13,760 research outputs found

    Optically coupled digital altitude encoder for general aviation altimeters

    Get PDF
    An optically coupled pressure altitude encoder which can be incorporated into commercially available inexpensive general aviation altimeters was successfully developed. The encoding of pressure altitude is accomplished in 100-ft (30.48-m) increments from -1000 to 20,000ft (-304.8 to 6096 m). The prototype encoders were retrofitted into two different internal altimeter configurations. A prototype encoder was checked for accuracy of transition points and environmental effects. Each altimeter configuration, with the encoder incorporated, was laboratory tested for performance and was subsequently flight-tested over the specified altitude range. With few exceptions, the assembled altimeter-encoder met aeronautical standards for altimeters and encoders. Design changes are suggested to improve performance to meet required standards consistently

    Constant distortion embeddings of Symmetric Diversities

    Full text link
    Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of finite metric spaces into L1L_1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1L_1 spaces. In the metric case, it is well known that an nn-point metric space can be embedded into L1L_1 with O(logn)\mathcal{O}(\log n) distortion. For diversities, the optimal distortion is unknown. Here, we establish the surprising result that symmetric diversities, those in which the diversity (value) assigned to a set depends only on its cardinality, can be embedded in L1L_1 with constant distortion.Comment: 14 pages, 3 figure

    Diversities and the Geometry of Hypergraphs

    Full text link
    The embedding of finite metrics in 1\ell_1 has become a fundamental tool for both combinatorial optimization and large-scale data analysis. One important application is to network flow problems in which there is close relation between max-flow min-cut theorems and the minimal distortion embeddings of metrics into 1\ell_1. Here we show that this theory can be generalized considerably to encompass Steiner tree packing problems in both graphs and hypergraphs. Instead of the theory of 1\ell_1 metrics and minimal distortion embeddings, the parallel is the theory of diversities recently introduced by Bryant and Tupper, and the corresponding theory of 1\ell_1 diversities and embeddings which we develop here.Comment: 19 pages, no figures. This version: further small correction

    Chain Reduction for Binary and Zero-Suppressed Decision Diagrams

    Full text link
    Chain reduction enables reduced ordered binary decision diagrams (BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the others' ability to symbolically represent Boolean functions in compact form. For any Boolean function, its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representation, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD) of a function will be no larger than its BDD representation, and at most three times the size of its CZDD representation. Extensions to the standard algorithms for operating on BDDs and ZDDs enable them to operate on the chain-reduced versions. Experimental evaluations on representative benchmarks for encoding word lists, solving combinatorial problems, and operating on digital circuits indicate that chain reduction can provide significant benefits in terms of both memory and execution time

    Studies in picosecond chronoscopy

    Get PDF
    Imperial Users onl

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Documentation of procedures for textural/spatial pattern recognition techniques

    Get PDF
    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features

    Monte Carlo analysis of inaccuracies in estimated aircraft parameters caused by unmodeled flight instrumentation errors

    Get PDF
    An output error estimation algorithm was used to evaluate the effects of both static and dynamic instrumentation errors on the estimation of aircraft stability and control parameters. A Monte Carlo error analysis, using simulated cruise flight data, was performed for a high-performance military aircraft, a large commercial transport, and a small general aviation aircraft. The results indicate that unmodeled instrumentation errors can cause inaccuracies in the estimated parameters which are comparable to their nominal values. However, the corresponding perturbations to the estimated output response trajectories and characteristics equation pole locations appear to be relatively small. Control input errors and dynamic lags were found to be in the most significant of the error sources evaluated

    Storage and hydrolysis of seawater samples for inorganic carbon isotope analysis

    Get PDF
    Preservation of seawater samples was tested for total inorganic carbon (ΣCO2), stable carbon isotope (δ13C), and radiocarbon (14C) applications using foil bags and storage by refrigeration and freezing. The aim was to preserve representative samples with minimal storage effects but without using toxic methods such as mercuric chloride poisoning. Hydrolysis of samples to CO2 was based on existing methods. Results of IAEA-C2 standard used with deionized water stored in the foil bags showed complete reaction yields, 14C results within 2σ of the consensus value, and δ13C that were internally consistent, indicating that there were no procedural effects associated with the foil bags. 14C results were statistically indistinguishable across the storage times, for frozen and refrigerated seawater samples from a coastal site, Elie Ness, Fife, UK. The scatter of ΣCO2 concentrations and δ13C was within scatter observed in other studies for lake- and seawater samples preserved by acidification or using mercuric chloride. However, both ΣCO2 and δ13C were less variable for frozen samples compared with refrigerated samples. The foil bags are lighter, safer to transport, and similar in cost to glass bottles and allow sample collection in the field and transfer to the hydrolysis vessel without exposure of the sample to atmosphere. Storage of seawater samples in the foil bags was considered a reliable, alternative method to poisoning for ΣCO2, δ13C, and 14C, and freezing the samples is recommended for storage time beyond a week
    corecore