight the efficacy that the European agri-environmental policies would have 
on restoring soil health [32,34]. Such a model has been used to estimate soil loss rate in 
several Mediterranean areas [35]. 

The objective of this study is to provide soil loss rate maps and calculate the averaged 
values for each altitude and slope class and their combination for the ACL of Apulia re-
gion for both the scenarios. This part of Italy suffers from heavy rainfall (fall/winter pe-
riod) as well as decreasing precipitation. Moreover, increase of temperatures and conse-
quently drier conditions (summer) caused by more and more evident effects of climate 
change and CM pose an additional threat to Apulian cropland [36,37]. Our approach is 
based on the RUSLE-GIS-GEE framework [3,38], using more suited databases at regional 
scale. This could provide greater detail and accuracy in calculating soil loss rate for ACL, 
separately for the two management systems: CM and CA for the period 2016–2020, fol-
lowing the introduction in 2016 of the specific sub-measure M10.1 “Conservation Agricul-
ture”, in which only a part of the farmers participated, being a voluntary measure. 

2. Materials and Methods 
2.1. Study Area 

The Apulia region (Figure 1) is situated in the southeastern part of the boot-shaped 
Italian Peninsula bordering the Adriatic and Ionian seas along the east and southeast 
coasts, respectively. The region is divided into 257 municipalities grouped into five prov-
inces and covers a surface area of approximately 19,500 km2. The region is characterized 
by low mountains located in the Gargano promontory and in the Daunian Sub-Apennine, 
respectively, in the north and east of the Foggia province; the Tavoliere plain (the second 
largest plain in Italy), which extends for 3000 km2 in the central and southern part of the 
Foggia province; and the Murgia plateau, which covers a surface of 4000 km2 between the 
provinces of Barletta–Andria–Trani and Bari [39]. The Apulia region features hot and dry 
summer seasons, as well as mild and rainy winter seasons typical of semiarid Mediterra-
nean climate. Annual precipitation varies between 450 and 550 mm in much of the region 
(two-thirds concentrated from autumn to winter). The highest values of precipitation, 
with more than 900 mm y−1, are observed in the Gargano area, in the province of Foggia, 
whereas the lowest values, around 400 mm y−1, are observed in the Tavoliere plain. The 
hydrological regimes are irregular, of torrential type, with high stream and river flow 
rates during the rainy season and practically no water flow in summer [37]. Agriculture 
plays a very important role in the economic context of the Italian territory; this region is 
second in terms of production of olive oil, wine, and fresh vegetables. Particularly im-
portant is the production of durum wheat in the Tavoliere plain, orchards (cherries and 
figs) near Bari, and tobacco in the province of Lecce [40]. Durum wheat and, in general, 
cereals (barley, rye, oats) are the most important typical ACL in Apulia region. For ACL 
in Southern Italy, the period between 15 October to 1 August corresponds approximately 
to the period from sowing to harvesting. 
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Figure 1. Study area. Apulia region according to NUTS 2021 classification. Provinces of Apulia 
region are Taranto (TA), Brindisi (BR), Lecce (LE), Foggia (FG), Bari (BA), and Barletta–Andria–
Trani (BAT). 

2.2. Soil Loss Modeling: RUSLE Factors 
The RUSLE model has been widely used for both agricultural and natural land to 

estimate annual soil loss rate and to evaluate soil erosion risk [41,42]. This model is accu-
rate, easy to apply, and needs a moderate amount of data. Its usage has increased over the 
past few decades, particularly with the increase of RS and GIS applications [43,44]. The 
advent of RS and GIS application has increased the interest in developing new methods 
of calculation and sharing data, using cloud-computing platforms. GEE was developed as 
an open-source platform for analyzing geospatial data. GEE has been used worldwide for 
retrieving and processing many Earth observation data, which nowadays cover all geo-
spatial data needed to build the RUSLE-GIS-GEE framework in a comprehensive and ro-
bust cloud-based environment. GEE’s capabilities can be used to process large amounts 
of geospatial data: especially, with improvements in these data’s availability and pro-
cessing time, for this reason, it is successfully used in several fields on both regional and 
global scales [45–47]. In the current study, soil loss rate estimation based on RUSLE was 
implemented in the GEE environment to increase the ability to determine susceptibility 
to erosion risk. 

The RUSLE model [48,49] was used to estimate the soil loss rate for the scenarios for 
the CM and CA system in the Apulia region with limited annual cropland for the first 
period of adoption (2016–2020). RUSLE provides an ideal framework to assess soil loss 
rate and its factors for both the scenarios. Specifically, RUSLE considers support practices 
(P), rainfall (R), soil erodibility (K), topography (LS), and cover management (C) as im-
portant factors affecting soil loss rate. RUSLE can be mathematically expressed as 𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃 (1)

where A (Mg ha−1 y−1) is the longtime average annual soil loss rate, R (MJ mm h−1 ha−1 y−1) 
is the rainfall erosivity factor, K (Mg h MJ−1 mm−1) is the soil erodibility factor, LS (unitless) 
is the slope length factor and slope steepness factor, C (unitless) is the land cover and 
management factor, and P (unitless) is the soil conservation or prevention practices factor 
[49]. 
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2.2.1.  R-Factor 
R-factor is an index of rainfall erosivity that quantifies the potential capacity of rain 

to cause erosion [49]. The factors that are affected by rainfall erosivity are amount, inten-
sity, terminal velocity, drop size, and drop size distribution of rain [50]. For a given loca-
tion, it is the long-term average of the annual Raj values which, in turn, are given by the 
sum of all the erosion index (EI) single-storm EI30 values for year j [51]. 

The annual rainfall-runoff erosivity (R-factor) values (MJ mm h−1 ha−1 y−1) for Italy 
were computed by the following equation [51]: 𝑅 = ∑ 𝐸𝐼   (2)

where N is an N-year period, and EI is the rainfall erosivity index (MJ mm ha−1 h−1), ex-
pressed as 𝐸𝐼 = 12.142(𝑎𝑏𝑐) .  (3)

Where the variables a, b, and c are the annual precipitation, the maximum annual daily 
precipitation, and the maximum annual hourly precipitation, respectively—all expressed 
in centimeters. Variable a represents less erosive precipitations, with a cumulative effect 
over a long period. Variables b and c describe very erosive effects due to extreme rainfalls 
in storms and heavy showers. 

This study estimated the R-factor based on ERA5-Land (E5L) gridded weather data, 
freely available as product of the Copernicus Climate Change Service (C3S). The E5L is a 
high-resolution reanalysis dataset which covers the period from 1981 to present on a reg-
ular grid with a spatial resolution of 0.1° × 0.1° latitude–longitude referred to as geo-
graphic coordinate system WGS84 (EPSG:4326), corresponding to a horizontal resolution 
of 9 km. The data are provided with an hourly time-step and released with a delay of 2–3 
months from present. 

All grid cells (for a total of 231) located in the Apulia region were considered for 
retrieving total hourly precipitation (estimated in millimeters, mm) for the period from 
January 1981 to December 2019. The accumulated precipitation values were processed to 
derive the total hourly precipitation (mm) from 00 UTC to the hour ending at the forecast 
step. 

The R-factor was calculated as average of EI yearly values regarding four N-year pe-
riods: 1981–2016, 1981–2017, 1981–2018, and 1981–2019. R-factor descriptive statistics, 
such as minimum, maximum, standard deviation, and weighted average values, for the 
Apulia region were estimated, and the results are listed in Table S1. Data processing was 
performed through R (R Core Team, 2020). For RUSLE calculation (see Section 2.4), the 
results obtained for R-factor were projected into the EPSG: 3035 reference system and then 
masked for the ACL 2015 (1981–2016) and for ACL 2018 (1981–2017, 1981–2018, and 1981–
2019) in GEE (Table S1). 

2.2.2. K-Factor 
The K-factor is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), an empirical param-

eter based on the measurements of specific soil erodibility [52]. This parameter is meas-
ured based on these soil properties: texture, organic matter, structure, and permeability 
of the topsoil profile [53]. In this study, the reference value of K-factor is the one obtained 
from the “Soil Erodibility in Europe High Resolution dataset” [53] provided by the Joint 
Research Center (JRC) of European Soil Data Centre (ESDAC) and clipped for the Apulia 
region by using QGIS. The K-factor is estimated for the 20,000 field sampling points (133 
for Apulia region) included in the Land Use/Cover Area frame (Land Use and Coverage 
Area, LUCAS) survey [54] and then interpolated with a Cubist regression model [55] us-
ing spatial covariates such as remotely sensed data and terrain features to produce a 500 
m resolution K-factor map of Europe [53]. 
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2.2.3.  P-Factor 
Support practice (P-factor) is an expression of the effects of agricultural management 

practices that reduce the erosion potential of runoff by influencing drainage patterns and 
the concentration and velocity of runoff [52]. The adoption of supporting conservation 
practices decreases the p value, which ranges between 0.2 (terraces with reverse slope) 
and 1.0 (no erosion control practices). The average value is estimated at around 0.95 in 
agricultural land, and for the EU it is estimated at 0.97. This effect is considerably greater 
in sensitive regions such as the Mediterranean area, although the reduction rate can gen-
erally be relatively small when adopting supportive practices [56]. In the present study, 
the reference value of P-factor is the one obtained from the EU datasets [57] provided by 
the JRC’s ESDAC with 1 km resolution, and then clipped for the Apulia region by using 
QGIS. 

2.2.4.  LS-Factor 
In the RUSLE model, the L and S factors represent the influence of the terrain topog-

raphy on the sediment transport capacity of the overland flow [52]. Slope length (L) is 
defined as the point where overland flow starts to the point in which deposition occurs or 
runoff waters are channelized [58]. Slope steepness (S) describes how erosion increases 
with slope angle [58]. The combined LS-factor (dimensionless) describes the potential of 
surface runoff in accelerating soil loss rate, and, in most studies, determines the spatial 
resolution (cell size) of the modeled soil loss estimates. The topographic LS-factor was 
calculated by using the 8 m high-resolution DTM provided by the Apulia region (available 
on http://www.sit.puglia.it, accessed on 13 January 2022). 

The LS-calculation was performed by using the equation proposed by Desmet and 
Govers [59]: 𝐿 , = (𝐴 , + 𝐷 ) − 𝐴 ,𝐷 ∗ 𝑥 , ∗ 22.13  (4)

where Ai,j−in is the contributing area at the inlet of grid cell (i,j), measured in m2. D is the 
grid cell size (meters), Xi,j = sinαi,j + cosαi,j, the αi,j is the aspect direction of the grid cell (i,j). 
This equation was implemented by using the System for Automated Geoscientific Anal-
yses (SAGA) software in QGIS, which incorporates a multiple flow algorithm and con-
tributes to a precise estimation of flow accumulation [58]. It provides a comprehensive set 
of modules for data analysis, focusing on DTMs and terrain analysis [60,61]. A multiple 
flow algorithm present in SAGA (LS-factor field based) allows the calculation of LS-factor 
[58]. 

2.2.5. C-Factor 
Among the inputs of RUSLE, the cover and management factor (C-factor) is the one 

most sensitive factor [62] that ranges between 0 and 1. The C-factor follows plant growth 
and rainfall dynamics [52,63] and can be managed by farmers and managers to control 
soil erosion in agricultural activities [34]. The C-factor represents the effect of cropping 
and management practices on soil erosion by water [49]. The decrease of the C-factor can 
be promoted by changing the amount of vegetation cover and tillage practices and soil 
management measures (e.g., reduced or no tillage and cover crop residues) that protect 
the soil surface, disperse raindrop energy, and reduce surface runoff [34,49]. Land-use 
types, crop rotation, and cultivation and management practices show obvious spatial and 
temporal variations that affect the accuracy of the C-factor estimate, ultimately affecting 
soil loss rate estimated by RUSLE [64,65]. Therefore, it is necessary to improve the ability 
to capture the space–time dynamics of the C-factor. In our study, to estimate the C-factor 
within the ACL of the Apulia region, we started from the equation proposed by Panagos 
et al. [34]: 



Agronomy 2022, 12, 281 7 of 22 
 

 

𝐶 =  𝐶  × 𝐶  (5)

where Ccrop is the C-factor based on the crop composition of an agricultural area, and Cmanage-

ment quantifies the influence of management practices (reduced tillage, cover crop, and crop 
residues) on soil loss rate reduction. With regard to Cmanagement, the combined effect of tillage 
practice (Ctillage), plant residues (Cresidues), and cover crops (Ccover) was taken into account for 
the estimation of management factor [34]: 𝐶 =  𝐶  × 𝐶  × 𝐶  (6)

where a value of 0.176 was used for CA. This value was derived from the multiplication 
of the three factors adopted for CA (Ctillage = 0.25; Cresidues = 0.88; Ccover = 0.80) [34], while a 
value of 1 was used for CM, in accordance with the multiplication of three factors adopted 
for CM (Ctillage = 1; Cresidues = 1; Ccover = 1) [34]. 

Instead, Ccrop was estimated by taking into account the Normalized Difference Vege-
tation Index (NDVI), as proposed by van der Knijff et al. [12], for regional-scale applica-
tions: 𝐶 = exp −𝛼 (  )   (7)

where α and β are parameters of the NDVI-C correlation. An α-value of 2 and a β-value of 
1 seem to give reasonable results, because these values permit achieving a linear relation-
ship, according to van der Knijff et al. [66]. This method has been employed by several 
studies worldwide [67–70]. In the present work, the C-factor was calculated for Apulia 
ACL as follows: 𝐶 = exp −𝛼 (  ) 𝑋 𝐶   (8)

For the calculation of C-factor’s NDVI, GEE provides Sentinel-2 images that have a 
resolution of 10 m and are available for the two layers: bottom of atmosphere (BOA), level 
2A) and top of atmosphere (TOA), level 1C). The TOA level is not provided with atmos-
pheric correction, while the BOA level has atmospheric correction due to Sen2Cor [71]. 
The noncorrect atmospheric images have been continuously available since the launch of 
the satellite (23 May 2015), while the corrected ones have been available since 28 March 
2017. As shown in the literature [72,73], there is a correlation between vegetational indices 
calculated at the two different layers (NDVI BOA > NDVI TOA). Subsequently, the cor-
rection factor between NDVI is calculated at the two levels, without which the C-factor 
would have been underestimated. We proceeded by calculating the NDVI Sentinel-2 at 
level 2a over the whole region for the interval from 1 April 2017 to 28 January 2021, by 
taking into consideration 2033 images in which NDVI was calculated both at the BOA and 
TOA level. The correction factor shows an average increase between TOA and BOA of 
27% in the whole Apulia region and an increase of 29% in ACL. For the period 2016–2017, 
NDVI is calculated by using NDVI level 1c added to correction factor. The annual interval 
for each NDVI calculation is considered for the period between 15 October to 1 August of 
the following year, as it corresponds approximately to the period from sowing to harvest-
ing in Southern Italy. Table 1 reports the number of images that have a cloudy pixel per-
centage lower than 20% and are processed for the calculation of each NDVI. Finally, the 
calculation of the two factors, C crop [38,74] and C management, and their multiplication, 
is possible in GEE environment. 

Table 1. C-factor and NDVI values of ACL of the four cycles and two management systems. 

Agricultural Seasons Images (n) Mean of NDVI (15/10–01/08) Cfactor CM Cfactor CA % 
2016–2017 309 0.3653 0.3268 0.3122 −4.5 
2017–2018 415 0.3995 0.2742 0.2623 −4.3 
2018–2019 408 0.3985 0.2803 0.2684 −4.2 
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2019–2020 449 0.4078 0.2656 0.2552 −3.9 
Mean  0.3928 0.2867 0.2745 −4.2 

CM = conventional management. CA = conservation agriculture. NDVI = Normalized Difference 
Vegetation Index. 

2.3. Identification of ACL 
ACL areas are calculated using LUCAS points, which is a network that gives accurate 

and detailed information, it aims at computing statistical estimates at EU level with fine 
scale [75], and it collects information on European land. This examination provides spatial 
information that can be used for agricultural goals and to define the impact on the envi-
ronment and natural resources. Each LUCAS point collects information including land 
cover, land use, and environmental parameters, identified as microdata [76]. For the cal-
culation of crop land, LUCAS microdata was used (from class B10 to class B50). These data 
are available online and both are downloadable; for the year 2015 (https://ec.europa.eu/eu-
rostat/web/lucas/data/primary-data/2015, accessed on 13 January 2022), for the year 2018 
(https://ec.europa.eu/eurostat/web/lucas/data/primary-data/2018, accessed on 13 January 
2022). The areas were calculated in QGIS (QGIS.org, 2021, QGIS Geographic Information 
System, QGIS Association. http://www.qgis.org, accessed on 13 January 2022) following 
Gallego and Bamps [75]. ACL, mapped by LUCAS in the Apulia region, resulted in 
733,801 ha and 773,828 ha for 2015 and 2018, respectively. Subsequently, areas detected 
by LUCAS were mapped by using Global Land Cover [77,78] in Google Earth Engine [79]. 
In Global Land Cover, cultivated areas are aggregated into crop land. The separation be-
tween ACL and crop land is performed through a multitemporal analysis, by using the 
LANDSAT8 Collection 1 Tier 1 composite dataset (https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_NDVI, accessed on 13 January 
2022) which allows the calculation of the averaged NDVI—using six images for 2015 and 
six images for 2018. This allows the creation of a mask to distinguish ACL from croplands, 
setting the threshold between 0.08 and 0.30 during summer periods (1 July–15 August), 
in which differences between these two categories are more evident in Mediterranean ar-
eas. This threshold guarantees significant difference to areas detected by LUCAS. This 
analysis makes it possible to map ACL areas—732,052 ha for 2015 and 772,654 ha for 2018, 
respectively (Figure 2), with a difference of 40,602 ha between 2015 and 2018 ACL. 

 
Figure 2. Annual cropland of the Apulia region in (a) 2015 and (b) 2018. Hill shade calculated using 
NASA DEM 30 m (https://lpdaac.usgs.gov/products/nasadem_hgtv001/, accessed on 13 January 
2022). 



Agronomy 2022, 12, 281 9 of 22 
 

 

The boundaries of the area under CA are provided by AGEA (Italian Agricultural 
Payments Agency), and the total area corresponds to 25,506 ha (Figure 3). 

 
Figure 3. Annual cropland of the Apulia region in 2018 under conventional management (CM) and 
conservation agriculture (CA). Hill shade calculated using NASA DEM 30 m 
(https://lpdaac.usgs.gov/products/nasadem_hgtv001, accessed on 13 January 2022). 

2.4. RUSLE Factors Multiplication 
The multiplication of all the RUSLE factors was carried out in GEE, carrying all the 

factors to the same resolution scale, 10 m resampling, and reducing resolution for each 
factor by using bilinear interpolation, and with the same EPSG:3035 reference system (Fig-
ure 4). RUSLE is calculated for four consecutive annual production cycles, as shown in 
Table S2. 
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Figure 4. Methodology workflow. 

For an optimal understanding of RUSLE distribution in the Apulia region, altitudes 
and slopes were calculated by using DTM in GEE. Altimetry was classified in three cate-
gories (according to the Italian Institute of Statistics—ISTAT, https://www.istat.it (ac-
cessed on 13 January 2022), based on their altitude above sea level: plain (0 ≤ altitude ≤ 
300 m a.s.l.), hilly (300 < altitude < 800 m a.s.l.), and mountain (altitude ≥ 800 m a.s.l.). Each 
of these three categories are designated to a numerical class: 100 for the plain, 200 for the 
hilly, and 300 for the mountain. The slope’s division in categories is carried out by divid-
ing the slope range into three quantiles: low slope (under 1.8%), medium slope (1.8–3.7%), 
and high slope (over 3.3%). Each class was renominated by using a number: 1 for low 
slope, 2 for medium slope, and 3 for high slope. Moreover, the two categories were com-
bined to obtain nine classes for both the scenarios (Table S3). As a final step, the statistics 
for each category were calculated. 

3. Results and Discussion 
3.1. Rainfall Erosivity (R-Factor) 

The average annual R-factor for the Apulia region in the 1981–2019 year-period totals 
318.3 MJ mm h−1 ha−1 y−1, with a standard deviation of 57.4 MJ mm h−1 ha−1 y−1 (Table S1). 
If we consider all the year-periods, the annual average values of the erosive storm ranged 
from 198.8 to 504.2 MJ mm h−1 ha−1 y−1 for the 1981–2017 and 1981–2019 year periods, 
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respectively. The Apulia region values are more than twice lower than the average R-
value obtained by the 1290 non-Italian stations (723 MJ mm h−1 ha−1 y−1) contained in the 
Rainfall Erosivity Database on the European Scale (REDES) (Borrelli et al. [80]; Panagos et 
al. [81]). Considering the ACL of the Apulia region, R-factor ranged from 280.4 to 284.4 
MJ mm h−1 ha−1 y−1 (1981–2016 and 1981–2019, respectively) (Table S1; Figure 5). The high 
R-factor corresponds to mountain areas (Figure 5) proximity to the Daunian Sub-Apen-
nine, in the province of Foggia in the northwest, and to the Murgia plateau in the prov-
inces of Barletta–Andria–Trani and Bari. 

 
Figure 5. Maps of rainfall erosivity factor (R) of Apulia region with Era-5 land (9 km resolution) for 
the periods (a) 1981–2016, (b) 1981–2017, (c) 1981–2018, and (d) 1981–2019. 

3.2. Soil Erodibility (K) and Support Practice Factor (P) 
The spatial variation of K-factor values from the ESDAC dataset in the Apulia region 

depend on the variation of ACL area for both years. The results showed a mean value of 
0.0331 t ha h ha−1 MJ−1 mm−1 for 2015 (Figure 6a) and 0.0329 t ha h ha−1 MJ−1 mm−1 for 2018 
(Figure 6b). 

a b

c d
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Figure 6. Soil erodibility factor (K) maps of the Apulia region for annual cropland in (a) 2015 and 
(b) 2018. 

In both years, the highest value of K-factor is distributed in the areas of Tavoliere and 
in the Daunian Sub-Apennine, in the province of Foggia in the northwest, and in the Mur-
gia plateau in the provinces of Barletta–Andria–Trani and Bari. From the ESDAC dataset 
for the P-factor, it was possible to extrapolate factors for the ACL area for both years. The 
P-mean for 2015 is 0.8736, and for 2018, 0.8682. In both maps (Figure 7), the higher values 
are found in the mountainous regions where the CA system is mainly applied. 

 
Figure 7. Support practice factor (P) maps of the Apulia region for annual cropland in (a) 2015 and 
(b) 2018. 

3.3. Topographic Factor (LS) 
LS-factor is calculated for the ACL of the Apulia region. The averaged values (Figure 

8) are 0.93 and 0.88 for 2015 and 2018, respectively. 

a b
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Figure 8. Slope length and steepness (LS) factor map of the Apulia region for annual cropland in (a) 
2015 and (b) 2018. 

The high LS values are found in the mountainous area with steep topography, espe-
cially in the west where mountains are prevalent (Daunian Sub-Apennine and Murgia), 
while the lowest values are distributed along the Adriatic and Ionic coasts. To determine 
the spatial resolution (cell size) of the soil erosion model results, and, therefore, to incor-
porate the soil erosion potential due to surface runoff, we used a high-resolution (8 m) 
DTM of the Apulia region to calculate LS-factor. This resolution of Apulia region DTM is 
the best available at regional scale. Generally, the DTM resolutions used on a European 
scale are in the range of 25 to 100 m [56], while at regional scale, the resolutions range 
from 5 m to 40 m [82,83]. As reported by Bircher et al. [84], several authors have mentioned 
the importance of assessing the risk of soil erosion based on the size of the cells and the 
accuracy of the DTM. The risk that can occur is that a low DTM resolution (large cells) is 
not able to map relevant topographic details [85–87]. 

3.4. Cover-Management (C-Factor) 
The four-year mean for the C-factor values of the two management systems is shown 

separately for each year and crop stage in Table 1. The four-year mean C-factor for CM in 
ACL of the Apulia region is 0.2867, while for the CA it is 0.2745, with an average percent-
age reduction of the C-factor of 4.2% according to the cropping system adopted. The low-
est C-factor values for CM and CA were registered both in the year 2019/2020 (0.2656 and 
0.2552, respectively), while the highest were in the year 2016/2017 (0.3268 and 0.3122, re-
spectively; Supplementary Figures S1 and S2). The four-cropping cycle average of NDVI 
for the study site varied from 0.3653 to 0.4078 (in 2016/2017 and 2019/2020, respectively) 
with an average over 0.3928. The ground-cover percentage was directly measured in all 
ACL with 10 m resolution. Based on the two management systems in the study area, 
higher C-values were observed in the CM management system, thus indicating higher 
potentiality for soil erosion risk in these areas (Figure 9). Spatiotemporal dynamics are 
required to understand impacts and risks at regional scale. For this reason, it is necessary 
to identify the agricultural area that can be most affected by soil erosion by water and 
identify, where possible, which CA system will reduce these processes. 

a b



Agronomy 2022, 12, 281 14 of 22 
 

 

 
Figure 9. Cover and management (C) factor average maps (2016–2020) of the Apulia region under 
(a) conventional management and (b) conservation agriculture for annual cropland. 

Our approach was focused on the use of multitemporal satellite images to capture 
the temporal variability of the determination of factor C. This approach is used for ecosys-
tem modeling studies on a large scale [34,88] and places the focus on the importance of 
explicit consideration of temporal variability on soil management systems to protect agri-
cultural land from the impact of soil erosion by water [89]. Generally, in large-scale mod-
eling applications, the estimation of multiple sub-factor C parameters is derived from pre-
existing literature [34,89,90] and does not use spatially explicit land-cover data for the de-
termination of the C-factor; it is, rather, based on statistical data. Current approaches on a 
European scale adopt the CORINE Land Cover Database for the calculation of the C-factor 
[12]. This data is inadequate in its spatial and thematic resolution compared to RS sensors 
with up-to-date information on proximal measures of vegetation, which is a key aspect 
for a correct and accurate calculation of C-factor [22]. This aspect becomes even more im-
portant for areas where the spatial and temporal dynamics of the vegetation cover are 
provided by the cultivation of crops [83,91]. On the other hand, data obtained from field 
experiments carried out to measure the values of the C-factor take a long time and are 
rarely available [22]. 

Within this work, by using a spatial resolution of 10 m (obtained through Sentinel 
2A) and applying the formula proposed by Van der Knijff et al. [12] integrated with that 
of Panagos et al. [34], we obtained a more detailed resolution on the ACL (previously 
mapped) to multitemporal NDVI calculation. This NDVI-derived method can variably 
capture the actual soil cover status [82] rather than using aggregate and fixed data over 
time. This approach can be useful in increasing the accuracy of the calculation of the C-
factor [67,92,93]. Our results show how, for the estimation of the C-factor in the Apulia 
region, the values are comparable to those present in the literature for ACL [67,74,94,95], 
which fluctuate between 0.01 and 0.44 for ACL, but with a much more accurate regional 
scale of detail. Concerning the difference between the CM and CA systems, our results 
demonstrate how, on average, the adoption of CA reduces the C-factor by 4.2% in line 
with other analyzed scenarios [34]. CA has been reported in many studies as an effective 
strategy to control erosion processes, maintain soil fertility, increase soil carbon seques-
tration, and improve cropping system sustainability [96–98]. 

  

a b
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3.5. Soil Loss Estimation in the Apulia Region 
3.5.1. Loss Rates 

The loss rates (A), in t ha−1 y−1, for the Apulia region in this study are generated by 
using the RUSLE model to calculate the mean for the 2016–2020 period. The results are 
shown in Table 2. The four-year agricultural annual crop cycle average for CM is 2.28 t 
ha−1 y−1, while for CA it is 2.11 t ha−1 y−1 (Figure 10). 

Table 2. RUSLE values for the 2016–2020 period in the Apulia region for each management sys-
tem. 

 RUSLE  
 CM CA  

Agricultural Seasons 
2016–2020 t ha−1 t ha−1 Δ% 

Mean 2.28 2.11 −7.5 
CM = conventional management. CA = conservation agriculture. RUSLE = Revised Universal Soil 
Loss Equation. Δ% = percentage difference. 

 
Figure 10. RUSLE model average maps (2016–2020) in Apulia region under (a) conventional man-
agement and (b) conservation agriculture for annual cropland. 

Moreover, for the intermediate RUSLE calculation, the lower and higher values for 
CM system are 2.02 and 2.69 t ha−1 y−1, while for CA system, are 1.88 and 2.49 t ha−1 y−1 for 
the two-year periods 2019/2020 and 2016/2017, respectively. These patterns are shown in 
Supplementary Figures S3 and S4 and Table S4. 

Interestingly, the areas featuring high risk of soil erosion are in the Tavoliere and in 
the Daunian Sub-Apennine, in the northwest, as well as in the Murgia plateau in the center 
of the Apulia region. As for the soils under CA, there is instead a reduction in soil erosion 
risk in the same areas as well as in the south of the Apulia region (Salento, province of 
Lecce). 

Current results from the RUSLE model reveal a serious soil erosion risk where the 
CM system is adopted, while the CA system showed a trend over the years to contain the 
rate of soil loss for ACL in the Apulia region, representative of pedoclimatic conditions 
widely present in large agricultural areas of the Mediterranean basin. As suggested by 
Wischmeier and Smith [52], practices of improved tillage, such as no-till and cover crops, 
were considered as conservation cropping and management practices and implemented 
in the C-factor. A recent scenario analysis carried out on 54 countries, that reported infor-
mation on the implementation of CA to the Food and Agriculture Organization of United 

a b
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Nations (FAO), assumes a 45% reduction of soil erosion risk in CA compared to CM [99]. 
Furthermore, a previous study by Borrelli et al. [100] shows how in Italy, when good ag-
ricultural and environmental conditions (GAEC) including CA are adopted, there is a po-
tential to reduce erosion by 8.5%, while for the Apulia region, the potential rate of erosion 
is 5%. The results obtained (Table 2) at this territorial scale are in line with this scenario 
and, moreover, by improving the spatial resolution of DTM (8 m), the erosion rate calcu-
lated over the four years (2016–2020) shows an average of 7%, in line with the scenario 
assumed for the Apulia region. 

3.5.2. Mean Loss Rates for Altitude and Slope Classes 
RUSLE values were calculated for altimetric and slope classes for each agricultural 

annual crop cycle (Table 3). 

Table 3. RUSLE calculation for each altitude and slope class and their combination of the two man-
agement systems in four years in the Apulia region. CM = conventional management. CA = conser-
vation agriculture. RUSLE = Revised Universal Soil Loss Equation. Δ% = percentage difference. 

    RUSLE   
Agricultural Seasons   2016–2017  2017–2018 2018–2019 2019–2020  

  
Total Annual 
Crops Area 

2015  
CM  CA Δ% 

Total An-
nual Crops 
Area 2018 

CM  CA  Δ% CM  CA  Δ% CM  CA  Δ% 
Means 
Δ%  

Numerical 
Class 

Altitude Class %  
t ha−1 

y−1 
t ha−1 

y−1 
% % t ha−1 y−1 

t ha−1 
y−1 

% 
t ha−1 

y−1 
t ha−1 

y−1 
% 

t ha−1 
y−1 

t ha−1 
y−1 

% % 

100 Plain 67.56 1.57 1.50 −4.5 68.23 1.14 1.09 −4.4 1.35 1.32 −2.2 1.31 1.26 −3.8 −3.7 
200 Hilly 31.86 4.03 3.63 −9.9 31.33 2.78 2.51 −9.7 3.55 3.15 −11.3 2.91 2.63 −9.6 −10.1 
300 Mountain 0.58 4.89 4.01 −18 0.44 2.72 2.45 −9.9 2.82 2.88 2.1 2.92 2.63 −9.9 −8.9 

1 Low slope 29.25 0.64 0.61 −4.7 29.79 0.45 0.42 −6.7 0.55 0.53 −3.6 0.53 0.51 −3.8 −4.7 
2 Medium slope 33.50 0.79 0.75 −5.1 34.15 0.55 0.52 −5.5 0.68 0.65 −4.4 0.64 0.61 −4.7 −4.9 
3 High slope 37.25 3.80 3.50 −7.9 35.99 2.69 2.49 −7.4 3.32 3.06 −7.8 2.92 2.71 −7.2 −7.6 

101 
Plain + low 

slope 
24.67 0.65 0.63 −3.1 25.19 0.56 0.55 −1.8 0.66 0.57 −13.6 0.57 0.56 −1.8 −5.1 

102 
Plain + me-
dium slope 

24.93 0.79 0.77 −2.5 25.47 0.47 0.45 −4.3 0.56 0.57 1.8 0.57 0.56 −1.8 −1.7 

103 
Plain + high 

slope 17.94 3.10 2.96 −4.5 17.54 1.98 1.90 −4 2.37 2.27 −4.2 2.24 2.15 −4 −4.2 

201 
Hilly + low 

slope 
4.51 1.07 0.97 −9.3 4.60 0.78 0.71 −9 1.08 0.77 −28.7 0.74 0.67 −9.5 −14.1 

202 
Hilly + me-
dium slope 

8.56 1.31 1.18 −9.9 8.68 0.82 0.74 −9.8 1.12 0.90 −19.6 0.86 0.78 −9.3 −12.2 

203 
Hilly + high 

slope 
18.75 5.66 5.11 −9.7 18.03 3.67 3.31 −9.8 4.67 4.17 −10.7 3.84 3.48 −9.4 −9.9 

301 
Mountain + 
low slope 

0.00 1.21 0.88 −27.3 0.00 1.28 1.05 −18 1.25 1.12 −10.4 1.34 1.08 −19.4 −18.8 

302 
Mountain + 

medium slope 
0.01 1.43 1.11 −22.4 0.01 0.46 0.40 −13 0.49 0.47 −4.1 0.50 0.43 −14 −13.4 

303 
Mountain + 
high slope 

0.56 5.89 4.84 −17.8 0.43 2.74 2.47 −9.9 2.85 2.90 1.8 2.94 2.65 −9.9 −8.9 

The erosion rate is variable across the regional territory because the pedological and 
climatic variability is high, but even more so is the morphology of the Apulia region, 
which is also found in the discontinuous adoption of CA. In the Apulia region, the ACL 
lying on plain (0 ≤ 300 m a.s.l.) and hilly (300 m < 800 m a.s.l.) areas covers 99% of the 
surfaces, and about 36% of the study areas is located on slopes greater than 3.7%. In our 
study, with the introduction of the CA management system, the soil loss rate in these areas 
ranged from −1.7% for the plain + medium slope terrain to −18.8% for the mountain + low 
slope terrain, with an overall average of all terrain classes considered, during the four 
years, of −8.5%. 
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In the plains, 68% of the total ACL is present, and in four years, the contribution of 
CA can reduce the soil loss rate by −3.7%, compared to the CM system. For the hilly areas 
(32% of the total ACL), the erosion rate decreases by −10.1% when CA is adopted. ACL 
distributed in the slope classes are very similar, and the contribution of CA is higher on 
the high slopes, decreasing the erosion rate by −7.6% compared with the CM system, ac-
cording to the scenario analysis for Italy by Borrelli et al. [100]. 

3.5.3. Combination of Altitude and Slope Classes 
In the combination of altitude and slope classes, the highest effect is on the hilly + 

low slope and hilly + medium slope. The CA management system contributes, respec-
tively, −14.1% and −12.2% to the erosion rate over the four years, compared with CM. 
These values are in line with the scenario proposed by Panagos et al. [101], in which a 
projection of soil loss by water erosion in Europe by 2050 is calculated, and it is reported 
that there will be a potential of reduction of soil losses of 17–22% with the contribution of 
reduced tillage combined with cover crops. This scenario is confirmed by the results of 
Table 3, in which the highest absolute values of soil loss rate containment are obtained for 
the altitude and slope classes in which CA is currently marginally adopted. 

4. Conclusions 
Soil erosion is among the most critical environmental hazards of modern times. Vast 

areas of Mediterranean land now being cultivated with CM may be rendered unproduc-
tive, or at least economically unproductive, if erosion continues unabated. Soils cultivated 
with annual crops in Mediterranean climatic conditions under conservative agriculture 
can benefit from a permanent cover for the direct increase of surface water infiltration, 
significantly reducing surface runoff and therefore soil erosion risk. 

In order to estimate soil loss rate at regional scale, empirical models are accurate and 
easy to interpret and require modest resources. They can be processed with readily avail-
able inputs to identify areas exposed to high risk of erosion. In this study, RUSLE models 
integrated with GEE and QGIS were used to estimate soil loss rate on the ACL of the 
Apulia region for a period of four annual crop cycles—from 2016 to 2020—for both the 
scenarios. 

Results show that where the CA system is applied continuously in ACL, there is an 
annual average reduction of soil loss rate over 7% compared with CM; furthermore, it is 
significatively different for altimetric, slope, and combined classes, showing that the im-
portant contribution of the CA system can reduce soil loss rate in hilly areas by 10.1% and 
in hilly + low slope terrain by 14.1%. These results represent a baseline to estimate the 
effects of the adoption of the specific agro-environment-climate measure on soil erosion 
risk during the first phase of transition from conventional to conservation management 
systems. Consequently, the results of this study can represent an objective target baseline 
for the planning of the new CAP 2023–2027, which provides for the selection of reliable 
concrete and achievable result indicators, including erosion by water, whose values can 
be monitored and verified periodically. The goal is to increase the agricultural area under 
CA in the Apulia region and in those areas with semiarid Mediterranean climate where 
there is greater loss of soil due to water erosion. Such data, which should be monitored 
periodically, could be used to evaluate soil conservation management planning processes, 
and help determine the dimension and duration of a transition phase to support farmers 
in providing ecosystem restoration services, reduction of erosion by water, and improve-
ment of soil healthy and agricultural productivity. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/agronomy12020281/s1, Figure S1: Annual average of cover and management (C) factor 
of Apulia region under conventional management for annual cropland; Figure S2: Annual average 
of cover and management (C) factor of Apulia region under conservation agriculture for annual 
cropland; Figure S3: Annual soil loss rate using RUSLE model for Apulia region under conventional 
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management for annual cropland; Figure S4: Soil loss rate using RUSLE model for Apulia region 
under conservation agriculture for annual cropland; Table S1: Descriptive statistical values of the R 
factor (MJ mm h−1 ha−1 y−1) for each year-periods of RUSLE calculation; Table S2: Calculation of an-
nual cropland areas in Apulia region in four different years; Table S3: Nine new classes obtained by 
combined altitude class with three quantiles; Table S4: Intermediate RUSLE values in the Apulia 
region for each management system. 
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