General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DOCUMENTATION OF PROCEDURES FOR TEXTURAL/SPATIAL PATTERN

RECOGNITION TECHNIQUES

NASA CR-150995

NASA STI FACIL INPUT BRAN

FINAL REPORT

April 15, 1976

RSL Technical Report 278-1

Robert M. Haralick William F. Bryant

N76-33598 (NASA-CR-150995) DOCUMENTATION OF PROCEDURES FOR TEXTURAL/SPATIAL PATTERN RECOGNITION TECHNIQUES Final Report (Kansas Univ. Center for Research, Inc.) 219 p HC Unclas CSCL 02F G3/43 07260 \$7.75

> Funded by: NASA LYNDON B. JOHNSON SPACE CENTER Contract NAS 9-14453 Houston, Texas 77058

CRES

110011

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.

2291 Irving Hill Drive—Campus West Lawrence, Kansas 66045

Documentation of Procedures for Textural/Spatial Pattern Recognition Techniques

Final Report

April 15, 1976

RSL Technical Report 278-1

Robert M. Haralick William F. Bryant

Funded by:

NASA Lyndon B. Johnson Space Center Contract NAS 9-14453 Houston, Texas 77058

Remote Sensing Laboratory

Table of Contents

List of	Figures	ii
List of	Tables	viii
I	Introduction	1
	I.1 Contingency Tables of Classification Results	4
II	- Former Herrick - Former Content Content - Co	6
III	Texture	14
	III.1Optical Processing Methods and TextureIII.2Texture and EdgesIII.3Digital Transform Methods and TextureIII.4Spatial Grey Tone Dependence: Co-occurrenceIII.5A Textural Transform	15 16 17 18 19
IV and	Spatial Pre-Processing	21
V	Spatial Post-Processing	22
VI	Spectral Analysis: Edit 6	27
VII	Spectral Analysis: Edit 9	41
VIII	Spectral Analysis: Edit 14	53
IX	Spectral Analysis: Edit 3	67
X	Spectral-Textural Analysis: Edit 6	79
XI	Spectral-Textural Analysis: Edit 9	
XII	Spectral-Textural Analysis: Edit 14	118
XIII	Spectral-Textural Analysis: Edit 3	123
XIV	Conclusions	133
Refere	nces	134
Appen	dix 1 - Textural Transform Programs	137

List of Figures

Number	Title	Page
11.1	Illustrates how quantizing can be done differently for each category.	12
II.2	Illustrates a graph of the number of reserved decisions versus probability threshold alpha.	13
V.la	Illustrates the 4-neighborhood of a resolution cell.	23
V.1b	Illustrates the 8-neighborhood of a resolution cell.	23
V.2	Illustrates the effect of 4 and 8-filling or a single resolution cell.	24
V.3	Illustrates the relationship between set convexity and regularity.	26
VI.1	The .7276 micrometer band	30
VI.2	The ground truth training data overlayed on the .72 – .76 micrometer band.	30
VI.3	The classification of the best two band pairs for alpha-beta thresholds of .3 and .021.	31
VI.4	The classified image of Figure VI.3 after a complete filling.	31
VI.5	The classified image of Figure VI.3 after 4-fill, 8-fill, 4-shrink, and then complete filling operations.	34
VI.6	The classified image of Figure VI.3 after 4-fill, 8-fill, 4-shrink, 8-shrink, and then complete filling operations.	34
VI.7	The classification of the three best band pairs for alpha-beta thresholds of .6 and .042.	36
VI.8	The classified image of Figure VI.7 after a complete filling.	36
VI.9	The classified image of Figure VI.8 after a 4-shrink operation and then a complete filling.	38
VI.10	The classified image of Figure VI.7 after 4-fill, 8- fill, 4-shrink, 8-shrink and complete filling operations.	38

Figure Number	Title	Page
VII.1	The .7276 micrometer band.	43
VII.2	The ground truth training data overlayed on the .7276 micrometer band.	43
VII.3	The classification of the best two band pairs for alpha-beta thresholds of .3 and .021.	45
VII.4	The classified image of Figure VII.3 after a complete filling.	45
VII.5	The classified image of Figure VII.3 after 4– shrink and complete filling operations.	47
VII.6	A plot of the alpha thresholds versus number of reserved decisions.	48
VII.7	The classification of the three best band pairs for alpha-beta thresholds of .6 and .042.	50
VII.8	The classified image of Figure VII.7 after a complete filling.	50
VII.9	The classified image of Figure VII.7 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	52
VIII.1	The .7276 micrometer band.	55
VIII.2	The ground truth training data overlayed on the .72 – .76 micrometer band.	55
VIII.3	The classification of the three best band pairs for alpha-beta thresholds of .62 and .042.	58
VIII.4	The classified image of Figure VIII.3 after a complete filling.	58
VIII.5	The classified image of Figure VIII.4 after a 4- shrink operation.	60
VIII.6	The classified image of Figure VIII.5 after a com- plete filling.	60
VIII.7	The classified image of Figure VIII.3 after a 4- fill operation.	62
VIII.8	The classified image of Figure VIII.3 after 4- and 8-fill operations.	62

Number	Title	Page
VIII.9	The classified image of Figure VIII.3 after 4– fill, 8–fill, and 4–shrink operations.	64
VIII.10	The classified image of Figure VIII.3 after 4– fill, 8–fill, 4–shrink and 8–shrink operations.	64
VIII .11	The classified image of Figure VIII.3 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	66
IX.1	The .7276 micrometer band.	69
IX.2	The ground truth training data overlayed on the .7276 micrometer band.	69
IX.3	Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs, spectral only for edit #3.	70
IX.4	Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs, spectral only for edit #3.	73
IX.5	The classification of the three best band pairs for alpha-beta thresholds of .5 and .035.	75
IX.6	The classified image of Figure IX.5 after 4-fill and 8-fill operations.	75
IX.7	The classified image of Figure IX.5 after 4-fill, 8-fill, and 4-shrink operations.	77
IX.8	The classified image of Figure IX.5 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	77
X.1	The classification of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	84
X.2	The classified image of Figure X.1 after a complete filling.	84
X.3	The classified image of Figure X.1 after complete filling, 4-shrink, and complete filling operations.	86
X.4	The classified image of Figure X.1 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	86

Figure Number	Title Pag	e
X.5	The classified image of Figure X.1 after 4-fill, 8 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.	8
X.6	The classification of the best 2 band pairs for 8 alpha-beta thresholds of .5 and .035.	88
X.7	The classified image of Figure X.6 after a 9 complete filling.	0
X.8	The classified image of Figure X.6 after complete 9 filling, 4-shrink and complete filling operations.	20
X.9	The classified image of Figure X.6 after 4-fill, 9 8-fill, 4-shrink, 8-shrink, and complete filling operations.	2
X.10	The classified image of Figure X.6 after 4-fill, 9 8-fill, 4-shrink and complete filling operations.	2
X.11	The classification of the best 3 band pairs for 9 alpha-beta thresholds of .7 and .049 after complete filling, 4-shrink, and complete filling operations.	25
X.12	The classification of the best 3 band pairs for 9 alpha-beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	95
XI.1	The .8288 micrometer band used for the texture I transform.	00
XI.2	Shows Figure XI.1 after a 2x2 rectangular convolution. 1	00
XI.3	Shows Figure XI.1 after a 3x3 rectangular convolution. 1	101
XI.4	The texture transform of Figure XI.1	101
XI.5	The texture transform of Figure XI.2	102
XI.6	The texture transform of Figure XI.3	02
XI.7	Shows Figure XI.4 after a 2x2 rectangular 1 convolution.	103
XI.8	Shows Figure XI.5 after a 2x2 rectangular a convolution.	103
XI.9	Shows Figure XI.6 after a 2x2 rectangular convolution.	104

Figure Number	Title	Page
XI.10	Shows Figure XI.4 after a 3x3 rectangular convolution.	104
XI.11	Shows Figure XI.5 after a 3x3 rectangular convolution.	105
XI.12	Shows Figure XI.6 after a 3x3 rectangular convolution.	105
XI.13	Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs with texture for edit #9.	106
XI.14	Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs spectral only for edit #9.	107
XI.15	The classification of the best 3 band pairs for alpha-beta thresholds of .3 and .021.	109
XI.16	The classified image of Figure XI.15 after 4- shrink and complete filling operations.	109
XI.17	The classified image of Figure X'.15 after 4-fill, 4-shrink, and complete filling operations.	111
XI.18	The classification of the best 3 band pairs for alpha-beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	
XI.19	The classification of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	115
XI.20	The classified image of Figure XI.19 after 4-fill, 4-shrink, and complete filling operations.	115
XI.21	The classified image of Figure XI.19 after 4- shrink and complete filling operations.	117
XII.I	The .82 – .88 micrometer band used for the texture transform.	119
XII.2	The texture transform of Figure XII.1 with a 3x3 rectangular convolution before the texture trans- form and a 3x3 rectangular convolution after.	119

Figure Number	Title	Page
XII.3	The texture transform of Figure XII.1 with no rectangular convolution before the texture trans- form and a 3x3 rectangular convolution after.	120
XIII.1	Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs with texture for edit #3.	125
XIII.2	Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs with texture for edit #3.	127
XIII.3	The classification of the three best band pairs for alpha-beta thresholds of .6 and .042.	129
XIII.4	The classified image of Figure XIII.3 after 4-fill and 8-fill operations.	129
XIII.5	The classified image of Figure XIII.3 after 4-fill, 8-fill and 4-shrink operations.	132
XIII.6	The classified image of Figure XIII.3 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	132

List of Tables

Table Number	Title	Page
1.1	The type (classes) and condition classes (sub- classes of forest features of interest in Sam Houston National Forest of Texas.	2
I.2	Summarizes the error rates obtained from the spectral versus the spectral-textural classifica- tion using 3 band pairs and no spatial post processing.	5
I.3	Summarizes the error rates obtained from the spectral versus the spectral-textural classifica- tion using 3 band pairs and spatial post pro- cessing.	5
VI.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	32
VI.2	The contingency table of the best 2 band pairs after a complete filling.	32
VI.3	The contingency table of the best 2 band pairs after complete filling, 4-shrink, and complete filling operations.	33
VI.4	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, and complete filling operations.	33
VI.5	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	35
VI.6	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8- shrink and complete filling operations.	35
VI.7	The contingency table for the best 3 band pairs for alpha-beta thresholds of .6 and .042.	37
VI.8	The contingency table of the best 3 band pairs after a complete filling.	37
VI.9	The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.	39
VI.10	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	39

Table Number	Title	Page
VI.11	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8- shrink and complete filling operations.	40
VII.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	44
VII.2	The contingency table of the best 2 band pairs after a complete filling.	44
VII.3	The contingency table of the best 2 band pairs after complete filling, 4-shrink, and complete filling operations.	46
VII.4	The contingency table of the best 2 band pairs after 4-shrink, and complete filling operations.	46
VII.5	The contingency table of the best 3 band pairs for alpha-beta thresholds of .6 and .042.	49
VII.6	The contingency table of the best 3 band pairs after a complete filling.	49
VII.7	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	51
VIII.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	56
VIII.2	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	56
VIII.3	The contingency table of the best 3 band pairs for alpha-beta thresholds of .6 and .042.	57
VIII.4	The contingency table of the best 3 band pairs after a complete filling.	57
VIII.5	The contingency table of the best 3 band pairs after complete filling and 4-shrink operations.	59
VIII.6	The contingency table of the best 3 band pairs after complete filling, 4-shrink and complete filling operations.	59
VIII.7	The continger cy table of the best 3 band pairs after a 4-fill operation.	61
VIII.8	The contingency table of the best 3 band pairs after 4-fill, and 8-fill operations.	61

Table Number	Title	Page
VIII.9	The contingency table of the best 3 band pairs after 4-fill, 8-fill and 4-shrink operations.	63
VIII.10	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, and 8-shrink operations.	63
VIII.11	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	65
IX.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	61
IX.2	The contingency table of the best 2 band pairs for alpha-beta thresholds of .4 and .028.	71
IX.3	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035.	72
IX.4	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after a complete filling.	72
IX.5	The contingency table of the best 3 band pairs for alpha-beta thresholds of .5 and .035.	74
IX.6	The contingency table of the best 3 band pairs after 4-fill and 8-fill operations.	74
IX.7	The contingency table of the best 3 band pairs after 4-fill, 8-fill and 4-shrink operations.	76
IX.8	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	76
IX.9	Contingency table created by combining subclass types of the same class.	78
"	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	83
X.2	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after a complete filling.	83

Table Number	Title	Page
X.3	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after complete filling, 4-shrink, and complete filling operations.	85
X.4	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	85
X.5	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink, and complete filling operations.	87
X.6	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035.	87
X.7	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after a complete filling.	89
X.8	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after complete filling, 4-shrink, and complete filling operations.	89
X.9	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	91
X.10	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after 4-fill, 8-fill, 4-shrink, and complete filling operations.	91
x.11	The contingency table of the best 3 band pairs for alpha-beta thresholds of .7 and .049.	93
X.12	The contingency table of the best 3 band pairs after a complete filling.	93
X.13	The contingency table of the best 3 band puirs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	94
X.1 5	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink 8-shrink, and complete filling operations.	96

lable Number	Title	Page
XI.1	The contingency table of the best 3 band pairs for alpha-beta thresholds of .3 and .021.	108
XI.2	The contingency table of the best 3 band pairs for alpha-beta thresholds of .3 and .021 after 4-shrink and complete filling operations.	108
XI.3	The contingency table of the best 3 band pairs for alpha-beta thresholds of .3 and .021 after 4-fill, 4-shrink and complete filling operations.	110
XI.4	The contingency table of the best 3 band pairs for alpha-beta thresholds of .6 and .042.	110
XI.5	The contingency table of the best 3 band pairs for alpha-beta thresholds of .7 and .049.	112
XI.6	The contingency table of the best 3 band pairs for alpha-beta thresholds of .8 and .063.	112
XI.7	The contingency table of the best 3 band pairs for alpha-beta thresholds of .7 and .049 after a complete filling.	113
XI.8	The contingency table of the best 3 band pairs for alpha-beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	113
XI.9	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	114
XI.10	The contingency table of the best 2 band pairs after 4-fill, 4-shrink, and complete filling operations.	114
XI.11	The contingency table of the best 2 band pairs after 4-shrink and complete filling operations.	116
XII.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021.	121
XII.2	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, and 8-shrink operations.	121
XII.3	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	122

Table Number	Title	Page
XIII.1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035.	126
XIII.2	The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	126
XIII.3	The contingency table of the best 3 band pairs for alpha-beta thresholds of .6 and .042.	128
Xill.4	The contingency table of the best 3 band pairs after 4-fill, and 8-fill operations.	128
XIII.5	The contingency table of the best 3 band pairs after 4-fill, 8-fill, and 4-shrink operations.	130
XIII.6	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink and 8-shrink operations.	130
×III.7	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	131

I Introduction

This research was undertaken in an effort to aid the Forestry Application Project on Timber Resources. Mission M230 of the C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude. The Bendix 24 channel multispectral scanner collected the data. Four forest scenes of this data set were selected for study. They were edits 3, 6, 9, and 14. The categories of timber classes and subclasses are shown in Table I.1.

The application oriented research was to apply and document the capability of existing textural and spatial automatic processing techniques at the University of Kansas to classify the MSS imagery into specified timber categories. The ground truth for the study was supplied by the Forestry Applications Project.

Over a hundred classification experiments were performed on this data using feature selected from the spectral bands and a textural transform band. The textural transform band is an image whose resolution cells have grey tone intensities which indicate one parameter of local neighborhood texture. The textural transform concept is discussed in Section III. The classification was done by equal interval quantizing the images to 32 levels and using a non-parametric table look-up rule discussed in Section II. The various spatial pre- and post-processing options are discussed in Sections IV and V. Sections VI through IX discuss the results using only spectral features. Sections X through XIII discuss the combined spectral textural results.

The results indicate that

- spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value.
- (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features.
- (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

TABLE I.1 THE TYPE (CLASSES) AND CONDITION CLASSES (SUBCLASSES) OF FOREST FEATURES OF INTEREST IN SAM HOUSTON NATIONAL FOREST OF TEXAS

ype No.	Type (Class)	Subclass No.	Condition Class (Subclass)
1	Shortleaf pine	1.1	Plantation – 3 years old
		1.2	Poletimber – immature
		1.3	Sawtimber – immature
		1.4	Sawtimber – mature
2	Loblolly pine	2.1	Plantation - 1 year old
		2.2	Plantation - 3 years old
		2.3	Seedling and Sapling -
			adequately stocked
an a		2.4	Poletimber – immature
		2.5	Sawtimber – immature
		2.6	Sawtimber – mature
3	Laurel oak -	3.1	Sawtimber – immature
	willow oak		
4	Sweetgum – nuttal	4.1	Sawtimber - low quality
	oak - willow oak	4.2	Sawtimber – immature
		4.3	Sawtimber – mature
5	Post oak – black oak	5.1	Sawtimber – immature
6	Loblolly pine -	6.1	Sawtimber – immature
	hardwoods		
7	Cut-over land	7.1	Site prepared and windrowed
		7.0	
		7.2	Not site prepared

These results mean that regardless of how the image is classified, spatial postprocessing should be used to reduce the error rate. Furthermore, the best post processing results can be obtained if textural features are used; but, if no spatial post-processing is going to be utilized, spectral bands only will give about the same results as the combined spectral textural bands.

These conclusions are based on classification into all timber subclasses using large training sets averaging more than 25,000 points per image. Because the training sets were orders of magnitude larger than the number of categories times the number of features, the statistics must be considered as large sample statistics and we used, justifiably, the training data as the test data.

Tables I.2 and I.3 summarize the basis of our conclusions. The results of each experiment can be summarized in three ways: by average error, by average misidentification error, and by average false identification error. The average error is defined as the total number of incorrect category assignments divided by the total number of assignments. The average misidentification error is defined as the equally weighted average over all categories of the number of times the category is incorrectly assigned divided by the total number of times the category occurs in the ground truth. The average false identification error is defined as the equally weighted average over all categories of the number of signment is made to the category divided by the total number of times an assignment is made to the category.

When the ground truth has each category occurring with equal frequency, the average misidentification error will equal the average error. When the number of assignments to each category is the same, the average false identification error will equal the average error. If the prior probability for a category is high and the category has a high misidentification error, then all other things being equal, the average error will be higher than the average misidentification error. If the prior probability for a category is low, and the category has high misidentification error, then all other things being equal, then all other things being equal, the average misidentification error, then all other things being equal, the average misidentification error, then all other things being equal, the average misidentification error, then all other things being equal, the average error will be lower than the average misidentification error.

From Tables I.2 and I.3 it is readily apparent that both the use of textural features and spatial post processing tends to increase and equalize the average misidentification error and false identification error while cutting the average error to less than half its initial value.

I.1 Contingency Tables of Classification Results

All results are reported with a complete contingency table. The contingency tables are all organized in the same manner. The title for the contingency table tells which images are being compared. The first nine character file name is the name of the ground truth image file. The number following it is the symbolic band number used from that multi-image file. The second nine character file name is the name of the classified image file. The number following it is the number of the symbolic band used from that multi-image file. The number following it is the NKWN means unknown true category identification. The column label R DEC means reserved decision.

The contingency tables have a column labeled ERR. This column designates the number of the resolution cells in each category misidentified. The next column is labeled % ERR and it designates the percent of misidentification error. The contingency tables have a row labeled ERR. This row designates the number of resolution cells in each category falsely identified. The next row is labeled % ERR and it designates the percent of false identification error. The label % SD stands for the percent standard deviation of the error estimates. The entry whose row is labeled TOTAL and whose column is weighted % ERR is the equally weighted average of the misidentification error percentages. The entry whose column is labeled total and whose row is weighted % ERR is the equally weighted average of the false identification error percentages.

	Average Error	Average Misidenti- fication Error	Average False Identifi- cation Error	Average Error	A v erage Misidenti- fication Error	Average False Identifi - cation Error
Edit 6	22%	30%	5%	22%	23%	6%
Edit 9	28%	9%	9%	28%	8%	11%
Edit 14	30%	13%	9%	texture b	and not select	ted by feature selector
Edit 3	42%	14%	25%	40%	25%	29%

Table I.2 summarizes the error rates obtained from the spectral versus the spectraltextural classification using 3 band pairs and no spatial post processing.

		Spectral		Spect	tral-Texture	
	Average Error	Average Misidenti- fication Err o r	Average False identifi- cation Error	Average Error	Average Misidenti- fication Error	Average False Identifi- cation Error
Edit 6	9.3%	34%	33%	6.8%	38%	37%
Edit 9	19%	25%	32%	15%	27%	33%
Edit 14	12%	32%	31%	texture b	and not select	ted by feature selector
Edit 3	24%	35%	40%	12%	40%	44%

Table I.3 summarizes the error rates obtained from the spectral versus the spectraltextural classification using 3 band pairs and spatial post processing.

II Table Look-Up Decision Rule

.

Brooner, Haralick and Dinstein (1971) used a table look-up approach on high altitude multiband photography flown over Imperial Valley, California to determine crop types. Their approach to the storage problem was to perform an e qual probability quantizing from the original 64 digitized grey levels to ten quantized levels for each of the three bands: green, red, and near infrared. Then after the conditional probabilities were empirically estimated, they used a Bayes rule to assign a category to each of the 10³ possible quantized vectors in the 3dimensional measurement space. Those vectors which occurred too few times in the training set for any category were deferred assignment.

The rather direct approach employed by Brooner et al. has the disadvantage of requiring a rather small number of quantized levels. Furthermore, it cannot be used with measurement vectors of dimension greater than four; for if the number of quantized levels is about 10, then the curse of dimensionality forces the number of possible quantized vectors to an unreasonably large size. Recognizing the grey level precision restriction forced by the quantizing coarsening effect, Eppler, Melmke, and Evans (1971) suggest a way to maintain greater quantizing precision by defining a quantization rule for each category - measurement dimension as follows:

- (1) fix a category and a measurement dimension component;
- determine the set of all measurement patterns which would be assigned by the decision rule to the fixed category;
- (3) examine all the measurement patterns in this set and determine the minimum and maximum grey levels for the fixed measurement component;
- (4) construct the quantizing rule for the fixed category and measurement dimension pair by dividing the range between the minimum and maximum grey levels for the category into equal spaced quantizing intervals.

This multiple quantizing rule in effect determines for each category a rectangular parallelepiped in measurement space which contains all the measurement patterns assigned to it. Then as shown in Figure II.1, the equal interval quantizing lays a grid over the rectangular parallelepiped. Notice how for a fixed number of quantizing levels, the use of multiple quantizing rules in each band allows greater

grey level quantizing precision compared to the single quantization rule for each band.

A binary table for each category can be constructed by associating each entry of the table with one corresponding cell in the gridded rectangular parallelepiped. An entry is a binary 1 if the decision rule assigns a majority of the measurement patterns in the corresponding cell to the specified category; otherwise, the entry is assigned to be a binary 0.

The binary tables are used in the implementation of the multiple quantization rule table look-up in the following way. Order the categories in some meaningful manner such as by prior probability. Quantize the multispectral measurement pattern using the quantization rule for category c_1 . Use the quantized pattern as an address to look up the entry in the binary table for category c_1 to determine whether or not the pre-stored decision rule would assign the pattern to category c_1 . If the decision rule makes the assignment to category c_1 the entry would be a binary 1 and, all is finished. If the decision rule does not make the assignment to category c_1 , the entry would be a binary 0 and the process would repeat in a similar manner with the quantization rule and table for the next category.

One advantage to this form of the table look-up decision rule is the flexibility to use different subsets of bands for each category look-up table and thereby take full advantage of the feature selecting capability to define an optimal subset of bands to discriminate one category from all the others. A disadvantage to this form of the table look-up decision rule is the large amount of computational work required to determine the rectangular parallelepipeds for each category and the still large amount of memory storage required (about 5,000 8 bit bytes per category).

Eppler (1974) discusses a modification of the table look-up rule which enables memory storage to be reduced by five times and decision rule assignment time to be decreased by 2 times. Instead of pre-storing in tables a quantized measurement space image of the decision rule, he suggests a systematic way of storing in tables the boundaries or end-points for each region in measurement space satisfying a regularity condition and having all its measurement patterns assigned to the same category.

Let $D = D_1 \times D_2 \times \ldots \times D_N$ be measurement space. A subset

 $R \subseteq D_1 \times D_2 \times \ldots \times D_N$ is a regular region if and only if there exists constants

 L_1 and H_1 and functions L_2 , L_3 ,..., L_N , H_2 , H_3 ,..., H_N

$$\left((\mathsf{L}_{\mathsf{n}}: \mathsf{D}_{1} \times \mathsf{D}_{2} \times \ldots \times \mathsf{D}_{\mathsf{n}-1} \xrightarrow{+} (-\infty, \infty); \mathsf{H}_{\mathsf{n}}: \mathsf{D}_{1} \times \mathsf{D}_{2} \times \ldots \times \mathsf{D}_{\mathsf{n}-1} \xrightarrow{+} (-\infty, \infty)\right)$$

such that

$$R = \left\{ (x_1, \dots, x_N) \in D \mid L_1 \leq x_1 \leq H_1 \\ L_2(x_1) \leq x_2 \leq H_2(x_1) \right\}$$

$$L_{N}(x_{1}, x_{2}, \dots, x_{N-1}) \leq x_{N} \leq H_{N}(x_{1}, x_{2}, \dots, x_{N-1})$$

From the definition of a regular region, it is easy to see how the table look-up by boundaries decision rule can be implemented. Let $d = (d_1, \ldots, d_N)$ be the measurement pattern to be assigned a category. To determine if d lies within a regular region R associated with category c we look up the numbers L_1 and H_1 and test to see if d_1 lies between L_1 and H_1 . If so, we look up the numbers $L_2(d_1)$ and $H_2(d_1)$ and so on. If all the tests are satisfied, the decision rule can assign measurement pattern d to category c. If one of the tests fails, tests for the regular region corresponding to the next category can be made.

The memory reduction in this kind of table look-up rule is achieved by only storing boundary or end-points of decision regions and the speed-up is achieved by having one-dimensional tables whose addresses are easier to compute than the three or four-dimensional tables required by the initial table look-up decision rule. However, the price paid for by these advantages is the regularity condition imposed on the decision regions for each category. This regularity condition is stronger than set connectedness but weaker than set convexity.

Another approach to the table look-up rule can be based on Ashby's (1964) technique of constraint analysis. Ashby suggests representing in an approximate way subsets of Cartesian product sets by their projections on various smaller dimensional spaces. Using this idea for two-dimensional spaces we can formulate the following kind of table look-up rule.

Let $D = D_1 \times D_2 \times ... \times D_N$ be measurement space, C be the set of categories, and $J \subseteq \{1, 2, ..., N\} \times \{1, 2, ..., N\}$ be an index set for the selected two-dimensional spaces. Let the probability threshold α be given. Let $(i, j) \in J$; for each $(x_1, x_2) \in D_i \times D_j$ define the set $S_{ij}(x_1, x_2)$ of categories having the highest conditional probabilities given (x_1, x_2) by

 $S_{ij}(x_1, x_2) = \{c \in C \mid P_{x_1, x_2}(c) \ge \alpha_{ij}\}, \text{ where } \alpha_{ij} \text{ is the largest number}$

which satisfies

$$\sum_{c \in S_{ij}(x_1, x_2)} P_{x_1, x_2} (c) \ge \alpha$$

 $S_{ij}(x_1, x_2)$ is the set of likely categories given that components i and j of the measurement pattern take the values (x_1, x_2) .

The sets S_{ij} , $(i,j)\in J$, can be represented in the computer by tables. In the $(i,j)^{th}$ table S_{ij} the $(x_1, x_2)^{th}$ entry contains the set of all categories of sufficiently high conditional probabilities given the marginal measurements (x_1, x_2) from measurement components i and j, respectively. This set of categories is easily represented by a one word table entry; a set containing categories c_1 , c_7 , c_9 , and c_{12} , for example, would be represented by a word having bits 1, 7, 9, and 12 on and all other bits off.

The decision region R(c) containing the set of all measurement patterns to be assigned to category c can be defined from the S_{ii} sets by

$$R(c) = \left\{ (d_1, d_2, \dots, d_N) \in D_1 \times D_2 \times \dots \times D_N | \{c\} = \bigcap_{(i,j) \in J} S_{ij}(d_i, d_j) \right\}$$

This kind of a table look-up rule can be implemented by using successive pairs of components (defined by the index set J) of the (quantized) measurement patterns as addresses in the just mentioned two-dimensional tables. The set intersection required by the definition of the decision region R(c) is implemented by taking the Boolean AND of the words obtained from the table look-ups for the measurement to be assigned a category. Note that this Boolean operation makes full use of the natural parallel compute capability the computer has on bits of a word. If the k^{th} bit is the only bit which remains on in the resulting word, then the measurement pattern is assigned to category c_k . If there is more than one bit on or no bits are on, then the measurement pattern is deferred its assignment (reserved decision).

Thus we see that this form of a table look-up rule utilizes a set of "loose" Bayes rules in the lower dimensional projection spaces and intersects the resulting multiple category assignment sets to obtain a category assignment for the measurement pattern in the full measurement space.

Because of the natural effect which the category prior probabilities have on the category assignments produced by a Bayes rule it is possible for a measurement pattern to be the most probable pattern for one category yet be assigned by the Bayes rule to another category having much higher prior probability. This effect will be pronounced in the table look-up rule just described because the elimination of such a category assignment from the set of possible categories by one table look-up will completely eliminate it from consideration because of the Boolean AND or set intersection operation. However, by using an appropriate combination of maximum likelihood and Bayes rules, something can be done about this.

For any pair (i, j) of measurement components, fixed category c; and probability threshold β , we can construct the set of $T_{ij}(c)$ having the most probable pairs of measurement values from component i and j arising from category c. The set $T_{ii}(c)$ is defined by

$$T_{ij}(c) = \left\{ (x_1, x_2) \in D_i \times D_j \mid P_c(x_1, x_2) \ge \beta_{ij}(c) \right\},\$$

where $\beta_{ii}(c)$ is the largest number satisfying

$$\sum_{\substack{(x_1,x_2)\in T_{ij}(c)}} P_c(x_1,x_2) \ge \beta$$

Tables which can be addressed by (quantized) measurement components can be constructed by combining the S_{ii} and T_{ii} sets. Define $Q_{ii}(x_1, x_2)$ by

$$Q_{ij}(x_1, x_2) \left\{ c \in C \mid (x_1, x_2) \in T_{ij}(c) \right\} \cup S_{ij}(x_1, x_2)$$

The set $Q_{ij}(x_1, x_2)$ contains all the categories whose respective conditional probabilities given measurement values (x_1, x_2) of components i and j are sufficiently high (a Bayes rule criteria) as well as all those categories whose most probable measurement values for components i and j respectively are (x_1, x_2) (a maximum likelihood criteria). A decision region R(c) containing all the (quantized) measurement patterns can then be defined as before using the Q_{ij} sets:

$$R(c) = \left\{ (d_1, d_2, \dots, d_N) \in D_1 \times D_2 \dots \times D_N | \{c\} = \bigcap_{(i,j) \in J} Q_{ij}(d_i, d_j) \right\}$$

A majority vote version of this kind of table look-up rule can be defined by assigning a measurement to the category most frequently selected in the lower dimensional spaces.

$$\begin{aligned} & \mathbb{R}(\mathsf{c}) = \left\{ (\mathsf{d}_1, \mathsf{d}_2, \dots, \mathsf{d}_N) \in \mathsf{D}_1 \times \mathsf{D}_2 \times \dots \times \mathsf{D}_N \right| \\ & \# \left\{ (\mathsf{i}, \mathsf{j}) \in \mathsf{J} \mid \mathsf{c} \in \mathsf{Q}_{\mathsf{i}\mathsf{j}}(\mathsf{d}_{\mathsf{i}}, \mathsf{d}_{\mathsf{j}}) \right\} \geqslant \ \# \left\{ (\mathsf{i}, \mathsf{j}) \in \mathsf{J} \mid \mathsf{c} \in \mathsf{Q}_{\mathsf{i}\mathsf{j}}(\mathsf{d}_{\mathsf{i}}\mathsf{d}_{\mathsf{j}}) \\ & \quad \text{for every } \mathsf{c} \in \mathsf{C} = \{\mathsf{c}\} \right\} \end{aligned}$$

Classification results were run with $\beta = .07\alpha$ and α chosen to minimize the number of reserved decisions. Figure II.2 illustrates a graph of the number of reserved decisions versus probability threshold α .

Figure II.1 illustrates how quantizing can be done differently for each category thereby enabling more accurate classification by the following table look-up rule: (1) quantize the measurement by the quantizing rule for category one (2) use the quantized measurement as an address in a table and test if the entry is a binary one or binary zero, (3) if it is a binary one assign the measurement to category one; if it is a binary zero, repeat the procedure for category two.

Figure 11.2 illustrates a graph of the number of reserved decisions versus probability threshold α .

III Texture

Spatial environments can be understood as being spatial distributions of various area-extensive objects having characteristic size and reflectance or emissive qualities. The spatial organization and relationships of the area-extensive objects appear as spatial distributions of grey tone on imagery taken of the environment. We call the pattern of spatial distributions of grey tone, texture.

Figure III.1, taken from Lewis (1971), illustrates how texture relates to geomorphology. There are some plains, low hills, high hills, and mountains in the Panama and Columbia area taken by the Westinghouse AN/APQ 97 K-band radar imager system. The plains have apparent relief of 0-50 meters, the hills have apparent relief of 50-350 meters, and the mountains have apparent relief of more than 350 meters. The low hills have little dissection and are generally smooth convex surfaces whereas the high hills are highly dissected and have prominent ridge crests.

The mountain texture is distinguishable from the hill texture on the basis of the extent of radar shadowing (black tonal areas). The mountains have shadowing over more than half the area and the hills have shadowing over less than half the area. The hills can be subdivided from low to high on the basis of the abruptness of tonal change from terrain front slope to terrain back slope.

There have been six basic approaches to the measurement and quantification of image texture: autocorrelation functions (Kaizer, 1955), optical transforms, (Lendaris and Stanley, 1970), digital transforms, (Gramenopoulos, 1973; Hornung and Smith, 1973; Kirvida and Johnson, 1973), edgeness (Rosenfeld and Thurston, 1971), structural elements, (Matheron, 1967; Serra, 1973), and spatial grey tone co-occurrence probabilities, (Haralick et al., 1973). The first three of these approaches are related in that they all measure spatial frequency directly or indirectly. Spatial frequency is related to texture because fine textures are rich in high spatial frequencies while coarse textures are rich in low spatial frequencies.

An alternative to viewing texture as spatial frequency distribution is to view texture as amount of edge per unit area. Coarse textures have a small number of edges per unit area. Fine textures have a high number of edges per unit area.

The structural element approach uses a matching procedure to detect the spatial regularity of shapes called structural elements in a binary image. When

the structural elements themselves are single resolution cells, the information provided by this approach is the autocorrelation function of the binary image. By using larger and more complex shapes, a more generalized autocorrelation can be computed.

The grey tone co-occurrence approach characterizes texture by the spatial distribution of its grey tones. Coarse textures are those for which the distribution changes only slightly with distance and fine textures are those for which the distribution changes rapidly with distance.

III.1 Optical Processing Methods and Texture

Edward O'Neill's (1956) article on spatial filtering introduced the engineering community to the fact that optical systems can perform filtering of the kind used in communication systems. In the case of the optical systems, however, the filtering is two-dimensional. The basis for the filtering capability of optical systems lies in the fact that the light amplitude distributions at the front and back focal planes of lens are Fourier Transforms of one another. The light distribution produced by the lens is more commonly known as the Fraunhofer diffraction pattern. Thus, optical methods facilitate two-dimensional frequency analysis of images.

The paper by Cutrona et al. (1960) provides a good review of optical processing methods for the interested reader. More recent books by Goodman (1968), Preston (1972), Shulman (1970) comprehensively survey the area.

In this section, we describe the experiments done by Lendaris and Stanley, Egbert et al., and Swanlund using optical processing methods in aerial or satellite imagery. Lendaris and Stanley (1970) illuminated small circular sections of low altitude aerial photography and used the Fraunhofer diffraction pattern as features for identifying the sections. The circular sections represented a circular area on the ground of 750 feet. The major category distinction they were interested in making was man-made versus non man-made. They further subdivided the man-made category into roads, road intersections, buildings, and orchards.

The pattern vectors they used from the diffraction pattern consisted of 40 components. Twenty components were averages of the energy in 9^o wedges of the diffraction pattern. They obtained over 90 percent identification accuracy.

Ulaby and McNaughton used an optical processing system to examine the texture of ERTS imagery over Kansas. They used circular areas corresponding to a ground diameter of about 37 km and looked at the diffraction patterns for four different physiographic regions in Kansas. They used a diffraction pattern sampling unit having 32 sector wedges and 32 annular rings to sample and measure the diffraction patterns. (See Jensen (1973) for a description of the sampling unit and its use in coarse diffraction pattern analysis.) They were able to interpret the resulting angular orientation graphs in terms of dominant drainage patterns, rough terrain and field patterns. Their results indicated that the spatial frequency information was highly correlated with physiography.

Swanlund (1969) has done work using optical processing on aerial images to identify species of trees. Using imagery obtained from Itasca State Park in northern Minnesota, photo interpreters identified five (mixture) species of trees on the basis of the texture: Upland Hardwoods, Jack pine overstory/Aspen understory/Upland Hardwoods understory, Red pine overstory/Aspen understory, and Aspen. They achieved classification accuracy of over 90 percent.

III.2 Texture and Edges

The autocorrelation function, the optical transforms, and the fast digital transforms (FFT and FHT) basically all reference texture to spatial frequency. Rosenfeld and Thurston (1971) conceive of texture not in terms of spatial frequency but in terms of edgeness per unit area. An edge passing through a resolution cell is detected by comparing the values for local properties obtained in pairs of non-overlapping neighborhoods boarding the resolution cell. To detect microedges, small neighborhoods must be used. To detect macroedges, large neighborhoods must be used.

The local property which Rosenfeld and Thurston suggested was the quick Roberts gradient (the sum of the absolute value of the differences between diagonally opposite neighboring pixels). Thus, a measure of texture for any subimage is obtained by computing the Roberts gradient image for the subimage and from it determining the average value of the gradient in the subimage. Triendl (1972) uses the Laplacian instead of the Roberts gradient. Sutton and Hall (1972) extended Rosenfeld and Thurston's idea by making the gradient a function of the distance between the pixels. Thus, for every distance d and subimage I defined over a neighborhood N of resolution cells, they compute

$$g(d) = \sum_{(i,j) \in N} \{ |I(i,j) = I(i+d,j)| + |I(i,j) - I(i-d,j)| + |I(i,j) - I(i,j-d)| \} + |I(i,j) - I(i,j-d)| \}$$

The graph of g(d) is like the graph of the minus autocorrelation function translated vertically.

Sutton and Hall applied this textural measure in a pulmonary disease identification experiment using radiographic imagery and obtained identification accuracy in the 80 percentile range for discriminating between normal and abnormal lungs when using a 128 x 128 subimage.

III.3 Digital Transform Methods and Texture

In the digital transform method of texture analysis, the digital image is typically divided into a set of non-overlapping small square subimages. Suppose the size of the subimage is n x n resolution cells, then the n^2 grey tones in the subimage can be thought of as the n^2 components of an n^2 -dimensional vector. In the transform technique, each of these vectors is re-expressed in a new coordinate system. The Fourier Transform uses the sine-cosine basis set. The Hadamard Transform uses the Walsh function basis set, etc. The point to the transformation is that the basis vectors of the new coordinate system have an interpretation that relates to spatial frequency (sequency) and since frequency (sequency) is a close relative of texture, we see that such transformation can be useful.

Gramenopoulos (1973) used a transform technique using the sine-cosine basis vectors (and implemented it with the FFT algorithm) on ERTS imagery to investigate the power of texture and spatial pattern to do terrain type recognition. He used subimages of 32 by 32 resolution cells and found that on Phoenix, Arizona ERTS image 1940-17324-5 spatial frequencies larger than 3.5 cycles/km and smaller than 5.9 cycles/km contain most of the information needed to discriminate between terrain types. The terrain classes were: clouds, water, desert, farms, mountains, urban, riverbed, and cloud shadows. He achieved an overall identification accuracy of 87 percent.

Hornung and Smith (1973) have done work similar to Gramenopoulos but with aerial multispectral scanner imagery instead of ERTS imagery. Maurer (1974)

used Fourier series analysis on some color aerial film to obtain textural features to help determine crop types.

Kirvida and Johnson (1973) compared the fast Fourier, Hadamard, and Slant Transforms for textural features on ERTS imagery over Minnesota. They used 8 x 8 subimages and five categories: Hardwoods, Confiers, Open, Water, City. Using only spectral information, they obtained 74 percent correct identification accuracy. When they added textural information, they increased the identification accuracy to 99 percent. They found little difference between the different transform methods.

III.4 Spatial Grey Tone Dependence: Co-occurrence

One aspect of texture is concerned with the spatial distribution and spatial dependence among the grey tones in a local area. Darling (1968) used statistics obtained from the nearest neighbor grey tone transition matrix to measure this dependence for satellite images of clouds and was able to identify cloud types on the basis of their texture. Read and Jayaramamurthy (1972) divided an image into all possible (overlapping) subimages of reasonably small and fixed size and counted the frequency for all the distinct grey tone patterns. This is one step more general than Darling but one that requires too much memory if the grey tones can take on very many values. Haralick (1971) and Haralick et al. (1972, 1973) suggested an approach which is a compromise between the two. He measures the spatial dependence of grey tones in a co-occurrence matrix for each fixed distance and/or angular spatial relationship and uses statistics of the matrix as measures of image texture.

The co-occurrence matrix $P = (p_{ij})$ has its (i, j)th entry P_{ij} defined as the number of times grey tone i and grey tone j occur in resolution cells of a subimage having a specified spatial relation, such as distance 1 neighbors. The textural features for the subimage are obtainable from the co-occurrence matrix by measures such as

$$\sum_{i} \sum_{j} P_{ij}^{2}, \sum_{i} \sum_{j} P_{ij} \log P_{ij}$$

 $\sum_{i} \sum_{i} \frac{P_{ij}}{1+|i-j|}$

and

Haralick et al. (1973) list 14 different kinds of measures.

Using statistics of the co-occurrence matrix, Haralick performed a number of identification experiments. On a set of aerial imagery and eight terrain classes (ald residential, new residential, lake, swamp, marsh, urban, railroad yard, scrub or wooded), he obtained 82 percent correct identification with 64 x 64 subimages. On an ERTS Monterey Bay, California, image, he obtained 84 percent correct identification using 64 x 64 subimages and both spectral and textural features on seven terrain classes: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. On a set of sandstone photomicrographs, he obtained 89 percent correct identification on five sandstone classes: Dexter-L, Dexter-H, St. Peter, Upper Muddy, Gaskel.

The wide class of images on which they found that grey tone co-occurrence carries much of the texture information is probably indicative of the power and generality of this approach.

III.5 A Textural Transform

Each of the approaches described for the quantification of textural features had the common property that the textural features were computed for subimages of typical sizes such as 8×8 , 16×16 , 32×32 , or 64×64 resolution cells. To determine the textural features for one pixel we would naturally center a subimage on the specified resolution cell and compute the textural features for the subimage. If we had to determine the textural features for each pixel in an image we would be in for a lot of computation work and would significantly increase the size of our data set. Thus, the usual approach has been to divide the image into mutually exclusive subimages and compute the textural features on the selected subimages. Unfortunately, this procedure produces textural features at a coarser resolution than the original image.

In this section we generalize the grey tone co-occurrence textural feature extractor to the textural transform mode and show how by only doubling or tripling the computation time required to determine the grey tone co-occurrence matrix it is possible to produce a resolution perserving textural transform in which each pixel in the transformed image has textural information about its own neighborhood derived from both local and global grey tone co-occurrence in the image. This kind of textural transform is in the class of image dependent non-linear spatial filters.

Let $Z_r \times Z_c$ be the set of resolution cells of an image I (by row-column coordinates). Let G be the set of grey tones possible to appear on image I. Then I: $Z_r \times Z_c \rightarrow G$. Let R be a binary relation on $Z_r \times Z_c$ pairing together all those resolution cells in the desired spatial relation. The co-occurrence matrix P, P: $G \times G \rightarrow [0,1]$, for image I and binary relation R is defined by

$$P(i,j) = \frac{\# \{((a,b), (c,d)) \in R \mid I(a,b) = i \text{ and } I(c,d) = j\}}{\#_R}$$

The textural transform J, J: $Z_r \times Z_c$ (- ∞, ∞), of image I relative to function f, is defined by

$$J(y,x) = \frac{1}{\# R(y,x)} \sum_{(\alpha,b) \in R(y,x)} f[P(I(y,x),I(\alpha,b))]$$

Assuming f to be the identity function, the meaning of J(y,x) is as follows. The set R(y,x) is the set of all those resolution cells in $Z_r \times Z_c$ in the desired spatial relation to resolution cell (y,x). For any resolution cell $(a,b)\in R(y,x)$, P(I(y,x),I(a,b)) is the relative frequency by which the grey tone I(y,x), appearing at resolution cell (y,x), and the grey tone I(a,b), appearing at resolution cell (a,b), co-occur together in the desired spatial relation on the entire image. The sum

$$\sum_{(a,b)\in R(y,x)} P(I(y,x), I(a,b))$$

is just the sum of the relative frequencies of grey tone co-occurrence over all resolution cells in the specified relation to resolution cell (y,x). The factor

 $\frac{1}{\#R(y,x)}$, the reciprocal of the number of resolution cells in the desired spatial relation to (y,x) is just a normalizing factor.

IV Spatial Pre-Processing

Spatial enhancement processes can be implemented before or after the classification of the original images. One spatial averaging process which can be used before classification of the original image is rectangular convolution. A 2×2 rectangular convolution, for example, is the process that replaces the left upper resolution cell of each 2×2 window by the average of the grey tones in the 2×2 window. A 3×3 rectangular convolution replaces each grey tone with the average of the grey tones in a 3×3 window centered around it. The process of rectangular convolution can be implemented before or after texture transform. The window size for the rectangular convolution process can be as big as required.

Figure IV illustrates how the rectangular convolution can enhance the textural transform processed images. Notice that the rectangular region on the left lower corner is not easy to distinguish on the image with no rectangular convolution before or after texture transform, Figure IV a, but it is distinguishable on Figure IV d, the image with 2×2 rectangular convolution before texture transform and no rectangular convolution after texture transform, as it is on Figures IV e to IV i. The two strips on the middle of the image are not easily distinguished on Figures IV a to IV f, but they are easily distinguished on Figure IV g, the image with 3×3 rectangular convolution before texture transform and no rectangular convolution after texture transform. They are also distinguishable on images IV h and IV i which have been processed with a 3×3 convolution after texture transform. For distinguishing rectangular region and the two strips on the image, Figure IV i, the image with 3×3 rectangular convolution before and after texture transform.

V Spatial Post-Processing

Spatial post processing the classified image can be used to reduce image complexity and achieve some degree of spatial simplification and generalization. Two post processing techniques are region filling and shrinking. A region filling operation assigns an unassigned resolution cell to the category assignment of one of its neighboring resolution cells.

A resolution cell can be defined to have the four resolution cells above, below, to the left, and to the right of it as neighbors or to have those plus the resolution cells diagonally neighboring it as its neighbors. The first set of resolution cells is called its 4-neighbors and the second set of resolution cells is called its 8-neighbors. The concepts of 4-neighboring and 8-neighboring is illustrated in Figure V.1.

A region filling operation which assigns an unlabeled resolution cell to the category assignment of one of its four nearest neighbors is called a 4-fill operation. A region filling operation which assigns an unlabeled resolution cell to the category assignment of one of its eight nearest neighbors is called an 8-fill operation. A region filling operation which iterates first filling using 4 neighbors and then 8 neighbors then 4 then 8 etc., until all resolution cells are labeled, we shall for simplicity call region filling.

Figure V.2 illustrates the advantage of region filling alternating between 4-neighbors or 8-neighbors. A labeled resolution cell in an area of unlabeled resolution cells would grow as a diamond region under repetitive 4-fill operations. It would grow as a square region under repetitive 8-fill operations. And it would grow almost as a circle under repetitive 8-fill and 4-fill operations.

Region shrinking is the opposite kind of operation from region filling. A region shrinking operation assigns a labeled resolution to "unassigned" if its neighbors have different labels from it.

A region shrinking operation which assigns a labeled resolution cell to "unassigned" if k of its four nearest neighbors have labels which are different than its own label is called a 4-k shrink operation. A region shrinking operation which assigns a labeled resolution cell to "unassigned" if k of its eight nearest neighbors have labels which are different from its own label is called and 8-k shrink operation.

a

Ь

Figure V.1a illustrates the 4-neighborhood of a resolution cell and

Figure V.1b illustrates the 8-neighborhood of a resolution cell.

Figure V.2 illustrates the effect of 4 and 8-filling or a single resolution cell.

In Figure V.3 we illustrate the effect of the filling and shrinking operations on a classified image. Figure V.3 a is a classified image. The black areas represent unassigned resolution cells. (The decision rule leaves unassigned those resolution cells having multispectral signatures which do not provide enough information to make a reliable assignment.) Figure V.3 b shows the classified image of Figure V.3 a after a complete region filling. Notice that after a complete region filling, all resolution cells have a label. Figure V.3 c shows the classified image of Figure V.3 a after a 4-0 shrink. Notice that it has more black area than the image in Figure V.3 a due to the effect of its relabeling labeled resolution cells to "unassigned".

VI Spectral Analysis: Edit 6

Of the 6 best spectral bands on edit #6, .40 - .44, .588 - .643, .65 -.69, .72 - .76, .981 - 1.045, and 2.10 - 2.36 micrometers, the feature selection procedure selected band pairs .40 - .44 and .65 - .60 with .40 - .44 and 2.10 -2.36 micrometers as the best 2 band pairs for the table look-up rule. Figure VI.1 shows the .72 - .76 micrometer band and Figure VI.2 shows the ground truth training data overlay on this band. The alpha-beta thresholds were set at .3 and .021. This threshold selection was too low for of the 159,500 points to be classified, 67,323 were reserved assignments because of incompatible assignments between the first and second band pairs and 6,928 were reserved assignment because there was more than one possible assignment common to the two band pairs. Figure VI.3 shows the resulting classification. The contingency table, Table VI.1 shows an equally weighted misidentification error rate of 36% and equally weighted false identification error rate of 34%. The largest cause of the misidentification error was category 2.4, immature poletimber loblolly pine, being assigned to category 1.3, immature sawtimber shortleaf pine, and category 2.6, mature sawtimber loblolly pine being assigned to category 2.5, immature sawtimber loblolly pine and being assigned to category 2.3, seedling and sapling loblolly pine.

If the classified image is filled so that all resolution cells whose category assignment was reserved is assigned to the category of its spatially nearest resolution cell neighbor which is assigned, the error rate remains substantially the same, about a 36% misidentification and false identification error rate (Figure VI.4 and Table VI.2). This implies that for those resolution cells whose assignment was reserved because of the low probability of correct assignment, category assignments, almost as good as those originally assigned, can be made using the spatial information carried by the initially classified image with the reserved decisions.

Perhaps what is even more surprising about the amount of spatial information the classified image has is that by performing spatial operations on it, the classification accuracy can increase. For example, if the completely filled image is shrunk for one iteration with a simple 4-shrink operator and then filled up again, Table VI.3 shows an accuracy increase: 33% misidentification error rate and 35% false identification error rate. Comparable results are also obtained by using the initially classified image with reserved decisions and performing a 4-fill iteration followed

by an 8-fill iteration followed by a 4-shrink iteration and then completely filled (Figure VI.5 and Table VI.4).

The best (percentage wise) 2 band pair results came from starting with the initially classified image with reserved decisions and doing a 4-fill, an 8-fill, a 4-shrink, an 8-shrink, and then a complete filling up. This yields a 31% misidentification error rate and 7% false identification error rate (Table VI.5 and Figure VI.6). Notice, however, that all the points in category 2.4, poletimber immature loblolly, have been misidentified as category 1.3, sawtimber immature shortleaf pine, and all the points in category 2.6, mature sawtimber loblolly pine, have been misidentified as categories 1.3, 2.3 and 2.5. Furthermore, no points were assigned to categories 2.4 and 2.6. This suggests that the tree stands in those areas of immature loblolly and mature sawtimber loblolly pine had a substantial number of trees spectrally similar to those in categories 1.3, 2.3, and 2.5. Areas predominantely in categories 2.4 and 2.6 would have some resolution cells initially assigned to categories 2.4 and 2.6 plus wrong assignments to categories 1.3, 2.3, or 2.5. Hence, a context sensitive shrinking operation on the 4-fill and 8-fill image which would leave alone any resolution cell assigned to category 2.4 if it neighbors a resolution cell of category 1.3 and which would leave alone any resolution cell assigned to category 2.6 if it neighbors a resolution cell of category 1.3, 2.3 or 2.5 has the possibility of permitting a higher probability of correct identification.

If instead of doing only one 4-shrink then 8-shrink iterations, two such iterations are made before a complete filling, then the results are not quite as good: 34% misidentification error rate and 6% false identification error rate. (Table VI.6).

The use of additional spectral bands can sometimes increase identification accuracy. In the case of the edit [#]6 data, this did not seem to be the case. The three best band pairs were:

- (1) .40 .44 and .65 .69 micrometers
- (2) .40 .44 and 2.10 2.36 micrometers
- (3) .72 .76 and .981 1.045 micrometers

The alpha-beta thresholds were set at .6 and .042, respectively. The resulting number of reserved decisions due to no common category assignment was 51,794

and the number of reserved decisions due to more than one possible category assignment was 19,706 (Figure VI.7 and Table VI.7)。 Higher thresholds would have been better.

After a complete filling, there was a 34% misidentification and 33% false identification error rate (Figure VI.8 and Table VI.8). If the completely filled image had a 4-shrink operation and then another complete filling, the misidentification error rate improved to 31% and false identification error rate improved to 16% (Figure VI.9 and Table VI.9). If before the complete filling is done an iteration of a 4-fill followed by an 8-fill and a 4-shrink followed by an 8-shrink is done, the misidentification error rate improves to 30% and the false identification error rate improves to 5%, the best 3-band pair result (Figure VI.10 and Table VI.10). As in the two band pair case, doing two iterations of the 4-shrink followed by the 8-shrink instead of one iteration, does not provide as much improvement: a 36% misidentification error rate and a 6% false identification error rate (Table $VI_{.11}$). The best 3 band pair result confused the same categories as the best 2 band pair result. Category 2.4, poletimber immature loblolly was assigned as category 1.3, immature shortleaf pine. Category 2.6, mature sawtimber loblolly pine was assigned to categories 2.3 and 2.5, seedling and sapling loblolly and sawtimber immature loblolly pine.

Figure VI.1 The .72 - .76 micrometer band

Figure VI.2 The ground truth training data overlayed on the .72 - .76 micrometer band.

Figure VI.3 The classification of the best two band pairs for alphabeta thresholds of .3 and .021.

Figure VI.4 The classified image of Figure VI.3 after a complete filling.

			•								
	R DEG	1.3	1•4	2•3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR
JNKWI	N63106	12483	12809	19901	1002	<u>~473</u>	1024	10627	130425		0
1.3	3475	2696	274	243	75	86	24	83	6956	785	23
1 • 4	561	8	2000	41	0	27	. 7	26	2670	109	6
2.3	2013	- 62	18	5336	31	212	37	18	- 7 727	178	1
• 4	311	244	14	16	42	0		 2 ,	629_	. 276	87_
• 5	2387	140	52	- 235	16	1140	61	3	4034	507	31
26	793	94	26	198	0	276	45	2	1434	£96	93
7.2	1615	95	76	29	70	0	· · · ·	3738	5625	272	7
OTAL	.74261	15822	15269	25999	1236	11214	1200	14499	159500	2923	36
ERR	0	643	460	762	192	601	131	134	2923	*****	****

SAMH28801 - 1 SCALE FACTOR 10++ 0

SAMH21GDT - 1

CONTINGENCY TABLE FOR

Table VI.1 The contingency table of the best 2 band pairs for alphabeta thresholds of .3 and .021.

CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2F7B01 - 1 SCALE FACTOR 10** 0

CO	L.	=	ASSIGN	CAT	ROW =	TRUE	CAT

	R DEC	1.3	1.4	2.3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR
FINE OF	^	76667	22004	a 10 1 7	1707	7556.1	25.04	170.00	120/05		
1.3				33017							0
1.4	ő			76			53 19		6956 2670	215	23
2.3	, j			7119					7727		
2.4				36		0			629		88
2.5	··· · · 0	329	128	511	30	2891	140	5	4034	1143	28
2.5	. i 🕐 🌔	214	68	422	0	615	100	4	1434	1334	
7.2	n n	197	164	47	01	0	5	5125	5625	500	9
TOTAL	0	33316	26393	41701	2118	29693	2971	23306	159500	5972	36
ERR	0	1326	1034	1565	305	1211	27R	253	5972	*****	*****
FRR	0	2.0	30	18	80	30	. **. • : 7:4	5	36	*****	*****
							1				

Table VI.2 The contingency table of the best 2 band pairs after a complete filling.

ORIGINAL PAGE IS OF POOR QUALITY CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2E8B01 - 1 SCALE FACTOR 10** 0

ы	DEC	1.3	1.4	2•3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR	
	3	26835	22575	34649	837	27555	525	17449	130425	0	0	
	n	6045	- 680	49	109	0	∩			891	13	
	n.	2	2499	97	0	72	0	0	2670	171	6	
	n,	, U		7571	6	150	1	. 0	7727	156	2	
	ĥ	555	6	11	57	0	•	0	629	572	91	
		324	20	323	45	3314	A	. 0	4034	720	18	
										-		
						Ō				155	3	
			-			31773				4099	33	
	'n	1.5	24	12	74	21	100	1	25	****	*****	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6045 0 2 0 324 0 166 0 55 0 34002 0 1102	0 6065 680 0 2 2499 0 0 0 0 555 6 0 324 20 0 166 0 0 55 100 0 34002 25880 0 1102 806	0 60.45 680 49 0 2 2499 97 0 0 7571 0 555 6 11 0 324 20 323 0 166 586 0 55 100 0 0 3402 25880 43286 0 1102 806 1'66	0 6045 680 49 109 0 2 2499 97 0 0 0 7571 6 0 555 6 11 57 0 374 20 323 45 0 166 586 0 0 55 100 0 0 34002 25880 43285 1054 0 1102 806 166 160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

COL. = ASSIGN CAT . ROW = TRHE CAT

Table VI.3 The contingency table of the best 2 band pairs after complete filling, 4-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2=0801 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRUE CAT R DEC 1.3 2.3 2.4 2.5 2.6 7.2 TOTAL ERR ERR 1.4 HINKWA 26835 22574 837 27552 525 17449 n 1.3 n 1.4 2...3 Ó n 7.4 2.5 Ŕ 2.6 ń Ö 7.2 n 0 34002 25879 43290 1054 31770 533 22972 TOTAL ERR ***** 35 ***** FPR C

Table VI.4 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, and complete filling operations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VI.5 The classified image of Figure VI.3 after 4-fill, 8-fill, 4-shrink, and then complete filling operations.

Figure VI.6 The classified image of Figure VI.3 after 4-fill, 8-fill, 4-shrink, 8-shrink, and then complete filling operations.

CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2F9B01 - 1 SCALE FACTOR 10**

												· .
	R	NF C	13	1•4	2•3	2.4	2.5	2.6	7.2	TOTAL	FRR	ERR
111141		24	2725 '	21595	35742	o	27636	n	18602	130425	0	0
1.3		۰,	6550	4.6	0	0	0		0	6956	406	6
1.4		:0	. C.	2499	70	0	101	. 0	0	2670	171	6
2.7		į.	í	1-	7727	Ó			. 0	7727	0	0
2.4		C	629	Ö	0	Ő	0	Ô	0	629	629	100
2.5		12	351	Λ	72	0	3611	. ∩	0	4034	423	10
2.6		n,	522	0	303	· 0	608	<u>́</u>	. 0	1434	14-4	100
7.2			. ີ່າ		Ω.	0	0	· · · ·	5613	5675	12	0
TOTAL		10	35303	24512	43514	0	31956	0	24215	159500	3075	31
FIRR		U	1503	418	445	0	709	0	0	3075	****	*****
FRR		э	19	14	5	0	16	0	0	7	****	*****

COL. = ASSIGN CAT ROW = TRHE CAT

Table VI.5 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

CONTINGENCY TAPLE FOR SAMH2 GDT - 1 SMH2E4801 - 1 SCALE FACTOR 10** 0

> COL. = ASSIGN CAT ROW TRUE CAT

R DEC 1.3 7.2 TOTAL ERF. 1.4 2.3 2.4 2.5 2.6 ERR

DAKWA	0 26667 19271 50182 0 15793	0 18512 130425 () 0
1.1	0 6911 0 45 0 0	0 0 6956 45 1
1.4	0 0 2499 171 0 0	0 0 2670 171 6
2.3	0 0 0 7727 0 0	0 0 7727 () 0
2.4	0 629 0 0 0 0	0 0 629 629 100
		•
2.5	0 351 0 1157 0 2526	0 0 4034 1508 37
26	0 0 0 1228 0 206	0 0 1434 1434 100
7.2	0 0 0 0 0	n 5625 5625 () 0
TOTAL	0 34558 21770 60510 0 18525	0 24137 159500 3787 34
ERP	0 980 0 2601 0 206	0 0 3787 ***** *****
FPR	0 12 0 25 0 8	A A A A A A A A A A A A A A A A A A A

Table VI.6

The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.

ORIGINAL PAGE IS OF FOOR QUALITY

Figure VI.7 The classification of the three best band pairs for alpha – beta thresholds of .6 and .042.

Figure VI.8 The classified image of Figure VI.7 after a complete filling.

		COL	• = AS	SIGN C	AT	_ROW_=	TRUE	CAT	, ,		
	RDEC	1.3	1.4	2•3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR
	N60679	15894	9102	14353	390	15106	4988	9713	130425	0_	0
1.3	2903	3387	113	74	66	157	117	. 139	6956	666	16
1.4	75()	34	1807	. 7	0	43	22	. 7	2670	113	6_
2.3	2541	139	7	4521	2	339	137	41	7727	665	13
	311	217	13	4	23	31	21_		629	295	93_
2.5	1879	260	20	84	3	1535	246	7	4034	620	29
2.6	754	137	6	83	2	290	152	10	1434	528	78
7.2	1683	115	119	47	2	1	5	3653	5625	289	7
TOTA	L71500	20183	11387	19173	488	17502	568R	13579	159500	_ 3176	34
ERR	0	902	278	299	75	861	548	213	3176	****	****

.

Table VI.7 The contingency table of the best 3 band pairs for alpha beta thresholds of .6 and .042.

CONTINGENCY TARLE FOR SAMH2 GDT - 1 SMH2F7B02 - 1 SCALE FACTOR 10** 0

		Ċ	0L∎ = /	ASSIGN (CAT	ROW	TRUE	E CA1	ſ		
	RDE	C 1.7	1•4	2•3	2•4	2.5	2.6	7.2	ΤΟΤΑΙ	ERR	ERR
HINKY N	0	3067	2 2009	7 23471	819	29310	9971	16124	130425	•	0
1.3				0 132							18
1.4	0	6	3 243	3 16	0	100	46	12	2670	237	
2.2	0	28	7 1	3 6444	3	554	264	67	7727		
2.4	n N	41	4 2	4 10	53	66	47	20	629		92
2.5	Ċ	47	7 4	1 195	4	2799	511	12	4034	1225	31
2.6	c	27	a	9 184	3	618	330	17	1434	1104	
7.2	C	25	3 29	4 77	5	5	6	4985	5625	640	11
TOTAL	i i G	381	2317	1 30529	1004	33831	11365	21500	159500	6315	36
E d b	C	174	2 64	1 614	132	1722	1062	381	6315	*****	
FUD	c)	4 2] 9	71	38	76	7	35	*****	*****

Table VI.8 The contingency table of the best 3 band pairs after a complete filling.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VI.9 The classified image of Figure VI.8 after a 4-shrink operation and then a complete filling.

Figure VI.10 The classified image of Figure VI.7 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.

SCALE FACTOR 10** 0 SAMH2 GDT - 1 SMH2F8802 - 1 CONTINGENCY TABLE FOR

			COL	• = AS	SIGN C	AT	ROW =	TRUE	CAT			
	R	DFC	1.3	1•4	2.3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR
1 Je 1 1 1 1 1 1 1			31497	20434	24953	73	13003	4516	15859	130425	0	0
1.3		∩	6745	122	19	Ő	9	15	46	6956	211	3
1.4		c	30	2490	16	ō	111	10	4	2670	160	7
2.7		ò	51	-		ō	525	. 9	Ó	7727	586	3 7 8
7.4		, r	590	ñ		. 34	0	٩.	0	629	55 5	95
2.5		n	374	n	108	O	3417	134	1	4034	617	15
2.6		<i>r</i> •	283	Ċ.	211	Ö	774	166	0	1434	1268	88
7.2		0		180	n	0		0	5327	5625	258	5
TOTAL		n	39690	23226	32448	107	37929		21237	159500	3755	31
ERR		U		302		0	1419	181	51	3755	*****	*****
t o a	2	ŋ	18	11	5	0	29	57	1	16	****	*****

Table VI.9 The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2=0B02 - 1 SCALE FACTOR 10## 0

> COL. = ASSIGN CAT ROW = TRIJE CAT

R	DEC	1.3	1•4	2•3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR
			1. s. s •								
115 MININ	. 0	31595	19955	32859	0	29219	0	16797	130425	0	0
1.3	° O	6956	n i	0	. 0				6956		ō
1.4	. ŋ	0	2499	171	0	0.	0		2670	: 171	6
2.3	0	0	0	7644	0	83	· •		7727	83	
2.4	0	629	0	0	0				629	629	
											•
2+5	· . 0	351	0	27	. 0	3656	1 · · · · ·	0	4034	178	9
2.6	0	n -		825	0	609			1434		-
7.2	0	ີ ເ <u></u>	15	0	0	0			5625		
TOTAL	0	39551	22469	41526	0	33567	n i		159500		
Lbb	0	980	15	1923	0	692		0	2710	*****	
e e e e e e e e e e e e e e e e e e e											
FPR	<u>, 0.</u>	12	1	12	0	16	•	0	5	**:	****

Table VI.10The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink, and complete filling operations.

39

ORIGINAL PAGE IS

T LOOK QUALITY

CONTINGENCY TABLE FOR SAMH2 GDT - 1 SMH2E6B02 - 1 SCALE FACTOR 10** 0

	R	DEC	1.3	1•4	2•3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR
I PIP WA	1	ŝ	23561	18825	55311	٥	11429	0	21299	130425	0	0
1.7		Ó	6748	8	່າ	0	0	0	0	6956	-8	0
1.4		0	۰ ا	2499	171	. 0	0	0	0	2670	171	6
2.2		Ó	0	0		0	0	0	0	7727	0	0
2.4		n	629	ĉ	n	0	0	n	0	629	6;'9	100
2.5		ŋ	3]	0	1905	0	2098	0	0	4034	1936	48
2.5		0	Ő	0	-	0	26	n	0	1434	1434	100
7.2		0				Ō		n		5625		
TOTAL		n			66522	ŏ		0		159500	4192	36
FPR	•	0			3484	Ō		0		4192	*****	*****
FRE	5	0	.9	1	31	o	1	· · ·	0	6	****	****

COL. = ASSIGN CAT ROW = TRUE CAT

Table VI.11 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.

GINAL PAGE IS

VII Spectral Analysis: Edit 9

Using the same initial six spectral bands to select features from, the feature selector chose band pairs .40 - .44 and .65 - .69 with .72 - .76 and .981 - 1.045 micrometers as the best 2 band pairs for the table look-up rule. Figure VII.1 shows the .72 - .76 micrometer band and Figure VII.2 shows the ground truth training data overlayed on this band. The alpha-beta thresholds were set at .3 and .021.

The contingency table (Table VII.1) for the best 2 band pairs classification with an alpha threshold of .3 and a beta threshold of .021 gave a misidentification error rate of 22% and a false identification error rate of 32%. There were 79,670 reserved assignments because of incompatible assignments between the first and second band pairs and 2,357 were reserved assignments because there was more than one possible assignment common to the two band pairs. The raw classified image is shown in Figure VII.3. The main cause of error is the confusion between category 1.3, shortleaf pine, and category 2.5, loblolly pine. This error is due to assigning category 1.3 when the true category is 2.5. A look at the timber stand map for edit #9 shows a patch of category 2.5, which is surrounded by category 1.3, in the lower right-hand corner. It is this area that gets misassigned the most.

If the classified image is filled so that all resolution cells whose category assignment was reserved is assigned to the category of its spatially nearest resolution cell neighbor which is assigned, the error rate remains substantially the same, about a 25% misidentification error rate and 32% false identification error rate (Figure VII.4 and Table VII.2) If we do 6 iterations of 4-fills and then do a 4-shrink and fill up, the resulting contingency table is Table VII.3. The misidentification and false identification error rates of 21% and 26% are lower than before, but the misidentification error rate category 2.5 went from 43% to 44% with category 1.3 still the problem.

The best 2 band pair results were obtained from doing a 4-shrink following the original classification and then filling (Figure VII.5). Table VII.4 shows a misidentification error rate of 14% and a false identification error rate of 17%, but still the misidentification of category 2.5 is the main cause of error. The

shrinking first does eliminate a significant amount of error between category 3.1, laurel oak, and category 4.2, low quality sweetgum. Neither procedure has trouble classifying category 2.5 on the left-side of the timber stand. Only on the right side where category 2.5 resembles category 1.3 spectrally is there confusion. This confusion could be ultimately due to sun angle.

The three best band pairs were:

- (1) .40 .44 and .65 .69 micrometers
- (2) .72 .76 and .981 1.045 micrometers
- (3) .40 .44 and 2.10 2.36 micrometers

Figure VII.6 shows a plot of the alpha threshold versus the number of reserved decisions. For the three best band pairs, the alpha and beta thresholds that minimized the number of reserved decisions was .6 and .042, respectively. The raw classified image is shown in Figure VII.7. The contingency table indicates a misidentification error of 24% and a false identification error of 30% (Table VII.5).

After a complete filling, there was a 25% misidentification and 32% false identification error rate (Figure VII.8 and Table VII.6). If instead, our post processing consisted of a 4-fill, 8-fill, 4-shrink, 8-shrink and then a complete filling the misidentification error rate was 9% and the false identification error rate was 9% (Table VII.7 and Figure VII.9).

Figure VII.1 The .72 - .76 micrometer band.

Figure VII.2 The ground iruth training data overlayed on the .72 - .76 micrometer band.

							<u>`</u>				
			ه <u>-</u> ^S	51C15-C	AT	AOM =	TELE	CAI	·		
											EKI
	RDEC	1.3	2.3	25	2.6	3•1	4.2	7.2	TOTAL	ERR	EKI
	67 52	13354	.1514	_ 9975_	_7.423_	.3256	4815	_5798_	.116183	<u> </u>	<u>.</u>
1.3	2952	5476	129	86	35	0	n	7	8685	257	4
2	504.		272	2_	6_	<u> </u>				42_	14
2.5	5327	1755	2-0	2614	715	13	80		11679	2728	43
<u></u>	1625	12	25		566	27	7C	19	2645		3
3 • 1	816	i	- Li	2	27	599	65	18	1527	112	16
1.2	966		<u>_</u>	29	41_	18:	472	12		262	
7.2	627	C.	3	(·	12	6	20	576	1205	50	- 9
	62227	21162	2463	13719	8845	4181	5542	6411	_ 144550_	3832	22
FRR		1732	357	394	836	2.26	254	97	3832	****	****

ERR	<u> </u>	24_	55	. 8		27	36.	16	3?_	*****	***

Sn

Table VII.1 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and .021.

CONTINGENCY TABLE FOR SAMH3 GDT - 1 SMH3F1C71 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRUE CAT

l DEC	1.3	2.3	2. 5	2.6	3. 1	4. 2	7. 2	TOTAL	#ERR	% ERF
0	26128	5502	21805	20888	8814	13025	20021	116183	Q	0
0	8197	236	164	69	0	0			488	6
0	50	789	6	19	0	6	55	925	136	15
Ö	3657	471	6072	1257	21	167	34	11679	5607	48
ŏ	44	83	511	1621	96	215	75	2645	1024	39
	0	•		97	1185	174	45	1527	347	22
Ň		1 I I I I I I I I I I I I I I I I I I I					- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1			34
		· · · · ·								13
-		. –								25

	3731	, ,,,,	740	1000	020	047		0010		
0	31	50	11	49	31	. 37	21	32	*****	*****
	000000000000000000000000000000000000000	0 26128 0 8197 0 50 0 3657 0 44 0 0 0 0 0 0 0 0 0 38076 0 3751	0 26128 5502 0 8197 236 0 50 789 0 3657 471 0 44 83 0 0 0 0 0 0 0 0 0 0 0 6 0 38076 7087 0 3751 796	0 26128 5502 21805 0 8197 236 164 0 50 789 6 0 3657 471 6072 0 44 83 511 0 0 0 6 0 0 0 61 0 0 6 0 0 38076 7087 28625 0 3751 796 748	0 26128 5502 21805 20888 0 8197 236 164 69 0 50 789 6 19 0 3657 471 6072 1257 0 44 83 511 1621 0 0 0 6 97 0 38076 7087 28625 24092 0 3751 796 748 1583	0 26128 5502 21805 20888 8814 0 8197 236 164 69 0 0 50 789 6 19 0 0 3657 471 6072 1257 21 0 44 83 511 1621 96 0 0 0 6 97 1185 0 0 0 61 99 393 0 0 6 0 42 16 0 38076 7087 28625 24092 10525 0 3751 796 748 1583 526	0 26128 5502 21805 20888 8814 13025 0 8197 236 164 69 0 0 0 50 789 6 19 0 6 0 3657 471 6072 1257 21 167 0 44 83 511 1621 96 215 0 0 0 6 97 1185 174 0 0 6 41 99 393 1121 0 0 6 0 42 16 87 0 38076 7087 28625 24092 10525 14795 0 3751 796 748 1583 526 649	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table VII.2 The contingency table of the best 2 band pairs after a complete filling.

OF POOR QUALITY

Figure VII.3 The classification of the best two band pairs for alpha – beta thresholds of .3 and .021.

Figure VII.4 The classified image of Figure VII.3 after a complete filling.

		COL	• * AS	SIGN C	TAT	ROW	TRUE	C ^ 1	ſ		
·	R DEC	1.3	2.3	2.5	2.6	3•1	4.2	7.2	TOTAL	ERR.	ERI
GHESH	С	27122	4879	22124	20345	8679	12850	20165	116183	· ·)	0
1.7	0	A463	12.	61	22	· · · · ·	<u> </u>	Q	8685	222	3
2.1	C	44	827	3	10	0	7	24	925	93	11
2.5		3940	381	6486	793	2	50	18	11679	5193	44
2.6	G	2.7	81	492	1723	.8.8	171	63	2645	92 ?	35
•								•			
7.1	0	0	0	2	86	1243	144	52	1527	284	19
4.2	C	0	0	29	74	332	1251	15	1701	457	26
7.2	0	n	5	n	37	6	70	1078	1205	127	11
TOTAL	e (P	10506	6303	29207	22020	10350	14570	21474	144550	7205	21
FRR	Û	4011	597	587	1022	428	460	191	7296	****	****

Table VII.3

The contingency table of the best 2 band pairs after complete – filling, 4-shrink, and complete filling operations.

R		כפו	•_=_AS	SIGN_	CAT	BOW -	·		· · · ·		
R						<u></u>	<u>=TRu</u>	CA1	[•
R	DFC										
		1+3	2.3	2.5	2.6	3•1	4.2	7.2	TOTAL	ERR	ERI
UNKWN		28958	1000	22450	19124	80.2E		22110	116183		
2. it. h.i		8629	41	15	0	0025	11217	0	8685		0
2.3	Ŭ	29	880	(1	ŏ	ີ່ດ		13	925	56	
2.5	0	4353	227	6781	209	0	^		11679	4893	42
2.6	0	0	89	476		42	77		2645	683	26
							•			and the first	
3 • 1	0	0	0	0	0	1360	105	62	1577	167	11
4.2	0	<u> </u>	0	31	22	196	1452		_1701_	242	15
7.2	U	U	U	U	6 .		35	1164	12.05	41	3
TOTAL	6.	61267	4462	29762	21420	9623	12945	24368	144550_	6122	
ERR	U	4382	357	522	337	238	217	86	6139	****	*****

Table VII.4

The contingency table of the best 2 band pairs after 4-shrink, and complete filling operations.

FNAL PAGE IS POOR QUALITY

Figure VII.5 The classified image of Figure VII.3 after 4-shrink and complete filling operations.

			• • AS	SIGN C	AT	RUW	TRIJE	CAI			
	R DEC	1+3	2.3	2.5	2•6	3•1	4•2	7•2	TOTAL	ERR	ERR
······											
TUNKWA		17881	2536	12753	10805	5216	6081	8789	-116183-		
1.3	1755	6450	119	253	98	Ō	1	9	8685	480	7
	402	16	425-	íz-		4	<u> </u>		925	-98-	
2.5	4894	2219	198	3700	507	11	127	23	11679	3085	45
2.6	134B			265	789	50	119	- 24	2645	508-	
3•1	591	0	0	13	41	722	134	26	1527	214	23
*4•2 **	723-			37	45	154		18	-1701-		26
7.2	436	0	8	0	13	32	18.	698	1205	71	9
	62969	26575	-3329	-16333-	12315	6189	7204	-9636		- 4712-	
ERR	0		368	580	721	251	399	149	4712	****	****
ERR										****	- **** *

____ Table VII.5

The contingency table of the best 3 band pairs for alpha – beta thresholds of .6 and .042.

}

ï:

)

)

CONTINGENCY TABLE FOR SAMHS GDT - 1 SMH3F1804 - 1 SCALE FACTOR 10** 0

		COL.	= AS	SIGN C	AT	ROW =	TRUE	CAT			•
R	DEC	1.3	2. 3	2. 5	2. 6	3. 1	4. 2	7. 2	TOTAL	#ERR	% ERF
A M Z M T									11 (102		
INKWN	<i>T</i>	24910							116183		9
1.3 2.3	ŏ	7945	195 743	389 31	139 32	0	1		8685	740	19
2.3 2.5	0						0		925	177	
Z. 6	0	3293	332	6730	1001		267 268		11679	4949	42
								•			
3. 1	0	0	0 N	29	78	1137	229	54	1527	390	26
1. 2	0	0	6	59	86	278	1226	46	1701	475	28
7. 2	0	0	12	0	29	60	33	1071	1205	134	11
TOTAL	0	36191	6354	31196	25308	11944	13945	19612	144550	7978	25
HERR	0	3336	624	1074	1365	492	798	289	7978	****	*****
X ERR	0	30	45	14	47	30	39	21	32	*****	*****

Table VII.6 The contingency table of the best 3 band pairs after a complete filling.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VII.7 The classification of the three best band pairs for alpha – beta thresholds of .6 and .042.

Figure VII.8 The classified image of Figure VII.7 after a complete filling.

CONTINGENCY TABLE FOR SAMH3 GDT - 1 SMH3F7B04 - 1 SCALE FACTOR 10** 0

3

	p r	EC	1.3	23	2.5	2.6	3. 1	4.2	7. 2	τοτοι	#ERR	% ERR
				. , .	2. 0	- . •	v . •		· · •			
NKWN	I	0	30218	2169	21299	17317	8203	10275	26702	116183	0	0
. 3		0	8685	0	0	0	0	0	0	8685	0	0
2.3		0	0	925	0	0	Ŭ,	0	0	925	0	0
2.5		0	4489	0	6906	0	0	0	234	11679	4773	41
2,6		0	0	0	531	2039	0	7	68	2645	606	23
					•							
3. 1		0	0	0	· 'o	i o	1521	0	. 6	1527	6	0
. 2		Ó	0	. 0	0	0	0	1701	0	1701	0	. 0
7. 2		0	0	0	0	0	0	0	1205	1205	0	0
TOTAL	_	0	43392	3094	28736	19356	9724	11983	28265	144550	5385	. 9
ERR		0	4489	0	531	0	0	7	358	5385	*****	*****
X ERI	२ े	0	34	0	7	0	0	0	23	9	*****	*****

Table VII.7The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink, and complete filling operations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VII.9 The classified image of Figure VII.7 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

VIII Spectral Analysis: Edit 14

The same six spectral bands were chosen from edit #14 as were taken from edit #6 and edit #9. Figure VIII.1 shows the .72 - .76 micrometer band for edit 14 and Figure VIII.2 shows the selected ground truth training data. The selection procedure chose .40 - .44 and 2.10 - 2.36 with .588 - .643 and 2.10 - 2.36micrometers as the best 2 band pairs for the table look-up rule. The alpha and beta thresholds were set at .3 and .021 respectively. The thresholds were too low and resulted in 56,320 reserved decisions in the contingency table for classification (Table VIII.1). The resulting misidentification error rate was 28% and false identification error rate was 29%. The result on the best 2 band pairs with 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations (Table VIII.2), was a misidentification error rate of 15% and a false identification error rate of 17%.

The feature selection procedure chose band pairs .40 - .44 and .65 - .69 micrometers, along with the best 2 band pairs for the best 3 band pairs. Using alpha and beta thresholds of .6 and .042, respectively, the number of reserved decisions was 43,236, with 25,794 points reserved because no assignment was possible and 17,442 reserved due to possible multiple assignments.

The largest cause of error for best 3 band pairs (Table VIII.3) was the confusion between categories 2.3 and 2.5, different ages of loblolly pine, and the confusion of each of these with category 4.1, low quality sweetgum. The misidentification and false identification error rates (46% and 48%) for category 4.1 are high but the number of points whose true category is 4.1 is small. Figure VIII.3 shows the resulting classification. There was such a small area of swe etgum, category 4.1, on the timber stand map that the ground truth may not be adequate to allow good spectral estimation.

The first post processing procedure we used was a complete filling (Table VIII.4 and Figure VIII.4). The errors were increased by the procedure, so one 4-shrink operation was performed on the image and this reduced the misidentification error to 9% and false identification error to 4% (Table VIII.5 and Figure VIII. 5), but the low error rates were helped by the fact that there were 84,828 reserved decisions. Table VIII.5 does show that the confusion with category 4.1, was almost eliminated, though the misidentification error rate caused by assigning

2.3 to 2.5, 21% was still high. Completely filling the image resulted in a misidentification error rate of 17% and false identification error rate of 13% (Table VIII.6 and Figure VIII.6).

If on the raw classified image we do one 4-fill (Table VIII.7 and Figure VIII.7) and then one 8-fill, the resulting contingency table (Table VIII.8 and Figure VIII.8) is almost identical to Table VIII.3. The error rates on each are exactly the same. Then doing a 4-shrink (Table VIII.9 and Figure VIII.9) we find a contingency table almost identical to Table VIII.4. But if instead of filling we do an 8-shrink, we almost totally eliminate error (Table VIII.10 and Figure VIII.10). Only 2 points are incorrectly identified. Now if we completely fill the image we get our best results (Table VIII.11 and Figure VIII.11): 13% misidentification and 9% false identification error rates. Visual comparisons show the closeness of the two operations. Following the fills with a 4-shrink produces Figure VIII.5. Figure VIII.6 is the final classified image after complete filling, a 4-shrink and then a complete filling, while Figure VIII.11 is the final result of a 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling. From the figures, we can see that the extra shrink allowed the categories to be more dense. The contingency table of the image should show better results since the categories on the timber stand map tend to be dense, which is the case.

The results of the shrinking operations indicate that the errors that did occur were sparse enough to be wiped out with the shrinking. The reason that a shrink operation is not performed first on the image is that it tends to eliminate small area categories, even though correctly assigned, on the image.

Figure VIII.1 The .72 - .76 micrometer band.

Figure VIII.2 The ground truth training data overlayed on the .72 - .76 micrometer band.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SAMH4 805 - 1 SCALE FACTOR 10** 0

		col	• • AS	551GN 0	CAT .	ROW =	TRHE	CA1	•
	RDFC	2.3	2•5	4•1	7•2	TOTAL	FRP	FRF	SD
ETTER VER	151893	8418	19856	13565	29402	123134	•	Ö	. 0
2.1	1959	1553	739	515	209		1462	49	ŏ
2.5	958		3567		64	4978	451	11	Ō
4 1	765	7 -	147				390	40	
7.2	745	81	158	75	1855	2914	314	14	0
							•		•
TOTAL	56320	10481	24467	14942	31540	137750	2620	28	0
FPR		510	1044	783	283	2620	*****	****	****
ERF	2 0	25	23	57	13	29	****	****	*****

Table VIII.1 The contingency table of the best 2 band pairs for alpha - beta thresholds of .3 and .021.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4F5B05 - 1 SCALE FACTOR 10** 0

:

			COL	• = AS	SIGN C	TAT	ROW =	TRUE	CAT	
	R	DEC	2•3	2.5	4•1	7•2	TOTAL	ERR	ERR	s SD
UNKWN		- O	6857	41525	18750	56002	123134	n	0	. 0
2.3		ŭ					4975		46	0
2.5			130	4848	0	0	4978	130	3	0
4.1							1749		· · · 7	0
7.2							2914		.7	0
									•	
TOTAL		ก	9667	47930	21432	58721	137750	2748	15	0
ERR		0.	130	1557	1061	0	2748	*****	****	****
ERR		0	5	24	40	0	17	*****	*****	*****

Table VIII.2The contingency table of the best 2 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink, and complete filling operations.

URIGINAL PAGE IS OF POOR QUALITY CONTINGENCY TABLE FOR SAMH4 GDT - 1 SAMH4 B06 - 1 SCALE FACTOR 10++ 0

	•	COL	= AS	SIGN C	TAT	ROW =	TRUE	CAT	
	RDEC	2•3	2.5	4+1	7•2	TOTAL	ERR	ERR	SD
UNKWN	29754	14646	23477	10471	34786	123134	0	0	0
2.3	1568	1931	782		303		1476	43	0
2.5	717	364	3725		63	4978	\$36	13	0
4.1			151		21	1749	495	46	1
7.2	533	249	218		1878	2914	501	21	0
TOTAL	43236	17513	28353	11597	37051	137750	3010	30	0
ERR		936		536		3010	*****	*****	*****
ERR		33	24				****	****	*****

Table VIII.3 The contingency table of the best 3 band pairs for alpha - beta thresholds of .6 and .042.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4F1806 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRHE CAT

	R	DEC	2.3	2.5	4•1	7.2	TOTAL	ERP	ERF	s SD
THEWN		G	23690	31739	17232	50473	123134	c	0	0
2.3		0	2832	1115	576	452	4975	2142	43	0
2.5		0	497	4227	157	97	4978	751	15	0
4.1		0	507	260	951	31	1749	79A	46	1
7•2		0	364	289	56	2205	2914	709	24	0
TOTAL		0	27800	37630	19077	53350	137750			0
FRR										****
ERR										****

Table VIII.4 The contingency table of the best 3 band pairs after a complete filling.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VIII.3 The classification of the three best band pairs for alphabeta thresholds of .6 and .042.

Figure \lor III.4 The classified image of Figure \lor III.3 after a complete filling.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH441806 - 1 SCALE FACTOR 10** 0

		COL	• = AS	SIGN C	AT	R0₩ =	TRUE	CAT	
	RDFC	2.1	2.5	4 • 1	7•2	TOTAL	FRP	ERF	SD
קאיניאייוד	5944	2744	12650	3200	28497	123134		0	0
2.3	+ -	697	119		58	4975	182	21	0
	1977	10	2994	4	3	4978	17	1	0
4.1			10			1749	30	12	0
7.2	1391	, ī∩	35	0	1478	2914	45	3	0
TOTAL	34828	3490	15798	3598	30036	137750	284	9	0
LUBU	n	49	164	10	61	284	****	*****	*****
F R R	0	7	5	2	- 4	4	*****	*****	****

Table VIII.5

The contingency table of the best 3 band pairs after complete filling and 4-shrink operations.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4F2B06 - 1 SCALE FACTOR 10** 0

		CO	L• = A:	SSIGN	CAT	ROW =	TRHE	CAT	
	RDEC	2.3	2.5	4•1	7•2	TOTAL	. ERP	ERR	SD
	· · ·	•				· · · · · · · ·			
UNKWN	<u> </u>	18379	36805	12408	55542	123134	n in	0	0
2.3	C C	3728	849	75	323	4975	1247	25	0
2.5	0	130	4810	19	19	4978	16A	3	Ō
4.1	· .).	338	162	1249	0	1749	500	29	1
7.2	Ð.	90	320	Ů	2504	2914	410	14	ō
TOTAL	0	22665	42946	13751	58388	137750	2325	17	0
ERR						2325			
FRR						13			

Table VIII.6 The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure VIII.5 The classified image of Figure VIII.4 after a 4-shrink operation.

Figure VIII.6 The classified image of Figure VIII.5 after a complete filling.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4E3B06 - 1 SCALE FACTOR 10** 0

	•	COL	.• = AS	SIGN (ĂT.	ROW =	TRUE	CAT	t	
	R DEC	2.3	2.5	4•1	7.7	TOTAL	ERR	ERF	\$D	
UNKWN	2375	233 ·2	31470	16785	49202	123134		0	0	
2.3	23						2131	43	.0	
2.5	19	495	4716	154	94	4978	742	15	· 0	
4.1	16	5.2	258	242	31	1749	791	46	1	
7.7	6	363	289	55	2201	2914	707	24	0	
* <: * • •		07/00		10500	E1075	137750	4.27.		0	
FRR						4372				
FRR	0	13	28	45	21	31	*****	*****	*****	

Table VIII.7 The contingency table of the best 3 band pairs after a 4-fill operation.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4F4B06 - 1 SCALE FACTOR 10** 0

		col	= AS	SSIGN (TAT	ROW =	TRHE	CAT	
	R DEC	2•3	2.5	4+1	7•2	TOTAL	ERR	ERF	R SD
UNKWN	116	23687	31735	17192	50404	123134	•	0	0
2.3	C	2832	1115	576	452	4975	2142	43	0
2.5	0	497	4227	1.57	97	4978	751	15	Ċ
4.1	. ປ	507	260	951	31	1749	79A	. 46	- 1
						2914			0
TOTAL	116	27887	37626	18932	53189	137750	4401	32	0
FRR	ē	1368	1664	789	580	4401	*****	*****	*****
	0	33	28	45	21	31	****	****	****

Table VIII.8 The contingency table of the best 3 band pairs after 4-fill, and 8-fill operations.

Figure VIII.7 The classified image of Figure VIII.3 after a 4-fill operation.

Figure VIII.8 The classified image of Figure VIII.3 after 4-fill and 8-fill operations.

CONTINGENCY TABLE FOR SAMHA GOT - 1 SMH453806 - 1 SCALE FACTOR 10** 0

		cou	• = AS	SIGN (TAT	ROW =	TRUE	CAI	r	
	RDFC	2.3	2•5	4-1	7•2	TOTAL	. ERP	ERF	s SD	
NAKAN	76121	2744	12647	3259	28363	123134	0 0	0	0	
2.3			119		58		183	21	. 0	
2.5	1977	10	2984	4	3	4978	17	1	0	
4.1	1421	29	10	289	0	1749	30	12		
7.2	1391	10	35	O,	1478	2914	45	3	0	
						107750				
			15795							
FRR			164					****	****	
FRR	0	7	5	3	- 4	4	*****	****	*****	

Table VIII.9

The contingency table of the best 3 band pairs after 4-fill, 8-fill and 4-shrink operations.

CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH454806 - 1 SCALE FACTOR 10** 0

		COL	• = ASS	IGN C	TAT	ROW =	TRUE	CAT	
	RDFC	2.3	2•5	4•1	7•2	TOTAL	ERP	ERR	SD
URKWN		65	3448	562	13030	123134		· · · · ·	0
	4967	8	2440 - 0		0.00	4975	0	ŏ	ō
• •	3708	0	1270		0		n	0	σ
	1737		0			1749			0
7.2		0				2914		0	0
						107750			
	****	73	4720	574	13672	13//50	2	0	0
FRR		0	2		0		*****		
FRR	5 . O	0	0	0	0	0	****	****	****

Table VIII.10 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, and 8-shrink operations.

Figure VIII.9 The classified image of Figure VIII.3 after 4-fill, 8-fill, and 4-shrink operations.

Figure VIII.10 The classified image of Figure VIII.3 after 4-fill, 8-fill, 4-shrink and 8-shrink operations. CONTINGENCY TABLE FOR SAMH4 GDT - 1 SMH4F5806 - 1 SCALE FACTOR 10** 0

			COL	CAT						
	R	DEC	2 • 3	2.5	4 • 1	7•2	TOTAL	ERR	ERF	s SD
UNKWN)	9922	39868	11186	62158	123134	n	0	0
2.3		Ο		314				487	10	0
2.5		47	306	4672	. U	. 0	4978	306	6	0 0
4.1		·()`			1370		1749	370	22	0
7•2		Ŭ.	Û			2415	2914	499	17	0
TOTAL		.)	14716	45732	12729	64573	137750	1671	13	0
FRR		ň	206	1192	173	0	1671	****	*****	****
FRR		ñ	6				9	****	*****	*****

Table VIII.11 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.

65

IX Spectral Analysis: Edit 3

As with the other edits, the same 6 spectral bands were chosen, .40 - .44, .588 - .643, .65 - .69, .72 - .76, .981 - 1.045, and 2.10 - 2.36 micrometers. Figure IX.1 shows the .72 - .76 micrometer band of edit 3 and Figure IX.2 shows the selected ground truth training data.

The feature extractor chose bands .40 - .44 and .588 - .643 with .588 - .643 and .65 - .69 micrometers as the best 2 band pairs. To minimize the total number of reserved decisions and to try and equalize the number of reserved decisions due to more than one assignment and no assignment, classification for the two best band pairs was done using a variety of alpha and beta thresholds. Figure IX.3 is a graph of the thresholds versus the number of reserved decisions.

Table IX.1 is the contingency table for best 2 band pairs with .3 and .021 alpha and beta thresholds, respectively. The resulting error rates of 36% misidentification and 38% false identification are better than the corresponding error rates of 37% and 41% for the classification with alpha, beta thresholds of .4, .028 (Table IX.2) and the corresponding error rates of 37% and 40% for the classification with alpha, beta thresholds of .5, .035 (Table IX.3). But the total number of reserved decisions for the .3 and .021 thresholds is 47,749. This is the highest number of reserved decisions and the lower error rates could be caused by lack of assignments. In this case, the fill operations would tend to propagate the error. Therefore, we chose .5 and .035 thresholds to work with. The raw classified image was post processed with 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations. The resulting contingency table (Table IX.4) indicates an 18% misidentification error and 27% false identification error. The major confusion was poletimber immature shortleaf pine being classified as sawtimber immature shortleaf pine or poletimber immature loblolly pine.

The three best band pairs consisted of the two best band pairs plus band pair .40 - .44 and .65 - .69 micrometers. To minimize the total number of reserved decisions and to try to equalize the two causes for reserved decisions, classification was done for the three best band pairs using a variety of alpha beta thresholds. The resulting graph (Figure IX.4) indicates good alpha beta thresholds

are .5 and .035. Contingency table (Table IX.5) shows a 34% misidentification rate and 38% false identification rate with 48,475 reserved decisions. Figure IX.5 shows the resulting classification. Category 1.2 was the largest cause of error. It was confused with category 1.3, sawtimber immature shortleaf pine and categories 2.4 and 2.6, two kinds of loblolly pine.

A 4-fill and an 8-fill operation reduces the misidentification error rate but propagates the false identification error rate (Table IX.6 and Figure IX.6). Doing a 4-shrink reduces the error rates to 18% and 23% for misidentification and false identification. This is as expected since fewer assignments are made to spatially uncertain categories but the misidentification error rate for category 2.1 was not reduced (Table IX.7 and Figure IX.7). The final 8-shrink and then fill all the way up results in a misidentification error rate of 14% and a false identification error rate of 25% (Table IX.8 and Figure IX.8). Most of the error is due to category 1.2 being confused with categories 1.3, 2.4, and 2.6. Thus, category 1.2 has a misidentification error rate of 60% compared to 6% for the next most highly confused category. Most of the confusion is between subclasses in the same class rather than between classes. Contingency table IX.9 shows the resulting classification when categories 1.2 and 1.3 are combined and categories 2.4 and 2.6 are combined. The misidentification error rate is 10% and the false identification error rate is 14%.

Figure IX.1 The .72 - .76 micrometer band.

Figure IX.2 The ground truth training data overlayed on the .72 - .76 micrometer band.

CONTINEEDER TABLE FOR CAMPA GOT - 1 SAMAN ROL - 1 SCALE FACTOR 10** 0

		COL	• = AS	5168 C	Λ [EO₩ =	TRUF	CAT		
	RINEC	1.2	1.7	2.4	2.6	7•1	TOTAL	FRR	FRR	SD
	17548	۱	5121	14449	6108	7911	70255	0	n	Ω
1.1				11-77			12060	2779	61	0
-	912					õ	1862	414	44	0 0
2.4							0070	1140	19	0
	2977			1405				1772	52	0
1.1	372		23	191	36	3547	4160	250	7	0
T. TAL	47749	7 .	7266	221.12	7776	1215"	104832	7254	36	. 0
943		ត្អែត្	1699	2228	1142	- 700	7254	*****	*****	****
F { 12		1.9		41	41	16	30	****		****

Table IX.1 The contingency table of the best 2 band pairs for alpha - beta thresholds of .3 and .021.

CONTINGENCY TABLE FOR CATHI GOT - 1 SAMHI BI1 - 1 SCALE FACTOR 10## 0

		COL	• · = ^ ·	SIG4 (TAT	ROV :	TRUE	CAT	•	
	RDEC	1.2	1.3	2.4	2.6	7•1	TOTAL	ERR	FRF	s s d
I SPIRING	71727	5852	6.744	17404	9128	9454	7035s	0	0	. 0
							12069			
							1862			그는 것은 가운 것
2.4	2798	116	5 27	.5 14	1164	343	9072	2160	30	Ô
2.6	1400	230	7.8	1629	2771	136	6405	2133	43	0
						•				
7.1	172	<u> </u>	2.7	251	66	2653	4160	244	. 9	0
TOTAL	7:64"	0576	0012	26103	14564	14077	104832	10450	37	n
							10450			
r () ()		21	76	42	49	21	41	****	****	****

Table IX.2 The contingency table of the best 2 band pairs for alpha – beta thresholds of .4 and .028.

ORIGINAL PAGE IS OF FOOR QUALITY

CONTINGTICY TABLE FOR SATHI GOT - 1 SATHI B21 - 1 SCALE FACTOR 10** 0

		r0L	r0L. = X1		CIN CAL		ROM = TRHF		•		
	RDFC	1.2] in 3	7.4	2.6	7•1	TOTAL	FRR	FRR	50	
		• •									
	1274 4	- 242	5114	17:52	6586	P157	70356	0	. 0	0	
1.2	5704	2 5	1243	1149	835	441	12 60	4267	68	0	
1.3	962	. 54	530	102	96	0	1862	362	40	0	
2.4	3"76	1:51	173	5153	521	298	2472	1242	19	0	
2.6	2184	265	87	1708	2::49	107	640F	2167	51	0	
	-	0				0577			•		
7.1	241		41	277	1/	3771	4160	45	9	0	
	24674										
END			•				84.94				
CDI	יי ר	27	76	41	47	19	41	****	****	****	

Table IX.3 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and _035.

CONTINGENCY TABLE FOR SAMH1 GDT - 1 SMH1F3B01 - 1 SCALE FACTOR 10** C

COL. = ASSIGN CAT ROW = TRUE CAT 7.1 TOTAL WERR % ERR % SD R DEC 1.2 1.3 2.4 2.6 0 3425 21950 70355 Ó 0 UNKWN 0 11586 8018 25376 50 0 612 835 12068 6027 1. 2 0 6041 2853 1727 0 1760 59 Ò 0 1863 103 6 1.3 0 44 0 9476 0 496 9972 496 5 2.4 0 0 0 28 0 536 6405 1773 0 269 4632 2.6 0 968 7.1 0 4045 4169 124 З 0 Ò 124 0 0 8523 0 0 18639 12631 37031 18 TOTAL 8669 27862 104832 612 1867 8523 ***** **** ** #ERR 0 1012 2853 2179 62 19 12 32 27 ***** **** *** % ERR 0 14

Table IX.4 The contingency table of the best 2 band pairs for alpha – beta thresholds of .5 and .035 after a complete filling.

Figure IX.4 Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs, spectral only for edit #3

CONTINGENCY TALLE FOR CAMPLEONT - 1 SAMHT PO2 - 1 SCALE FACTOR 10** 0

		5°L	• = ^r	than c	ΤA	ROM =	TRUF	CAT			
	PDFC	1.2	1.43	2.4	2.1	7.1	TOTAL	ERR	FRF	8 SD	
• • • • • • •		2221	5744	12218	7465	8664	70758	0	ç	0	
1.5		•		1202			12068	4001	75	0	
		-	71	Д	70	1	1862	270	28	n	
2.4		г. ч	51.4	4744	672	302	9972	1592	27	0	
2.6		141	69	477	2448	76	6405	1263	38	0	
		-					•				
7.	1 342		71	145	72	1590	4160	238	6	0	
	AL48475	2022	3119	19482	11215	1 1056	104832	7364	34	0	
	12 ¹	3, 5	21.53	2514	1685	863	7264	****	****	****	
٣	197	1.8	75		45		30	****	***	****	

Table IX.5

The contingency table of the best 3 band pairs for alpha – beta thresholds of .5 and .035.

CONTINGENCY TABLE FOR SAMH1 GDT - 1 SMH1F2B02 - 1 SCALE FACTOR 10** (

		COL	= As	SSIGN (CAT	ROW = TRUE			CAT		
	R DEC	¥. 2	1.3	2.4	2. 6	7.1	TOTAL	#ERR	% ERF	XSD	
UNKWN	400	6172	11323	25736	15022	11702	70355	0	0	0	
1.2	36	3689	3295	2503	1943	602	12068	8343	69	0	
1.3	0	265	1267	169	160	2	1863	596	32	1.1	
2.4	0	90	1032	7227	1166	457	9972	2745	28	• • • O	
2.6	0	259	147	• 1921	3916	162	6405	2489	39	· · · ·	
					$\{a_i\} \in \{a_i\} = \{a_i\}$						
7.1	0	0	36	247	132	3754	4169	415	10	0	
TOTAL							104832				
#ERR	0	614	4510	4840	3401	1223	14588	****	*****	****	
X ERR							40				

Table IX.6 The contingency table of the best 3 band pairs after 4-fill and 8-fill operations.

Figure IX.5 The classification of the three best band pairs for alpha – beta thresholds of .5 and .035.

CONTINGENCY TABLE FOR SAMHI GDT - 1 SMHISIBO2 - 1 SCALE FACTOR 10++ 0

		COL	= AS	SIGN C	AT	ROW =	TRUE	CAT		
	R DEC	1. 2	1. 3	2. 4	2. 6	7.1	TOTAL	#ERR	X ERR	X SD
UNKWN	150182	1053	3338	7257	2358	6167	70355	0	0	0
1.2	8421	1073	1468	683	210	213	12068	2574	71	0
1.3	1189	13	659	0	2	Ó	1863	15	2	. 0
2.4	6350	0	56	3455	29	82		167	5	0
2.6	5080	4	1	157	1161	2	6405	164	12	0
7.1	714	0	0	52	10	3393	4169	62	2	. 0
	71936	2143		11604	3770	9857		2982	18	Ó
#ERR	0	17	1525	892	251	297		*****	*****	*****
% ERF		2	70	21	18	8	23	*****	****	****

Table IX.7The contingency table of the best 3 band pairs after 4-fill,
8-fill and 4-shrink operations.

CONTINGENCY TABLE FOR SAMHI GDT - 1 SMHIF3B02 - 1 SCALE FACTOR 10++ 0

		COL	= AS	SIGN C	TA	ROU =	TRUE	CAT			
	R DEC	1. 2	1. 3	2. 4	2. 6	7.1	TOTAL	#ERR	% ERF	8 % S	D
UNKWN		5027	11407	23738	12077	18106	70355	0	0	· · ·	0
1.2							12068				õ
1.3	ŏ			0			1863		0		Ô.
2.4	ŏ	0	192	9346	4		9972		6		0
2.6	Ō	Ŏ,	0	397			6405		6		0
										· .	
7.1	0	0	0	84	0	40/35	4169	84	2		0
TOTAL	0	9812	17242	34992	19330	234:56	104832	8390	14		0
#ERR		0	3972	1908	1245	1265	8390	****	****	****	+
X ERR			68	17	17	:24	25	****	*****	****	*

Table IX.8The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink, and complete filling operations.

ORIGINAL PAGE IS

Figure IX.7 The classified image of Figure IX.5 after 4-fill, 8-fill and 4-shrink operations.

Figure IX.8

The classified image of Figure IX.5 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.

Col. = Assign Cat.

ţ.

Row = True Cat.

	1	2	7	Total	#Er r	%Err
Unknown	16434	35815	18106	70355	0	0
1	10428	2668	835	13931	3503	25
2	192	15755	430	16377	622	4
7	0	84	4085	4169	84	. 2
Total	27054	54322	23456	104832	4209	10
#Err	192	2752	1265	4209	-	
% Err	2	15	24	14		

Contingency Table Created by Combining Subclass Types of the Same Class

Table IX.9

Spectral-Textural Analysis: Edit 6

Х

We began the spectral-textural analysis of the edit #6 data by using five spectral bands and two texture bands and letting the feature selection procedure pick the best two and best three band pairs for the table look-up decision rule. The five spectral bands were:

- .40 .44 micrometers .65 - .69 micrometers .72 - .76 micrometers
- .981 1.045 micrometers
- 2.10 2.36 micrometers

The textural transform was done on a 3x3 convolution of the .82 - .88 micrometer band. A second textural information band was created by doing a 3x3 convolution of the initial textural transform image.

The feature selection procedure selected the two best band pairs consisting of:

 .40 - .44 micrometer band with the 3x3 convolution before and after the textural transform of the .82 - .88 micrometer band

(2) .65 - .69 and .981 - 1.045 micrometer bands.

The alpha-beta thresholds were set at .3 and .021, respectively. This threshold selection was too low for of the 159,500 points to be classified, 74,326 were reserved assignments because of incompatible category assignments between the first and second band pairs and 1,904 were reserved assignment because there was more than one possible assignment common to the two band pairs. The resulting contingency table, (Table X.1 and Figure X.1) shows a misidentification error rate of 36% and a false identification error rate of 37%. After filling the classified image to remove all reserved assignments, the misidentification error rate was 38% and false identification error rate was 39%, Table X.2 and Figure X.2. This is worse than the best two band pair spectral results indicating that either the alpha-beta thresholds used created such a high number of reserved decisions that the classification accuracy was lowered or that a feature selection procedure which minimizes a lower bound on the error rate does not necessarily produce the features of the best classification.

Spatial processing can improve the identification accuracy of the initially classified image. For example, if the completely filled image is shrunk for one iteration with a 4-shrink operator and then filled again, the misidentification and false identification error rates improve to 33%, Table X.3 and Figure X.3. The biggest cause of errors was category 2.4 being assigned to category 1.3 and category 2.6 being assigned to categories 1.3, 2.3 and 2.5. A still greater increase in identification accuracy results if the initially classified image with reserved decisions is operated on with a 4-fill, then 8-fill, then 4-shrink, then 8-shrink operations and then filled up completely (Figure X.4). The resulting contingency table, Table X.4, shows a 32% misidentification error rate and 7% false identification error rate. This is about the same as the best two-band spectral results.

Doing two iterations of a 4-shrink followed by an 8-shrink (Figure X.5) instead of just one iteration as described for the previous classification produces not as good results. Table X.5 shows a 34% misidentification error rate and 7% false identification error rate.

Repeating the 2 band experiment with an alpha threshold of .5 and a beta threshold of .035 reduces the number of reserved decisions to 42,226 with 25,173 reserved decisions due to no assignment and 17,053 reserved decisions due to multiple assignments. The resulting classification (Table X.6 and Figure X.6) gives a misidentification error rate of 37% and a false identification error rate of 38%.

A complete filling of the image (Table X.7 and Figure X.7) gives a misidentification error rate of 38% and 39%. The main cause of error is assigning category 1.3 when the true category is 2.4 and assigning 2.5 when the true category is 2.6. If we do a 4-shrink on the filled image and then completely fill it again (Table X.8 and Figure X.8) we get a misidentification error rate of 32% and a false identification error rate of 36%, but now categories 2.4 and 2.6 are completely misidentified. If instead we do a 4-fill, 8-fill, 4-shrink, 8-shrink and then completely fill up the raw classification (Table X.9 and Figure X.9) we get a misidentification error rate of 30% and a false identification error rate of only 5%. This improvement over the (.3 and .021) result is due to better thresholding. So, even though the raw classification using an alpha threshold of .3 was a few percentage points better than the raw classification using an alpha threshold of .5, the large number of reserved decisions hindered classification accuracy with the fill and shrink operations.

We also did a 4-fill, 8-fill, 4-shrink and complete filling (Table X.10 and Figure X.10) on the raw classification using alpha threshold of .5 to see if we were doing too much shrinking. The resulting misidentification error rate of 32% and false identification error rate of 36% indicates that we were not.

The best 3 band pairs results did significantly increase the accuracy over the two best spectral band pair accuracy and the two best spectral-textural band pair results. The band pairs selected by the feature selection procedure were:

- .40 .44 micrometer band with the 3x3 convolution before and after the textural transform of the .82 - .88 micrometer band
- (2) .65 .69 and 2.10 2.36 micrometer bands
- (3) .72 .76 and .981 1.045 micrometer bands.

The alpha-beta thresholds were set at .7 and .049, respectively. This resulted in 25,590 reserved decisions due to no common category assignment and 43,889 reserved decisions because of more than one possible category assignment. The thresholds were set just a little too high.

The contingency table of the initially classified image with reserved decisions is shown in Table X.11. It indicates a 35% misidentification error rate and 37% false identification error rate. Completely filling the initially classified image with reserved decisions yields a misidentification error rate of 38% and false identification error rate of 37%. This identification accuracy (Table X.12) is just below the best 3 band pair spectral results.

If the completely filled image is operated on with one iteration of a 4-shrink operation and then completely filled, the misidentification error rate improves to 29% and false identification error rate improves to 30% (Table X.13 and Figure X.11). The results indicate that almost all resolution cells originally assigned to category 2.4 were neighboring resolution cells of a different category. Hence, the 4-shrink operation eliminated most of the assignments to category 2.4.

The basically scattered assignments to category 2.4 was manifest in the next experiment in which we did a 4-fill, then an 8-fill, then a 4-shrink, then an 8-shrink and a complete filling of the initially classified image with reserved decisions. The contingency table (Table X.14 and Figure X.12) shows a 23% misidentification error rate and a 6% false identification error rate. These results

ORIGINAL PAGE IS OF POOR QUALITY

are definitely better than the corresponding three best spectral band pair results. The main reason for the identification accuracy increase is that most of category 2.6 was assigned to category 2.6; only some of category 2.6 was assigned to category 2.5 and hardly any at all to category 1.3. All of category 2.4, however, was misidentified as category 1.3.

Following the pattern of the previous results, if a double 4-shrink and then 8-shrink operation is applied instead of a single 4-shrink and then 8-shrink, the classification results are not quite as good: a 39% misidentification error rate and 12% false identification error rate. As shown in Table X.15, category 2.4 is misidentified as category 1.3 and category 2.6 is misidentified as category 2.3 and category 2.5.

		(0)	• 🗄 A:	SSIGN_C	AT	ROW_=	TRU	CA1	<u> </u>	•••••••	<u> </u>
	RDEC	: 1.3	1.4	2•3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR
INKWN	63115	12915	10822	12152	1057	14605	 188A	10467	127021	0	0
•3	3721	2409	166	199	79	215	85	82	6956	826	26
• 4	981	14	1605	22	14	19	6	9	2670	84	Š
.3	4333	59	14	3000	23	157	113	28	7727	394	12
• 4	305	222	9	15	42	25		3_	6 2 9	282	87
	1647	273		171	16	1798	60	11	4034	589	25
2.6	666	8.8	16	145	. 0	441	68				
7.2	1372	60	181	15	77	441 1	2		5625	336	8
OTAL	.76140	1604.0	12862	15719	1308	17261	2230	14527	156096	3211	
ERR	0	716	435	567	209	858	283	143	3211	*****	*****

Table X.1

The contingency table of the best 2 band pairs for alpha – beta thresholds of .3 and .021.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2F7B03 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRHE CAT

	R	DEC	1.3	.1•4	2.3	2.4	2.5	26	7.2	TOTAL	ERR	ERR
				•								
UNKWN		0	29140	22028	28/10	2397	24513	4524	16400	127021	0	0
1.7		0	5053	432	502	144	476	170		6956	1903	27
1.4		0	38	2463	56	20	50	26	17	2670	207	· · · B
2.3		Û	128	37	6720	115	322	297	108	7777	1007	13
2.4		3	417	16	27	89	53	10	8	629	540	86
2.5		Ω,	539	133	409	37	2712	166	38	4034	1322	33
26		?	206	31	319	0	711	144	23	1434	1290	90
7.2		0	137	416	2.8	107	3	3	4931	5625	694	12
TOTAL		ſ	35667	25556	36771	2202	28840	5350	21695	156096	6963	38
ERR		Ċ.	1465	1065	1341	423	1615	690	364	6963	*****	****
FRR		0	22	30	17	83	37	83	7	39	*****	*****

Table X.2The contingency table of the best 2 band pairs for alpha -
beta thresholds of .3 and .021 after a complete filling.

Figure X.1 The classification of the best 2 band pairs for alpha – beta thresholds of .3 and .021.

.2

The classified image of Figure X.1 after a complete filling.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2F8803 - 1 SCILE FACTOR 10** 0

	¢				SIGN C	ΛT	ROW =	TRUE	CAT			
	R	DFO	1.3	1•4	2.3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR
PREVIN		0	29668	20894	30615	995	27276	990	16714	127021	0	0
1.3		Ő	•	183	231	0	160	· ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	91	6956	665	10
1.4		n	30	2499	48	0	84	٩	Ō	2670	171	6
2.3		0	. 9	<u> </u>	7342	93		45	37	7727	385	6 5
7•4		n	550	0	0	70	1	<u> </u>	0	629	559	89
				79	290		3145	47	17	4034	889	22
2.5		0 0			507	0		-47 8	-	1434	1426	99
2+6		- 0. 	188	-	0	ŏ		6		5625	331	6
7.2 TOTAL		0		23873		1190			22156	156096		33
FRR	•	0 0				125		109		4426		
ERF	2	ņ	16	19	13	64	27	93	3	33	*****	****

Table X.3

The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and .021 after complete filling, 4-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2F9B03 - 1 SCALE FACTOR 10** 0

> COL. = ASSIGN CAT ROW = TRUE CAT

R DEC 1.	3 1+4	23	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR

UNIN SPN	C 31	960	18187	33949	· · ·	0 2	6251		37	16637	127021	0	0	
1.3	- n - e	709	C	0	A second	0	247		0		6956	247	4	
1.4	0	8	2499	163		D.	0		0	0	2670	171	6	
2.3	0	0	0	7727		0	0		0	0	7727	Ō	Ō	
2.4	່ <u>ບ</u>	629	0	0	11. J. (0	. 0			. 0		629	100	
				•									1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
2.5	n ''''	351	0	48	1. St. 1. 1.	0 _ ``	3635				4034			
2.4	(()	1	0	824	te de la	0	609		Î.	0	1434	1414	100	
7.2	3	17	230	0	. i	0	0		•	5378	5625	247	4	
	1 39	675	21916	42711		0 3	0742		37	22015	156096	31 17	32	
FRP	n.,	006	230	1035		0	856	•	0	0	3127	****	****	
FPR	1	13	8	12		0	19		. 0	0	. 7.	***	****	

The contingency table of the best 2 band pairs for alpha -Table X.4 beta thresholds of .3 and .021 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

OPTON	
ORIGINAL PAGE OF POOR OUT	
OF POOR QUALT	TO
- OUR OTTATT	-w
- ALLI	Y

Figure X.3 The classified image of Figure X.1 after complete filling, 4-shrink, and complete filling operations.

Figure X.4 The classified image of Figure X.1 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.

CONTINGENCY TAPLE FOR SAMH22GDT - 1 SMH2E3P03 - 1 SCALE FACTOR 10** 0

		CCL	.• = A'	SSIGN C	۸T	ROW =	TRUE	CA1	•				
	RDFO	1.3	1•4	2•3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR		
FINDER AND	о с О	28283	15512	42380	0	20077	Ċ.	20769	127021	0	0		
1.7	C,		C	0	Ó	0	0	0	6956	0	0		
1.4	i n	-	2497	169	0	0	n i	0	2670	171	6		
2.7	e.	r.	0		0	0	.0	0	7727	0	6 · 0		
2.4	n	629	c	0	0	0	0	0	629	629	100		
2.5	5	28	n	1410	0	2596	c	0	4034	1438	36		
2.5	2				õ		, O		1434	1434	100		
7.2	, e	0			0		0		5625	19	0		
TTAL	, C	35898	18030	52511	0	23282	0	26375	156096	3691	34		
FVR	0	659				609		Ŭ	3691	*****	*****		
rpp	n	9	1	24	0	19		0	7	****	*****		

Table X.5The contingency table of the best 2 band pairs for alpha -
beta thresholds of .3 and .021 after 4-fill, 8-fill, 4-shrink,
8-shrink, 4-shrink, 8-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMH226DT - 1 SAMH2 BI5 - 1 SCALE FACTOR 10** 0

COL = ASSIGN CAT ROW = TRUE CAT

R DEC 1.3 1.4 2.3 2.4 2.5 2.6 7.2 TOTAL #ERF % ERR

UNKW	N25503	24414	13567	18099	1339	19459	2868	11772	12702	1 0	0
1.3	1706	4328	273	140	59	276	64	110	6956	922	18
1.4	621	19	1894	25	23	56	10	22	2670	155	8
2.3	1875	110	12	5165	29	296	187	53	7727	687	12
2.4	177	359	20	6	24	29	. 11	3	629	428	95
2.5	1064	465	44	190	26	2106	131	8	4034	198	29
2.6	502	157	11	155	5	534	60	10	1434	872	94
	778	130	201	29	43	1	5	4388	5625	459	9
TOTA	L42226	30032	16022	23909	1548	22757	3335	16366	15609	64387	37
				545							

X EKR 0 23 23 10 89 36 87 4 38 +++++ +++++

Table X.6

The contingency table of the best 2 band pairs for alpha – beta thresholds of .5 and .035.

Figure X.5 The classified image of Figure X.1 after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.

Figure X.6 The classification of the best 2 band pairs for alpha - beta thresholds of .5 and .035.

CONTINGENCY TABLE FOR SAMH22GUT - 1 SMH2F1B05 - 1 SCALE FACTOR 10++ 0

R DEC 1.3 1.4 2.3 2.4 2.5 2.6 7.2 TOTAL HERR X ERR

UNKHN	0	33077	18716	27493	227	32230	246	15032	12702	1 0	0
1.3	0	6849	53	24	0	15	0	15	6956	107	2
1.4	0	12	2498	47	0	112	0	1	2670	172	6
2.3	0	20	Ú	7431	3	260	13	0	7727	296	4
2.4	0	629	0	0	0	· · · · ·	0	0	629	629	100
2, 5	0	387	10	154	0	3483	0	0	4034	551	14
2.6	0	130	0	330	0	974	0	0	1434	1434	100
7. 2	0	112	133	0	8	0	0	5372	5625	253	4
TOTAL	. Q	41216	21410	35479	238	37074	259	20420	15609	63442	32
TERR	0	1290	196	555	11	1361	13	16	3442	*****	

ORIGINAL PAGE IS OF POOR QUALLTY

X ERR 0 16 7 7 100 28 100 0 36 ***** *****

Table X.8

.8 The contingency table of the best 2 band pairs for alpha – beta thresholds of .5 and .035 after complete filling, 4-shrink, and complete filling operations.

Figure X.7 The classified image of Figure X.6 after a complete filling.

Figure X.8 The classified image of Figure X.6 after complete filling, 4-shrink and complete filling operations.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2F5BC5 - 1 SCALE FACTOR 10++ 0

COL. = ASSIGN CAT ROW = TRUE CAT

R DEC 1.3 1.4 2.3 2.4 2.5 2.6 7.2 TOTAL BERR X ERR

UNION	0	32498	17232	33984	0	26684	0	16623	12702	21 0	0
1.3	0	6956	. 0	0	. 0	0	•0	0	6956	0	0
1.4	0	0	2499	140	0	31	0	0	2670	171	6
23	0	0	0	7717	0	10	0	0	7727	10	0
24	0	629	0	0	0	0	0	0	629	629	100
			•								
2.5	Q	351	0	0	0	3683	0	. 0	4034	351	9
2.6	0	0	0	825	0	609	0	0	1434	1434	100
7. 2	0	18	19	0	0	0	0	5588	5625	37	1
TOTAL	0	40452	19750	42666	0	31017	0	22211	15609	62632	30
EKR	0	998	19	965	0	650	0	0	2632	*****	*****

X ERR 0 13 1 11 0 15 0 0 5 ##### #####

Table X.9 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

CONTINUENCY TABLE FOR SAMH22GDT - 1 SHH2F6B05 - 1 SCALE FACTOR 10** 0

COL = ASSIGN CAT ROW = TRUE CAT

R DEC 1.3 1.4 2.3 2.4 2.5 2.6 7.2 TOTAL #ERF X ERR

0	33077	18714	27493	229	32230	246	15032	12702	1 (0
0	6849	53	24	0	15	.0	15	6956	107	2
0	12	2498	47	0	112	0	1	2670	172	6
0	20	0	7431	3	260	13	0	7727	296	
0	629	0	0			0	0	629	625	100
					s a príos			- 1919 1919		
0	387	10	154	0 1	3483	0	· 0	4034	551	
0	130	0	330	0	974	0	0	1434	1434	100
0	112	133	0	8	0	0	5372	5625	253	4
0	41216	21408	35479	240	37074	259	20420	15609	63442	32
0	1290	196	555	11	1361	13	16	3442	*****	+++++
		0 6849 0 12 0 20 0 629 0 387 0 130 0 112 0 41216	0 6849 53 0 12 2498 0 20 0 0 629 0 0 387 10 0 130 0 0 112 133 0 41216 21408	0 6849 53 24 0 12 2498 47 0 20 0 7431 0 629 0 0 0 387 10 154 0 130 0 330 0 112 133 0 0 41216 21408 35479	0 6849 53 24 0 0 12 2498 47 0 0 20 0 7431 3 0 629 0 0 0 0 387 10 154 0 0 130 0 330 0 0 112 133 0 8 0 41216 21408 35479 240	0 6849 53 24 0 15 0 12 2498 47 0 112 0 20 0 7431 3 260 0 629 0 0 0 0 0 387 10 154 0 3483 0 130 0 330 0 974 0 112 133 0 8 0 0 41216 21408 35479 240 37074	0 6849 53 24 0 15 .0 0 12 2498 47 0 112 0 0 20 0 7431 3 260 13 0 29 0 0 0 0 0 0 387 10 154 0 3483 0 0 130 0 330 0 974 0 0 112 133 0 8 0 0 0 112 133 774 259	0 6849 53 24 0 15 .0 15 0 12 2498 47 0 112 0 1 0 20 0 7431 3 260 13 0 0 629 0 0 0 0 0 0 0 387 10 154 0 3483 0 0 0 130 0 330 0 974 0 0 0 112 133 0 8 0 5372 0 41216 21408 35479 240 37074 259 20420	0 6849 53 24 0 15 .0 15 6956 0 12 2498 47 0 112 0 1 2670 0 20 0 7431 3 260 13 0 7727 0 629 0 0 0 0 0 629 0 387 10 154 0 3483 0 4034 0 130 0 330 0 974 0 1434 0 112 133 0 8 0 5372 5425 0 41216 21408 35479 240 37074 259 204201 5609	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

X ERR 0 16 7 7 100 28 100 0 36 ***** *****

Table X.10 The contingency table of the best 2 band pairs for alpha – beta thresholds of .5 and .035 after 4-fill, 8-fill, 4-shrink, and complete filling operations.

Figure X.9 The classified image of Figure X.6 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

Figure X.10 The classified image of Figure X.6 after 4-fill, 8-fill, 4-shrink and complete filling operations.

Table X.12 The contingency table of the best 3 band pairs after a complete filling.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2E8B04 - 1 SCALE FACTOR 10** 0

		COL. = ASSIGN CAT					TRHE	E CA1	ſ		
	R DEC	1.3	1.4	2.3	2.4	2.5	2.6	7.2	TOTAL	ERR	ERR
ракул	U	2916	17790	24-31	19	26491	14884	14646	127021	0	0
1.?	• • •	6739	23	n	0	22	61	112	6956	217	3
1.4	9	18	2481	. 0	0	36	135	Ō	2670	189	0 3 7
2.3	0	(r	Ö.	7155	0	276	296	. Ō	7727	572	7
2.4	. N	591	0	1	0	28	19	0	629	629	100
2.5	C.	416	0	• 172	6	3172	268	0	4034	862	21
2.6	ŷ	0	Ó	106	Õ	715	613	ō	1434	821	57
7.2	C.	279	196		ō	Ō	0	5150	5625	475	8
TUTAL	()	37193			25	30740	16275		156096	3765	29
EFR	U	1294	219	279	6	-	778	112	3765	*****	*****
FRR	o.	16	8	4	100	25	56	2	30	*	****

Table X.13 The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2F9B04 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRUE CAT

	DEC	1.3	1•4	2•3	2.4	2.5	2.6	7.2	TOTAL	EF:R	ERR
UTEWN	0	31125	16788	29548	Ó	26088	6792	16680	127021	0	0
1.7			0		õ	0			6956		. 0
1.4	- 6			67		0	104				6
		0		7727	0				7727		0
2.4	0	629	0		0	0	n n		629		100
2.5	0	351	c	0	0	3683	• 0	0	4034	351	9
2.5	. U	1	C	2	0	609	822	0	1434	6.2	43
				U		0			5625		
TOTAL	0	39231	19339	37344	0	30380	771A	22084	156096	1984	23
ERR						609		0	1984	***	*****
FRR											*****

Table X.14The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink and complete filling operations.

Figure X.11 The classification of the best 3 band pairs for alpha - beta thresholds of .7 and .049 after complete filling, 4-shrink, and complete filling operations.

The classification of the best 3 band pairs for alpha - beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations. CONTINGENCY TABLE FOR SAMH22GDT - 1 SMH2E3B04 - 1 SCALE FACTOR 10** 0

								ŗ			
	R DE	C 1.3	1.4	2•3	2•4	2.5	2.6	7.2	TOTAL	ERR	ERR
TERM	;	28375	11155	47409	0	16118	0	23994	127021	0	0
1.3	C				0	ົ້າ	Δ	0	6956	0	
1.4	C				0	0	0	0	2670	171	6
2.3	(1 4			0	176	n	0	7727	176	2
2.4	. (629	0	0	0	0	n	0	629	629	100
2.5	. (, 245	· .	2513	0	1276	0	0	4034	2758	68
2.6	() 0	0	825	. 0	609	n.	0	1434	1434	100
7.2))	87	- Ū	0	0	1 -	5538	5625	87	2
TUTAL	i	36225	13691	58469	0		0	29532	156096	5255	39
FRR	6	874	87	3509	0	785	n	0	5255	*****	****
FRR	:	n 11	3	32	0	38	n	0	12	*****	*****

COL. = ASSIGN CAT ROW = TRUE CAT

Table X.15

The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink, and complete filling operations.

XI Spectral-Textural Analysis: Edit 9

With this edit we experimented to find the best texture transforms. The .82 - .88 micrometer band was chosen as the band having the most spatial information (Figure XI.1). Figure XI.2 is a 2x2 rectangular convolution of the .82 - .88 micrometer band and Figure XI.3 is a 3x3 rectangular convolution of the band. Each of these bands were used as inputs into the texture transform. The resulting textural transform images are shown in Figures XI.4, XI.5 and XI.6. Each of these were convoluted with a 2x2 window size (shown in Figures XI.7, XI.8, XI.9). Finally the textured transforms were convoluted with a 3x3 convolution window giving us 3 more texture images (Figures XI.10, XI.11 XI.12). Using our own visual discretion we chose the textural transform with a 3x3 rectangular convolution after and the 3x3 rectangular convolution before transforming with a 3x3 rectangular convolution after transforming as the two texture bands with the most information (these are shown in Figures XI.10, and XI.12).

We combined these 2 texture bands with the spectral bands and the feature selector chose band pairs .40 - .44 micrometers and the 3x3 rectangular convolution before and after the textured transform with .65 - .69 and 2.10 -2.36 micrometers as the 2 best band pairs for classification. Band pair .72 - .76 and .981 - 1.045 micrometers was selected with the other two for the best 3 band pairs. Figure XI.13 and XI.14 show the graphs of the threshold alpha against the number of reserved decisions. For best 3 band pairs the best alpha threshold was .7 with a beta threshold of .049.

To check the choice of thresholds we checked several results using different thresholds. The best 3 band pairs classification with alpha, beta thresholds of .3 and .021 gave us a misidentification error rate of 20% and a false identification error rate of 20% (Table XI.1 and Figure XI.15). The error rate was low but the total number of reserved decisions 104,531 is high. Only 89 of these points were reserved due to more than one assignment, while 104,443 points were reserved because of no assignment. The largest cause of error was due to misidentification of category 2.6 as category 2.5, both subclasses of loblolly pine.

97

Post processing with a 4-shrink and then a complete filling we obtained misidentification and false identification error rates of 36% and 20%. Both category 2.6 and category 3.1, laurel oak, had misidentification error rates of 100% (Table XI.2 and Figure XI.16). Though the shrink operation usually reduces error, if a sparse category is assigned correctly, the shrink operation here tended to wipe out the category. Table XI.2 shows us that this happened to category 2.6 and category 3.1. If instead of a shrink we first did a 4-fill, then a 4-shrink and then a complete filling, the resulting contingency table is Table XI.3 (Figure XI.17). The misidentification error rate was 18% and the false identification error rate was 16%, but the misidentification error rate for category 2.6 was still high at 41%. The main cause of error is the confusion of 2.6 and 2.5. The only way left to eliminate the confusion is to change thresholds.

Values of .6 and .042 for the alpha, beta thresholds resulted in a misidentification error rate of 25% and a false identification error rate of 28% (Table XI.4). The misidentification error rate for categories 2.5 and 2.6 were 31% and 34%, respectively. If .7 and .049 are chosen for the alpha and beta thresholds we get error rates of 25% and 31%, but the misidentification error rate for category 2.6 is only 24% and the misidentification error rate of category 2.5 is 31% (Table XI.5). The number of reserved decisions is 71,919 with 43,045 points being reserved because of more than one assignment and 28,874 points reserved because of no assignment. With thresholds for alpha and beta of .8 and .063, the misidentification and false identification error rates were 28% and 32%, respectively (Table XI.6). Though the misidentification error rate for category 2.6 has been reduced to 19% and for category 2.5 it was reduced to 21%, the misidentification and false identification error rates for category 3.1 have grown to 62% and 62%, and for category 4.2 the rates have gone up to 52% and 45%. In addition the number of reserved decisions has risen to 121,716 indicating that the thresholds have gotten too high.

Since the error rates for Table XI.4 and Table XI.5 were almost the same, the results from the classification with thresholds of .7 and .049 should be better for post processing. The main cause of error had been with categories 2.5 and 2.5 and this classification showed lower error rates for these categories.

If we fill up the image with alternating 4-fill and 8-fills we get a misidentification error rate of 27% and a false identification error rate of 33% (Table XI.7). This is no improvement on the raw classification so the shrink operation is needed to eliminate incorrect assignments. Post processing with a 4-fill and an 8-fill so the shrink operations do not wipe out sparsely populated categories, then doing a 4-shrink and 8-shrink and finally a complete filling, we obtain a misidentification error rate of 8% and a false identification error rate of 11% (Table XI.8 and Figure XI.18). The misidentification error rate for category 2.6 was reduced to 0 and the confusion between category 3.1 and 4.2 was small. As was the case with the spectral analysis the misidentification of category 2.5 with 1.3 is the main cause of error. Though the texture analysis gives better overall results, it cannot overcome the inability of the decision rise to separate categories 2.5 and 1.3 in the lower right hand corner of the timber stand map.

The results of the best 2 band pairs classification were not as good. The contingency table resulting from alpha, beta thresholds of .3 and .021 resulted in a misidentification error rate of 25% and a false identification error rate of 31% (Table XI.9 and Figure XI.19). If we do a 4-fill, 4-shrink and fill up we get error rates of 23% and 29% (Table XI.10 and Figure XI.20). If we shrink first and then fill up, the results showed improvement with a misidentification error rate of 15% and a false identification error rate of 20% (Table XI.11 and Figure XI.21).

Figure XI.1 The .82 - .88 micrometer band used for the texture transform.

Figure XI.3 Shows Figure XI.1 after a 3x3 rectangular convolution.

Figure XI.4 The texture transform of Figure XI.1.

ORIGINAL PAGE IS OF POOR QUALITY

Figure XI.11 Shows Figure XI.5 after a 3x3 rectangular convolution.

Figure XI.12 Shows Figure XI.6 after a 3x3 rectangular convolution.

Figure XI.13

Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs with texture for edit #9

Figure XI.14

Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs spectral only for edit #9

R DEC 1.3 TOTAL ERR ERR 2+3 2.5 2.6 3.1 4.2 7.2 9814 __ 643 _ 6838 __ 1952 __ 1028.__ 1686 __ 3979 __ 112859 .' - -... UNKWN86919 ۵ - 0..... 10 65 5 0 0 8685 81 2 1.3 4281 4323 1 . . 0. 7 --- 212 ----4 - 6 --- 925-695 1 • 0 - 18 - 8_---153 2.5 7017 1101 8 3388 1 7 11679 1274 27 4 205 --189-48 2.6 .-2251 167. 10 -2645-.3. 1249 0 0 207 26 3.1 0 1 61 9 1527 71 8 -- 1701. 1407 0 0 9 209 -- 62. . 85 . 29_ 6. 7.2 712 0 1 0 1 1 2 488 1205 5 1 IOTAL-104531_15246 10465. 4500_141226. 881 2330 1300. 97.2 1723 20 1723 ***** 0 1109 239 ***** ERR 173 65 78 26 33 ERR 0 20 11 7 46 24 27 20 ***** **** The contingency table of the best 3 band pairs for alpha - ---Table XI.1 beta thresholds of .3 and .021. CONTINGENCY TABLE FOR SAMH33GTD - 1 --- SMH3F3B01 - 1 COL. . ASSIGN CAT ROW . TRIE CAT R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR ERR 0 3121 41215 112859 UNKWN 0 30028 1405 32582 4508 0 0 -28 U 8685 O 0 0 0 0 0 1.3 0 0 -8685 n 0 2.3 12 913 0 0 925 12 1 6906 2.5 0 0 0 0 11679 4773 41 4773 0 0 Ō Ō 0 0 1485 2645 0 0 1160 2645 100 2.+6 0 477 1055 1527 1527 0 1436 0 1701 265 0 0 1205 1205 0 0 5020 44960 141226 9222 _100 0 0 0 0 3.1 0 Ō 0 0 0 265 16 4.2 0 0 0 0 43498 2318 40913 4508 0 4785 7.7 0 TOTAL 36 0 4785 0 1425 0 0 472 2540 9222 ***** **** ERR 0 36 0 17 0 0 25 68 20 ***** ***** ERR Table XI.2 The contingency table of the best 3 band pairs for alpha beta thresholds of .3 and .021 after 4-shrink and complete

108

filling operations.

Figure XI.15 The classification of the best 3 band pairs for alpha – beta thresholds of .3 and .021.

Figure XI.16 The classified image of Figure XI.15 after 4-shrink and complete filling operations.

CONTINGENCY TABLE FOR SAMH33GTD - 1 --- SMH3F5B01 - 1 COL. = ASSIGN CAT ROW = TRUE CAT R DEC 1+3 ____2+3 ___2+5 ___2+6 ___3+1 __4+2 ___7+2 ___TOTAL ERR ERR 0 24841 3096 29210 13581 7245 13346 21540 112859 UNKWN 0 n 1.3 0___8505____4__160___16_____0____0 8685 _ 180 2_ 865 2.3 0 37 Ó 0 n. 18 925 60 6 8_8071 2.5 0 3440 116 0 2 42.11679 3608 31 0 2+6 14 870 1552 108 62 6 33 2645 1093 41 0__ 0 22 1099 338 68 1527 428 32 15 203 1405 46 1701 296 0 0 3.1 28_ ____ 0 ٥ 0 17 4.2 0 0 0 0 7.2 8 20 1172 1205 .33 3 TOTAL 0 36837 4035 38343 15312 8561 15219 22919 141226 5698 18 ERR 0 3491 74 1062 179 217 207 5698 **** 468 **** ERR 0 29 8 12 10 16 25 15 16 ***** ***** Table XI.3 The contingency table of the best 3 band pairs for alpha beta thresholds of .3 and .021 after 4-fill, 4-shrink, and complete filling operations. CONTINGENCY TABLE FOR SAMH33GTD - 1 --- SAMH38803 1 COL. = ASSIGN CAT ROW # TRIJE CAT ERR R_DEC_1.3__2.3__2.5__2.6__3.1_ 4.2 7.2 TOTAL ERR 0 UNKWN55612 14295 2026 12744 10575 7012 0 4262 6332 112859 1.3 2491 5764 1_ 11___8685_ 430 . 1 2 367 2..3 26 473 1 19 5 0 34 925 85 15 2 . 5 _4178__1591 _5200 605. . 8. .67. 12 18_11679. 2301 31 2.6 1249 12 23 276 926 55 90 14 2645 470 34 3.1 806 0 522. 151 21___1527_ 28 _1 0 0 4.2 1013 47 11 271 350 9 1701 238 49 7.2 0 14... ___0 __ 10. 484 . 56. 15 .626 1205. 13_ 2643 18547 12270 7065 141226 TOTAL 66200 21688 7930 4881 3518 25 ERR 0_ 1629 144 603 769 396 270 107 3918 **** *** FRR O 22 23 10 28 ***** ***** 45 43 15 44 Table XI.4 The contingency table of the best 3 band pairs for alpha - ---

beta thresholds of .6 and .042.

110

ORIGINAL PAGE IS OF POOR QUALITY

.

Figure XI.18 The classification of the best 3 band pairs for alpha - beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

CONTINEEDENTY TABLE FOR CAMMAAGED - 1 --- SAMAABBOS - 1

	RINFO	1.3	23	2.5	- 2.6 -		-4.2	-7.2-	τοτλι	ERR	ER
	ፍዞሌ የ	•				5114					
	51,72	871									
7.0	-1102	14				61					
				•			•				
<u></u>	1		1	<u>T</u>	37	317	111	20	1527	176	3!
4.2	1235	с С,	- 0	-5	58		-255	01	~~170 <u>1</u>	211	4
7 • 2	436	U	- 14	· 🗘 .	13	~ ~ 69~	· · · · · · · · · · · · · · · · · · ·		1205	-102-	1
TOTAL	71419	10257	2775	12:50	7.7.1	56.12	1.10	7507	141226	3446	2
ERR	ົ່ງ	968				237					

Table XI.5The contingency table of the best 3 band pairs for alpha -
beta thresholds of .7 and .049.

							•				
• • • • • • • • • • • • • • • • • • •		COL	• = AS	SIGN C	AT	ROW =	TRUE	CA			
	R DEC	1.3	2.3	2.5	2.6	3•1	4.2	7•2	TOTAL	ER.	ERF
							ant de				
UNKWN	97048	2878	549	3961	5003	503	468	2449	112859		0
1.3	7457	1011	35	107	65	4	1	5		217	18
2.3	778	7	112	1	23	2	0.1	2	925	35	24
2.5	10168	84	30	1188	196	7	4	2	11679	323	21
2.6	2151	0-	8	62	402	- 7	7	8	2645	92	19
3.1	1480	0	υ	2	14	18	8	5	1527	29	62
4.2	1647					5-	26	10	-1701		52
7.7	987	0	1	ō	7.	4	1	205	1205	13	6
	21716	3985	735	5323	5721	550	515	2686	141226	737	28
ERR	0	91	74	174	316	29	21	32	737	****	*****
				dia an Maria							
ERR	0	8	40	13	44	62	45	14	32	*****	*****

_____ Table XI.6 The contingency table of the best 3 band pairs for alpha - _____ beta thresholds of .8 and .063.

112

CONTINSENCY INBLE-FIR CANHABGED - 1 --- SUNAF4805 - 1

	18546 7177 37 2''6'' 73 (: 20082 2117	767 222 51	*26253 577 57268 291 15 0	2003 1785 126 208					() 	0
n - 0	37 2"6" 23 20 20 20 20 20 20 20 20 20 20 20 20 20	767 222 51	7268 291 15	52- 2003 1785 128 208	-25 -25 -124 	57 	48	-925- 11679- 2665	- 16	18 38
n - 0	22082	51 	201	1285 126 208	716	427	*6	2545		· ·
0 -0		·, 74	- 15	126 208 -						•
0 -0	с 28982	74		208.	716	427				
0 -0	с 28982	74			n 82-			1427	61	40
-0-	22562			27	110-			- 1701		· · · · 43
		2112	28714		17742		14.002	- 141226	<u></u>	27
	2111	444	1192	2649	784	620	265	8080	****	****
C ·	- 22	- 37	1'4	57-			- 21	33	****	*****
XI.	.7	The co beta t	ontinge hresho	ency tal Ids of .	ole of 7 and	the bes .049 at	t 3 ba ter a	nd pair comple	s for al te filli	pha - ng.
• .									•	
			s s M				13F3B0	5 -		
		c 22 XI.7	XI.7 The c	XI.7 The continge	XI.7 The contingency tal	XI.7 The contingency table of	XI.7 The contingency table of the bes	XI.7 The contingency table of the best 3 ba	XI.7 The contingency table of the best 3 band pair	

+ + F	DEC	1.3	2•3	2.•5	26	3.1	4.2	7•2	TOTAL	ERR	ERR	
UNKION	0	20610	1996	22813	28848	15027	7502	16073	112859	<u>.</u>	0	
1.1	U U	8347 C	925	338	0	0	<u>, </u>	0	3685 925	338	4	
215	0 .0	2677	0	<u>-8105</u> 0	663 2645	234	n n	0	11679 2645	- <u>3574</u> C	31 0	
									<u></u>			
3•1	-0- 0			0 0	0	1459	5R 1517	n 1	1527		4	·
7.7 TOTAL	0	31634	6941	0 331256	92156	74 16978	n 7 80 0	17204	141226	4238	6 8	
	- 5 -	7.677	9 <u>7</u>				68	0	4278	*****	*****	
FFR		24	U	4	20	25	4	0	11	*****	****	

Table XI.8 The cor beta th

The contingency table of the best 3 band pairs for alpha – beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, – 8-shrink, and complete filling operations.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 4 3 5 4
R DEC 1 · 3 2 · 3 2 · 5 2 · 6 3 · 1 4 · 2 7 · 2 TOTAL E R	0 4 32 5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 4 32 5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 <u>2</u> 5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 <u>2</u> 5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 <u>2</u> 5 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$3 \cdot 1$ 735 2 6 3 11 631 115 24 1527 151 $4 \cdot 2$ 773 1^{2} 3 47 174 681 20 1701 247	14
4.2 773 0 3 3 47 174 681 20 1701 247	
4.2 773 0 3 3 47 174 681 20 1701 247	
<u>101AI 67684 22765 4032 11494 9303 6265 7755 11928 141226 4246</u> ERR U 1894 219 386 975 296 364 112 4246 *****	
FRP 0 24 45 9 63 32 36 12 31 *****	
CONTINGENCY TABLE FOR SAMH33GTD - 1 SMH3F4C63 - 1	
CONTINGENCY TABLE FOR SAMH33GTD - 1 SMH3F4C63 - 1 COL. = ASSIGN CAT ROW = TRUE CAT	
	ER
COL. = ASSIGN CAT ROW = TRIJE CAT R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR	0
COL. = ASSIGN CAT ROW = TRIJE CAT R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR UNKWN 0 24365 B111 1564I 19961 12645 15073 17063 112859 0 1.3 0 8255 9 246 114 2 21 38 8685 430	
COL. = ASSIGN CAT ROW = TRIJE CAT R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR UNKWN 0 24365 B111 15641 19961 12645 15073 17063 112859 0 1.3 0 8255 9 246 114 2 21 38 8685 430	0
COL = ASSIGN CAT ROW = TRIJE CAT $R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR$ $UNKWN 0 24365 B111 15641 19961 12645 15073 17063 112859 0$ $1.3 0 B255 9 246 114 2 21 38 B685 430$ $2.3 0 37 690 18 79 29 0 72 925 235$	05
COL = ASSIGN CAT ROW = TRIJE CAT $R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR$ $UNKWN 0 24365 B111 15641 19961 12645 15073 17063 112859 0$ $1.3 0 8255 9 246 114 2 21 38 8685 430$ $2.3 0 37 690 18 79 29 0 72 925 235$	0 5 25 44
COL = ASSIGN CAT ROW = TRIJE CAT $R DEC 1.3 2.3 2.5 2.6 3.1 4.2 7.2 TOTAL ERR$ $UNKWN = 0.24365 B111 15641 19961 12645 15073 17063 112859 0$ $1.3 0 8255 9 246 114 2 21 38 8685 430$ $2.3 0 37 690 18 79 29 0 72 925 235$ $2.5 0 3371 113 6561 1357 0 234 43 11679 5118$ $2.6 0 8 238 340 1619 102 320 18 2645 1026$	0 5 25 44 39
$COL = ASSIGN CAT ROW = TRIJE CAT$ $R DEC 1 \cdot 3 2 \cdot 3 2 \cdot 5 2 \cdot 6 3 \cdot 1 4 \cdot 2 7 \cdot 2 TOTAL ERR$ $UNKWN 0 24365 B111 15641 19961 12645 15073 17063 112859 0$ $1 \cdot 3 0 8255 9 246 114 2 21 38 8685 430$ $2 \cdot 3 0 37 690 18 79 29 0 72 925 235$ $2 \cdot 5 0 3371 113 6561 1357 0 234 43 11679 5118$ $2 \cdot 6 0 8 238 340 1619 102 320 18 2645 1026$ $3 \cdot 1 0 0 20 4 21 1299 159 24 1527 228$	0 5 25 44 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 25 44 39 15 23
$COL = ASSIGN CAT ROW = TRIJE CAT$ $R DEC 1 \cdot 3 2 \cdot 3 2 \cdot 5 2 \cdot 6 3 \cdot 1 4 \cdot 2 7 \cdot 2 TOTAL ERR$ $UNKWN 0 24365 B111 15641 19961 12645 15073 17063 112859 0$ $1 \cdot 3 0 8255 9 246 114 2 21 38 8685 430$ $2 \cdot 3 0 37 690 18 79 29 0 72 925 235$ $2 \cdot 5 0 3371 113 6561 1357 0 234 43 11679 5118$ $2 \cdot 6 0 8 238 340 1619 102 320 18 2645 1026$ $3 \cdot 1 0 0 20 4 21 1299 159 24 1527 228$	0 5 25 44 39

Table XI.10The contingency table of the best 2 band pairs after 4-fill, -4-shrink, and complete filling operations.

3.8

ERR

Figure XI.19 The classification of the best 2 band pairs for alpha – beta thresholds of .3 and .021.

Figure XI.20 The classified image of Figure XI.19 after 4-fill, 4-shrink, and complete filling operations.

									<u> </u>		
		CCL	• = <u>^</u>	<u>35164_0</u>	AT	RO	TRUE	دمع			
			ţ.	•							
R	DEC	- 1 • 3	2.3	2.5	2.6	3•1	4.2	7•2	TOTAL	ERR	ERF
• • . [• .		24725	746.	14269	20297	10500	14629	20203	112859	· ·	0
1.3		855		84	22	0	<u> </u>	29	E685	125	2
2 . 3	1 C	<u> </u>	852		2]	<u>· ೧</u>	<u> </u>	52	925	73_	
2.5	:	3819	61	6669	955	0	:147	15	11672	5010	43
2 • 🔆	10	L	156	364	1947	47	136	0	- 2545	703	27
				•				5			· ·
?•1		()		0	1436	86	5	1527	91	6
4.2	}	· · · · · ·	•	e e	28	147	1498	2.8	1721	203	. 12
7.2	. 0	Ŀ	i.	5	0	30	n	1125	1205	80	7
TOTAL		37'84	8542	21275	23255	12222	16490	21462	_141226_	6225	15
ERP	. v	3819	237	448	1029	274	360	129	6295	*****	****
					· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u>.</u>		

— Table XI.11

The contingency table of the best 2 band pairs after 4-shrink and complete filling operations.

Figure XI.21 The classified image of Figure XI.19 after 4-shrink and complete filling operations

XII Spectral-Textural Analysis: Edit 14

The spectral texture analysis of edit #14 began just like that of the other edits except the feature selection did not choose a texture band as one of the best 2 or best 3 band pairs. We, nevertheless, did an experiment with 2 band pairs.

We chose bands .40 - .44 and .72 - .76 with bands .72 - .76 and the texture transform image. The texture image was the result of a 3x3 convolution of the .82 - .88 micrometer band as input into the texture transform and a 3x3 convolution after the texture transform. The alpha and beta thresholds were .3 and .021, respectively. Figure XII.1 shows the .82 - .88 micrometer band used for the texture transform. The texture transformed image that was used for processing is shown in Figure XII.2. Figure XII.3 shows the texture transform result with no convolution before transforming and with a 3x3 convolution after. The feature selector did not choose this band and visually we can see that it has much less spatial information than the texture transform that was chosen.

The contingency table that resulted from the table look-up rule (Table XII.1) shows a 43% misidentification error rate and a 44% false identification error rate. This is not nearly as good as the spectral results. There were a large number of reserved decisions, 72,804, due to too low thresholds.

The main reason for the larger error was increased confusion between all categories and category 7.2, not site prepared. These errors were small on the spectral analysis.

Using the same spatial post processing that we used in the spectral analysis we reduced the error most of the time but not always. After a 4-fill, 8-fill, 4-shrink, 8-shrink, we eliminated almost all errors in the spectral analysis (Section VIII) but with this spectral-textural analysis (Table XII.2) we increase misidentification error on category 4.1 to 91%, and on category 2.3 it was about the same (59%) as before post processing.

The final filling of the image (Table XII.3) reduced the error rates to 35% and 31% but did not come close to the 85% classification accuracy of the 2-band spectral results. This might have been due to the texture function used or to the fact that there was little textural distribution between the categories in this image.

118

Figure XII.1 The .82 - .88 micrometer band used for the texture transform.

Figure XII.2 The texture transform of Figure XII.1 with a 3x3 rectangular convolution before the texture transform and a 3x3 rectangular convolution after.

Figure XII.3 The texture transform of Figure XII.1 with no rectangular convolution before the texture transform and a 3x3 rectangular convolution after.

CONTINGENCY TABLE FOR SAMH42GDT - 1 SAMH4 B03 - 1 SCALE FACTOR 10**

		COL	L. #'AS	SSIGN C	CAT	RO∵ =	TRUE	CAT	r	
	R DEC	2.1	2.5	4•1	-7.2	TOTAL	ERP	ERF	SD	
UNKWA	165335	7345	13007	11622	22637	119946-	~	0 0	. 0	
2.3	2816	1028		281	406		1131	52	0	
2.5	2005	383	2445	115	30		529	18	Ŏ	
4.1	1106	216	105	212	110	1749	431	67	1	
7+2	1542	229	133	112	898	2914	474	35	Ō	
TOTAL	72804	9201	16134	12342	24081	134562.	2564	43	0	1
ERR	0	828				2564			-	
ERF	2 0	45	22	71	38		*****	****	*****	•

Table XII.1 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and .021.

CONTINGENCY TABLE FOR SAMH42GDT - 1 SMH454B03 - 1 SCALE FACTOR 10** 0

		COL	• = AS	SIGN C	AT	ROW =	TRUE	CAT	
	R DEC	2•3	2.5	4•1	7•2	TOTAL	ERR	ERR	SD
			3254	2012	10200	119946	•	^	0
-7	***** 4720					4975		59	
	3667	_	1293					1	0
4.1	1696	3.3	- 3	- 5	• 12	1749		91	· · · · O
7.2	2405	37	19	0	453	2914	56	11	0
TOTAL	*****	761	4587	2971	10984	134562	272	40	0
ERR	0	AA	40	4	141	273	****	****	*****
ERR		46	3	44	24	29	****	****	*****

Table XII.2The contingency table of the best 2 band pairs after 4-fill,
8-fill, 4-shrink, and 8-shrink operations.

CONTINGENCY TABLE FOR SAMH42GDT - 1 SMH4F5803 - 1 SCALE FACTOR 10**

		CO	L. = A:	SSIGN (CAT	Row =	TRUE	CAT			
•	RDE	C 2•3	2+5	4•1	7.2	TOTAL	ERP.	ERF	s SD		. .
									• •	•	• • • • •
UNKWN	1 0	15273	27797	24138	52738	119946	 1 1 	Ö	0		
2.3	0	3234	407	322	1012	4975	1741	35	0		
2.5	0	373	4605	0	0	4978	372	7	Ō	•	
4.1	0	824			228		÷ ·	69	· · · · ·		
7.2	0			-				31	Ō.	• •••	-
		20104	22270	24000	6 6 0 0 1	134562					1
TOTAL										• •	
ERR		1687				4226			*****		· · · · · · · · · · · · · · · · · · ·
ERR	\$ 0	34	18	37	- 38	31	****	****	****		
		•				· •	•		• . •	•	•••

Table XII.3The contingency table of the best 2 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink and complete filling operations.

XIII Spectral-Textural Analysis: Edit 3

In addition to the six spectral bands, we provided the feature selector with two textural transform bands. The texture bands were created from the .82 - .88 micrometer spectral bands as before. We used a 3x3 convolution before and after textural transform and no convolution before and 3x3 convolution after textural transform. The feature selector chose bands .40 - .44 and .588 - .643 micrometers with .40 - .44 micrometers and no convolution before and 3x3 convolution after texture bands for the best 2 band pairs. Figure XIII.1 shows how the alpha and beta thresholds were chosen in an attempt to minimize the total number of reserved decisions and to equalize the number of reserved decisions due to no assignment and the number of reserved decisions due to multiple assignments.

For the best 2 band pairs the alpha threshold was set at .5 and the beta threshold at .035. Table XIII.1 shows the resulting contingency table for the best 2 band pairs. There are 49,130 reserved decisions with 18,083 due to no assignment and 31,047 due to multiple assignment. The misidentification error rate was 42% and the false identification error rate was 43%. The largest cause of error was the misidentification error rate (90%) of category 1.3, shortleaf pine, mostly caused by assigning category 1.2, another sublcass of shortleaf pine. Post processing with a 4-fill, 8-fill, 4-shrink, 8-shrink and a complete filling results in a misidentification error rate of 34% and a false identification error rate of 20% (Table XIII.2).

The band pairs used for the best 2 along with the .588 - .643 and .65 - .69 micrometer band pair were chosen by the feature selector as the best 3 band pairs. Figure XIII.2 shows the graph of the threshold alpha against the number of reserved decisions. For the best 3 band pairs the alpha threshold was set at .6 and the beta threshold was set at .042. It is interesting to note, that the number of reserved decisions due to no assignment was 25,878, and the number of reserved decisions due to more than one assignment was 26,566 which are very close indicating good thresholds.

Table XIII.3 shows the resulting contingency table for the best 3 band pairs. The misidentification error rate was 38% and the false identification error rate was 41%. The greatest cause of confusion is the misidentification of category 1.3 and the false identification of category 1.3, a subclass of shortleaf pine. As with the spectral analysis of edit #3 (Chapter IX), the confusion is mostly within class types. Confusion between category 1.2 and category 1.3, subclasses of shortleaf pine, and confusion between category 2.4 and category 2.6 cause most of the error. Figure XIII.3 shows the best 3 band pairs classi-fication.

Post processing with a 4-fill and an 8-fill (Table XIII.4 and Figure XII.4) did not really change the error rates. The misidentification error rate is 40% and the false identification error rate is 44%. A 4-shrink (Table XIII.5 and Figure XIII.5) and an 8-shrink (Table XIII.6) eliminate almost all of the confusion between class types, but the error within class type 1 is still high. This confusion within class type 1 was also present in the spectral analysis (Chapter IX). The final post processing, a complete filling, resulted in a contingency table (Table XIII.7 and Figure XIII.6) having a misidentification error rate of 25% and a false identification error rate of 29%.

Note that the results of 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations for the best 3 band pairs (Table XIII.7 and Figure XIII.6) and the results of 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations for best 3 band pairs using the spectral analysis (Chapter IX, Table IX.7 and Figure IX.8) shows less error in the spectral results. Yet, comparison of Figure XIII.6 and Figure IX.8 show that the figure from the texture analysis is actually truer to the timber stand and compartment map for edit #3 than the spectral figure. It seems this is due to the area covered by the ground truth overlay (Figure IX.2), so that more ground truth would have resulted in better classification accuracy for the texture analysis.

CONTINETICY TABLE FOR CAMPIZEDT - 1 SATHI B23 - 1 STALE FACTOR 10** 0

		COL	• = ^'	ሳትርት ሮ	ΛT	ROX =	TRUF	CAT			
	PINEC	1.2	1.3	2.4	2.6	7•1	TOTAL	FRR	FRR	sn	
11-11-11-1	177645	7457	1245	10200	7424	8659	67679	n	0	0	
1.2	620"	341		- 7 h		447	12000	2212	60	0	
	1177	473	67	17	179	n	1862	619	00	1	
· 1	56.81		150	2503		263	0070	1702	41)	0	
2.6	3211	554				82	640r	1151	36	0	
7.1	2 6	1	£	163	Ę Q	3507	4020	217	t t	n	
TOTAL	4013.	12413	1762	14 .74	11476	12047	101896	6002	. 4.2	· • •	
C (2 0	. N	155	450	1201	2.100	702	6000	****	****	****	
, ror		31			50		42		***	*****	

Table XIII.1 The contingency table of the best 2 band pairs for alpha – beta thresholds of .5 and .035.

CONTINGENCY TABLE FOR SAMH12GDT - 1 SMH1F3B03 - 1 SCALE FACTOR 10**

			COL	. = As	SSIGN (CAT	ROW	TRUE	CA	r i	
	R	DEC	1. 2	1. 3	2. 4	2.6	7. 1	TOTAL	#ERR	X ERI	R X SD
UNKWN		о О	17749	ان د رو ^ن م	19587	14991	15216	67633	•	0	0
1.2			8152					12003		-	· · · · · · · · ·
1.3		-	1418					1863			
2.4		-	261					9972			ŏ
2. 6		0	281					6405			Ŏ.
										· · · · · · · · · · · · · · · · · · ·	
7.1		0	0	0		0	4020	4020	0	0	0
TOTAL		0	27861	0	27463	26161	20411	101896	9414	34	0
#ERR		0	1960	0	1323	5056	1075	9414	*****	*****	*****
% ERR		0	19	0	17	45	21	20	*****	*****	*****

Table XIII.2The contingency table of the best 2 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink and complete filling operations.

CONTRACTOR TABLE FOR CAMPIZONT - 1 SAMHI MI4 - 1 SCALE FACTOR 10**

		CPL.	COL. = ACSTON CAT				ROM = TRHE			
F	nrr	1+7	1.3	2 • 4	2+6	7•1	TOTAL	ERP	FPP	,SD
- 	07 D	4711	231.4	7324	8403	8471	67639	n.	n	0
	658	2640	444	E 14 19	470		12 02	2476	46	, U
-	197	747	295	26		Ű	1862	481	63	1
	882	411	15.5		292	281	9.72	1825	45	, O
	394	440	6. F.	400	7 74	51		085	. 33	n
								201	6	n
	342			717		1447	4020	236	28	n
TOTA 52	444	1.448	3221	1077	12221	12652	101896			
τ F				11.91	1 4	144	41 6	*****	*****	*****
C.274		· ?].	7 5	י <i>ו</i> ר י	48	18	41			

Table XIII.3 The contingency table of the best 3 band pairs for alpha – beta thresholds of .6 and .042.

CONTINGENCY TABLE FOR SAMH12GDT - 1 SMH1F2B04 - 1 SCALE FACTOR 10**

COL. = ASSIGN CAT ROW = TRUE CAT

	R DEC	1.2	1. 3	2. 4	2.6	7.1	TOTAL	#ERR	X ER	R X SD
			<i><u></u></i>				17100	•	•	0
UNKWN		14781					67633			
1.2	5	6241	1873	1326	1976	582	12003	5757	48	0
1.3	2	907	666	-68	220	0	1863	1195	64	1
2.4	13	1420	340	5281	2453	465	9972	4678	47	0
2.6	.0	1075	117	808	4270	135	6405	2135	33	0
na se Rei se na se Rei se se se se										
7.1	0	0	8	324	44	3644	4020	376	9	0
TOTAL	116	24424	8628	24281	28172	16:275	101896	14141	40	0
#ERR	0	3402	2338	2526	4693	1182	14141	*****	****	****
% ERR							44			

Table XIII.4 The contingency table of the best 3 band pairs after 4-fill and 8-fill operations.

Figure XIII.3 The classification of the three best band pairs for alpha – beta thresholds of .6 and .042.

Figure XIII.4

The classified image of Figure XIII.3 after 4-fill and 8-fill operations.

CONTINGENCY TABLE FOR SAMH12GDT - 1 SMH1S1B04 - 1 SCALE FACTOR 10++ C

		COL	. = AS	SIGN C	AT	ROW	TRUE CAT				
	R DEC	1. 2	1. 3	2. 4	2. 6	7.1	TOTAL	#ERR	X ERI	R % SD	
UNKWN	145873	5089	1607	3613	4983	6468	67633	0	0	0	
1.2	7181	3264	633	378	318	229	12003	1558	32	0	
1, 3	1189	362	301	1	10	0	1863	373		Ŭ.	
2.4	7242	210	8	2017	408	87	9972	713	26	0	
2.6	4393	173	- 1	· ⁻ 23	1813	2	6405	199	10	0	
7.1	640	0	0	73	0	3307	4020	73	2	o	
TOTAL	66518	9098	2550	6105	7532	10093	101896	2916	25	õ	
#ERR	0	745	642	475	736	318		*****	*****	*****	
% ERF	80.	19	68	19	. 29	9	28	*****	*****	*****	

Table XIII.5The contingency table of the best 3 band pairs after 4-fill,
8-fill, and 4-shrink operations.

CONTINGENCY TABLE FOR SAMH120DT - 1 SMH152B04 - 1 SCALE FACTOR 10** 0

COL. = ASSIGN CAT ROW = TRUE CAT

R DEC 1. 2 1. 3 2. 4 2. 6 7. 1 TOTAL #ERR % ERR %	

910	299	287	440	3271	67633	0	0	0
805	185	24	13	79	12003	301	27	0
66	65	Ó	0	0	1863	66	50	0
5	0	341	3	1	9972	9	3	
13	0	0	211	0	6405	13	6	0
					•		en e	
0	0	10	0					0
	549	662	667	6221				0
84	185	34	16	80				
9	74	9	7	. 3	20	****	****	****
	805 66 5 13 0 1799 84	805 185 66 65 5 0 13 0 1799 549 84 185	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	805 185 24 13 79 12003 66 65 0 0 0 1863 5 0 341 3 1 9972 13 0 0 211 0 6405 0 0 10 0 2870 4020 1799 549 662 667 6221 101896 84 185 34 16 80 399	805 185 24 13 79 12003 301 66 65 0 0 0 1863 66 5 0 341 3 1 9972 9 13 0 0 211 0 6405 13 0 0 10 0 2870 4020 10 1799 549 662 667 6221 101896 399 84 185 34 16 80 399 ******	805 185 24 13 79 12003 301 27 66 65 0 0 0 1863 66 50 5 0 341 3 1 9972 9 3 13 0 0 211 0 6405 13 6 0 0 10 0 2870 4020 10 0 1799 549 662 667 6221 101896 399 17 84 185 34 16 80 399 ****** ******

Table XIII.6The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink and 8-shrink operations.

CONTINGENCY TABLE FOR SAMHI2GDT - 1 SMHIF3B04 - 1 SCALE FACTOR 10**

	COL. = ASSIGN CAT ROW = TRUE CAT									
	R DEC	1. 2	1. 3	2. 4	2. 6	7.1	TOTAL	#ERR	X ERF	X SD
UNKWN	0	15644	5385	13505	16484	16615	67633	0	0	0
1.2	Ó	7887	1238	1274	697	9)7	12003	4116	34	0
1.3	0	1282	512	0	69	• •	1863	1351	73	1
2.4	0	144	0	8704	821	303	9972	1268	13	- O
2.6	0	379	0	0	6026	. 0	6405	379	6	0
7. 1	0	0	0	109	0	3911	4020	109	3	0
TOTAL	ò	25336	7135	23592	24097	21736	101896	7223	25	Ö
#ERR	ō	1805	1238	1383				*****	*****	*****
% ERR	0	19	71	14	21	24	29	*****	****	****

Table XIII.7The contingency table of the best 3 band pairs after 4-fill,
8-fill, 4-shrink, 8-shrink and complete filling operations.

Figure XIII.5 The classified image of Figure XIII.3 after 4-fill, 8-fill and 4-shrink operations.

Figure XIII.6 The classified image of Figure XIII.3 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

XIV Conclusions

Use of textural features and spatial post processing has been shown to cut the average classification error to less than half its initial value while tending to increase and equalize the equally weighted average misidentification error and equally weighted false identification error. The classified images resulting from spatial and textural processing have a more cartographic map-like quality than the typically salt and pepper classified images using no textural features or spatial post-processing.

The simultaneous decrease in average classification error and increase in both equally weighted average misidentification error and false identification error means that more pixels whose true category identification is of a frequently occurring category get reassigned correctly by the spatial post-processing than of an infrequently occurring category. This is a natural consequence of the fact that the spatial processing is more of a syntactic operation than a semantic one. Spatial processing operations which use category labels intead of just sameness or difference of category labels could be designed which do not favor the larger categories over the smaller categories.

Because of the strong interaction between average error, average misidentification error, average false identification error, and classified image appearance and complexity, it is clear that further work can bear much fruit by analysis of these interaction effects. In particular, we recommend that textural and spatial postprocessing concepts be developed using classified image's local neighborhood contexts as the independent variable and classification error as the dependent variable.

REFERENCES

Ashby, R. W., "Constraint Analysis of Many-Dimensional Relations," Yearbook for the Society of General System's Research, Vol. 9, 1964, pp. 99-105.

Brooner, W. G., R. M. Haralick, and I. Dinstein, "Spectral Parameters Affecting Automated Image Interpretation Using Bayesian Probability Techniques," <u>Proceedings</u> of the Seventh International Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, Michigan, May 17-21, 1971, pp. 1929-1949.

Eppler, W. G., "An Improved Version of the Table Look-up Algorithm for Pattern Recognition," <u>Proceedings of the Ninth International Symposium on Remote Sensing</u> of Environment, Environmental Research Institute of Michigan, Ann Arbor, Michigan, April 1974, pp. 793-812.

Eppler, W. G., C. A. Hemke, and R. H. Evans, "Table Look-up Approach to Pattern Recognition," <u>Proceedings of the Seventh International Symposium on Remote</u> <u>Sensing of Environment</u>, University of Michigan, Ann Arbor, Michigan, May 17-21, 1971, pp. 1415-1425.

Lewis, A. J., "Geomorphic Evaluation of Radar Imagery of Southeastern Panama and Northwestern Columbia, "CRES Technical Report No. 133–18, University of Kansas Center for Research, Inc., Lawrence, Kansas, February 1971.

Kaizer, H., "A Quantification of Textures on Aerial Photographs," Boston University Research Laboratories, Technical Note 121, 1955, AD69484.

Landaris, G. G. and G. L. Stanley, "Diffraction-Pattern Sampling for Automatic Pattern Recognition," <u>Proceedings of the IEEE</u>, Vol. 58, no. 2, February 1970, pp. 198-216.

Gramenopoulos, N., "Terrain Type Recognition Using ERTS-1 MSS Images," Symposium on Significant Results Obtained from the Earth Resources Technology Satellite, NASA SP-327, March 1973, pp. 1229-1241.

Hornung, R. J. and J. A. Smith, "Application of Fourier Analysis to Multispectral/ Spatial Recognition," <u>Management and Utilization of Remote Sensing Data ASP</u> Symposium, Sioux Falls, South Dakota, October 1973.

Kirvida, L. and G. Johnson, "Automatic Interpretation of Earth Resources Technology Satellite Data for Forest Management," <u>Symposium on Significant Results Obtained</u> from the Earth Resources Technology Satellite, NASA SP-327, March 1973, pp. 1076-1082.

Rosenfeld, A. and M. Thurston, "Edge and Curve Detection for Visual Scene Analysis," IEEE Transactions on Computers, Vol. C-20, No. 5, May 1971, pp. 562-569. Matheron, G., Elements Pour Une Theorie des Milieux Poreux, Masson, Paris, 1967.

Serra, J. and G. Verchery, "Mathematical Morphology Applied to Fibre Composite Materials," Film Science and Technology, Vol. 6, 1973, pp. 141-158.

Haralick, R. M., K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," <u>IEEE Transactions on Systems, Man and Cybernetics</u>, Vol. SMC-3, No. 6, November 1973, pp. 610–621.

O'Neill, E., "Spatial Filtering in Optics," <u>IRE Transactions on Information Theory</u>, June 1956, pp. 56–65.

Cutrona, L. J., E. N. Leith, C. J. Palermo, and L. J. Porcello, "Optical Data Processing and Filtering Systems," <u>IRE Transaction on Information Theory</u>, Vol. 6 No. 3, June 1960, pp. 386-400.

Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, New York, 1968.

Preston, K., Coherent Optical Computers, McGraw-Hill, New York, 1972.

Shulman, A. R., Optical Data Processing, John Wiley & Sons, Inc., New York, 1970.

Jensen, N., "High-Speed Image Analysis Techniques," <u>Photogrammetric Engineering</u>, Vol. XXXIX, No. 12, December 1973, pp. 1321–1328.

Swanlund, G., "Honeywell's Automatric Tree Species Classifier," Honeywell Systems and Research Division, Report 90-G-24, December 31, 1969.

Triendl, E. E., "Automatic Terrain Mapping by Texture Recognition," <u>Proceedings</u> of the Eighth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, Ann Arbor, Michigan, October 1972, pp. 771-776.

Sutton, R. and E. Hall, "Texture Measures for Automatic Classification of Pulmonary Disease," IEEE Transactions on Computers, Vol. C-21, No. 7, July 1972, pp. 667-676.

Maurer, H., "Texture Analysis with Fourier Series," <u>Proceedings of the Ninth</u> <u>International Symposium on Remote Sensing of Environment</u>, Environmental Research Institute of Michigan, Ann Arbor, April 1974, pp. 1411–1420.

Darling, E. M. and R. D. Joseph, "Pattern Recognition from Satellite Altitudes," <u>IEEE Transactions on Systems, Man, and Cybernetics</u>, Vol. SSC-4, March 1968, pp. 38-47.

Read, J. S. and S. N. Jayaramamurthy, "Automatic Generation of Texture Feature Detectors," IEEE Transactions on Computers, Vol. C-21, No. 7, July 1972, pp. 803-812. Haralick, R. M., "A Texture-Context Feature Extraction Algorithm for Remotely Sensed Imagery," <u>Proceedings 1971 IEEE Decision and Control Conference</u>, Gainesville, Florida, December 15-17, 1971, pp. 650-657.

Haralick, R. M., K. Shanmugam, and I. Dinstein, "On Some Quickly Computable Features for Texture," <u>Proceedings of the 1972 Symposium on Computer Image</u> <u>Processing and Recognition</u>, University of Missouri, Vol. 2, August 1972, pp. 12-2-1, 12-2-10.

APPENDIX 1

Textural Transform Programs

PROGRAM DESCRIPTION

Table of Contents

- I. User Interaction
- 11. Internal Program Description
- III. Non-Standard Subroutines
 - IV. Subroutine Documentations
 - V. Listing

I. User Interaction

User parameters are input by the routine TXINPT which asks for parameters by name:

NFUNC = 1 use subroutine FUNC 1
NFUNC = 2 use subroutine FUNC 2
NFUNC = 3 use subroutine FUNC 3
NFUNC = 4 use subroutine FUNC 4
NFUNC = 5 use subroutine FUNC 5
NDIS = distance between spaces of neighboring cells
IBOUT = logical unit number to output error messages
PCLCT = percent of point to count in FPLXIT
FILNMP = input filename
FILNMQ = output filename

1.29

11. Internal Program Description

The texture programs are set up so that after the call to TXINPT at the beginning of execution the user does not interact anymore with the computer.

The user must know which function he wants to use. The user inputs 1, 2, 3, 4, or 5 corresponding to FUNC1, FUNC2, FUNC3, FUNC4, and FUNC5 respectively; where:

FUNC1 - computes the sum probability feature of the image
FUNC2 - computes the gradient entropy feature of the image
FUNC3 - computes the entropy feature of the image
FUNC4 - computes the gradient feature of the image
FUNC5 - prepares normalized lex arrays which have been equal probability quantized according to their diagonal elements.

The parameter NDIS is the distance between spaces of neighboring cells. The texture transform works on the co-occurrence of grey levels on neighboring cells. Each cell has a 0° neighbor, a 90° neighbor, a 135° neighbor, and a 45° neighbor. This covers all the cells, since a cell's 180° neighbor has that cell as a 0° neighbor. Thus, for each grey level, there is a count of the co-occurrences of grey levels as one of the four specified neighbors. The parameter NDIS is the distance the algorithm gives to look for the neighboring cells. If the user wants to perform the texture transform using all co-occurrence counts, then the parameter PCLCT should be 1.00. If the user only wants to count 80% of the cells, the PCLCT should be set to 0.80, and so on.

The mainline TXJDM calls the ASCII I/O routine TXINPT for input parameters. The TXJDM transfers control to TXTMN. This routine sets up the work area, allocating core to those arrays that need it. FPLXIT is then called to compute the lex arrays where:

- LEX1 array containing count over all grey levels of vertically adjacent (90-degree) neighbor;
- LEX2 array containing count over all grey levels of horizontally adjacent (0-degree) neighbor;
- LEX3 array containing count over all grey levels of left diagonally adjacent (135-degree) neighbor;
- LEX4 array containing count over all grey levels of right diagonally adjacent (45-degree neighbor.

When these counts have finished, control is returned to TXTMN, which transfers control to the appropriate function as specified by the user. The FUNC array which is passed as an argument to the FUNC routines is equivalanced to the lex arrays. For example:

FUNC (1,1) = LEX1 (1) FUNC (1,2) = LEX2 (1)

FUNC(1,3) = LEX3(1)

FUNC (1, 4) = LEX4(1)

After the appropriate function has been applied, control is again returned to TXTMN. TXTMN then calls in PLXIT. PLXIT reads in the image data and determines the corresponding eight neighbors and applies the texture transform.

Let $Z_r \times Z_c$ be the set of resolution cells of an image I (by rowcolumn coordinates). Let G be the set of grey tones possible to appear on image I. Then I: $Z_r \times Z_c \rightarrow G$. Let R be a binary relation on $Z_r \times Z_c$ pairing together all those resolution cells in the desired spatial relation. The co-occurrence matrix P, P: $G \times G \rightarrow [0,1]$, for image I and binary relation R is defined by

$$P(i,j) = \frac{\# \{((a,b), (c,d)) \in R | I(a,b) = i \text{ and } I(c,d) = j \}}{\#R}$$

The textural transform J,J: $Z_r \times Z_c (-\infty,\infty)$, of image I relative to function f, is defined by

 $J(y,x) = \frac{1}{\#R(y,x)} \sum_{(a,b)\in R(y,x)} f[P(I(y,x),I(a,b))]$

Assuming f to be the identity function, the meaning of J(y,x) is as follows. The set R(y,x) is the set of all those resolution cells in $Z_r \times Z_c$ in the desired spatial relation to resolution cell (y,x). For any resolution cell $(a,b) \in R(y,x)$, P(I(y,x),I(a,b)) is the relative frequency by which the grey tone I(y,x), appearing at resolution cell (y,x), and the grey tone I(a,b), appearing at resolution cell (a,b), co-occur together in the desired spatial relation on the entire image. The sum

$$\sum_{\substack{(a,b)\in R(y,x)}} P(I(y,x), I(a,b))$$

is just the sum of the relative frequencies of grey tone co-occurrence over

ORIGINAL PAGE IS OF POOR QUALITY all resolution cells in the specified relation to resolution cell (y,x). The factor $\frac{1}{\#R(y,x)}$, the reciprocal of the number of resolution cells in the desired spatial relation to (y,x) is just a normalizing factor.

These data values are then written out in the corresponding place on the output texture transformed image. When PLXIT exits, the texture transform has been created. Control goes to TXTMN, which exits back to the mainline TXTDM. This program returns to the beginning and brings back the ASCII I/O routines to get the parameters for the next texture transform. If none are desired, a carriage return will terminate the processing.

All ASCII I/O on our PDP-15 is 5/7 ASCII in double integer words. The PDP-15 has 36 bits in one double integer word.

See Figure 1 for the program flow.

III. Non-Standard Subroutines

ADJI

ADJ2 Dynamic core allocation routines

ADJ3

The program can allocate memory by performing what essentially amounts to a dynamic Fortran equivalence and dimension KDPUSH - ignore (delete)

Error stack processing used in KANDIDATES. SDKINL - KANDIDATS sequential file opener

Opens files for KANDIDATS routines. Uses Seek and Enter (STANDARD Fortran routines) and can be modified to fit your file structure. SKPDSC - skip descriptor records

KANDIDATS creates descriptor records, containing processing history information, before the image date. Since the file is sequential, these must be skipped. If the user has random access on images, this can be ignored. If not, be sure that image record numbers are advanced to first image data record.

IMTRXP - Matrix print-out routine

Any standard Matrix print routine will work. SREAD - sequential read (uses Fortran reads) SWRITE - sequential write (uses Fortran write)

Starting on the next page is an explanation of the "ADJ routines and several ideas on how to get around them. The included program segment may be compared to the following example:

1. INTEGER ARRAY (500), X(1)

2. REAL Y(1)

٩.,

- 3. INTEGER XSIZE, YSIZE, YSTART, TTLSZE
- 4. READ (5, 100) XSIZE, YSIZE
- **5. TTLSZE** = XSIZE + YSIZE
- 6. IF (TTLSZE .GT. 500) CALL ERROR

7. YSTART = XSIZE + 1

- 8. CALL ADJ1 (X, ARRAY (1))
- 9. CALL ADJI (Y, ARRAY (YSTART))
- 10. . . TASK CODE
- 11. STOP
- 12. END

Within the task code, X and Y may be referenced as vectors with respective types, integer and real. In addition references to X will access the first XSIZE elements of ARRAY and references to Y will access the last YSIZE elements of ARRAY. If X and Y are used only in contexts that functions may be used in, then the program segment may be recoded using statement functions. (Check your particular implementation of FORTRAN for applicability.)

1. INTEGER ARRAY (500)

2. REAL RL

- 3. INTEGER XSIZE, YSIZE, TTLSZE
- 4. X(I) = ARRAY (I)
 - 5. Y(I) = RL(ARRAY (I + XSIZE))
 - 6. READ (5, 100) XSIZE, YSIZE
 - 7. TTLSZE = XSIZE + YSIZE
 - 8. IF (TTLSZE .GT. 500) CALL ERROR
 - 9. . . TASK CODE
 - 10. STOP
 - 11. END

Where the function RL is coded as follows.

- 1. REAL FUNCTION RL(ARG)
- 2. REAL ARG
- 3. RL = ARG
- 4. RETURN
- 5. END

Within the task code, X and Y will have respective types integer and real and will access those specified locations of ARRAY. However, X and Y may only be used as functions. In the context of subroutine calls, adjustable dimensions is a standard feature of FORTRAN as in the following example:

- 1. INTEGER ARRAY (500)
- 2. INTEGER XSIZE, YSIZE, YSTART, TTLSZE
- 3. READ (5, 100) XSIZE, YSIZE
- 4. TTLSZE = XSIZE + YSIZE
- 5. IF (TTLSZE .GT. 500) CALL ERROR
- $6. \quad YSTART = XSIZE + 1$
- 7. CALL SUB (ARRAY (1), ARRAY (YSTART), XSIZE, YSIZE)
- 8. STOP
- 9. END

Where SUB is coded as follows:

- 1. SUBROUTINE SUB (X, Y, XSIZE, YSIZE)
- 2. INTEGER XSIZE, YSIZE
- 3. INTEGER X(XSIZE)
- 4. REAL Y(YSIZE)
- 5. . . TASK CODE
- 6. RETURN

This approach necessitates a division of storage allocation code and task code.

Alternatively X and Y may be dimensioned independently and given a reasonable but sufficient size.

- 1. INTEGER X (250)
- 2. REAL Y(250)
- 3. READ (5, 100) XSIZE, YSIZE
- 4. IF (XSIZE .GT. 250). OR.
- 5. (YSIZE .GT. 250) CALL ERROR
- 6. . . TASK CODE
- 7. STOP
- 8. END

Check the output of the FORTRAN compiler being used.

If the compiler generates and uses dope vectors it would be possible to produce user written ADJ routines.

Keep in mind that all recoding must preserve the size, shape, type and usage of the involved data elements.

IV. Subroutine Documentations

ORIGINAL PAGE IS OF POOR QUALITY

GENERAL MATRIX PRINTOUT PROGRAM

PROGRAM TITLE: DATE OF LISTING: PROGRAMMER: DOCUMENTED BY: PROGRAM LANGUAGE: COMPUTER REQUIRED: PURPOSE: SUBROUTINE IMTRXP February 13, 1973 Dinesh Goel Dinesh Goel FORTRAN IV PDP 15/20

This subroutine divides an integer matrix into sections suitable for printer output and prints the matrix with matrix title, column designation, row designation, and column and row labels.

CALLING SEQUENCE:

CALL IMTRXP (IA, NROW, NCOL, NRWDIM, TTL1, TTL2, TTL3, CLBL, RLBL, ISTR)

INPUT ARGUMENTS:

IA	Input array of matrix to be printed out.
NROW	Number of rows in the printed matrix.
NCOL	Number of columns in the printed matrix.
NRWDIM	Row dimension of the entire matrix which is
	stored by columns.
TTLI	Matrix title of 13 words.
TTL2	Column title of 2 words.
TTL3	Row title of 2 words.
CLBL	Array of column labels.
RLBL	Array of row lables.
ISTR	This is an option
	if 1, matrix will be printed as such.
	if 2, transposed matrix will be printed out.
	if 3, matrix is assumed to be symmetric having
	long to short storage in IA.

if 4, matrix is assumed to be summetric having short to long storage in IA.

OUTPUT ARGUMENTS:

None.

OTHER PARAMETERS AND ARRAYS:

IROW

Array for any one row of matrix as finally printed out.

COMMENTS:

If the printed matrix has large number of columns which can not fit on one page of printer output, it will be separated into blocks, each of which is small enough to fit on one page. The rows are printed in the blocks of 5. This program takes only the integer numbers, for real numbers RMTRXP can be used. File code 17 octal has been used for printing the matrix which must be assigned to teletype or IBM printer in the beginning as desired.

Sequential Read

PROGRAM TITLE: VERSION: DATE: UPDATE: AUTHOR: DOCUMENTED BY: PROGRAM LANGUAGE: IMPLEMENTED ON: PURPOSE:

SREAD B

June 22, 1973 April 29, 1975 Robert M. Haralick Robert M. Haralick FORTRAN IV PDP 15/20

This subroutine reads a set of lines on a file of single image data stored in standard bit compacted form. SREAD assumes that SDKINL has already been called to open the file on IDAT.

ENTRY POINT:

SPREAD (IDAT, IARRAY, IDY, IDENT, IEV, ERRRET)

ARGUMENT LIST:

IDAT IARRAY

IDY

IDENT IEV the file code on which the image resides 2-dimensional array (row x column) which subimage is returned in number of records in subimage. The number of rows and columns for a record will be taken from IDENT (14) and IDENT (13), respectively identification array of 20 words. integer event variable IEV = 1 success IEV = -2001 illegal file code IEV = -2007 EOF IEV = -2009 READ ERROR IEV = 2012 illegal data mode

152

ERRRET

alternate return taken if an error occurs

SUBROUTING REQUIRED:

ADJ1 KDPOP KDPUSH UNPACK

COMMENTS:

IARRAY must be a two dimensional array IDENT (13)* IDENT (14) must not be greater than 256 unless the user has a block data program to allocate more memory to labeled common area /10/.

Skip Descriptor Records

PROGRAM TITLE: VERSION: DATE: UPDATE: AUTHOR: DOCUMENTED BY: PROGRAM LANGUAGE: IMPLEMENTED ON: PURPOSE:

SKPDSC A

July 10, 1973 October 15, 1974 Robert M. Haralick Robert M. Haralick FORTRAN IV PDP 15/20

This program skips the descriptor records of images stored in standard bit compacted form. SKPDSC assumes that SDKINL has been called previously.

ENTRY POINT:

SKPDSC (IDATP, IDENT, IEV, ERRRET)

ARGUMENT LIST:

IDATP	file code on which the image resides.				
IDENT	identification array of 20 words for the image				
IEV	= 1 success				
	= -2001 illegal file code				
	= -2007 EOF				
	= -2009 read error				
ERRRET	Alternate return taken if error occurs				

SUBROUTINES REQUIRED: KDPOP KDPUSH

Sequential Disc Initializer

PROGRAM TITLE:	SDKINL
VERSION:	B
DATE:	June 30, 1973
UPDATE:	October 15, 1974
AUTHOR:	Robert M. Haralick
DOCUMENTED BY:	Robert M. Haralick
PROGRAM LANGUAGE:	FORTRAN IV
IMPLEMENTED ON:	PDP 15/20
PURPOSE:	

This subroutine initializes a PDP 15/20 sequential disc file for input or output. The file is used to store image data in standard bit compacted form. The number of data words will be written in a logical record of at least 20 and the number of bits per data word should not be more than 18.

ENTRY POINT:

SDKINL: (IDAT, FILNM, IDENT, IRDWRT, IEV, ERRRET)

ARGUMENT LIST:

IDAT	file code on which file resides.
FILNM	array containing the fil name.
IDENT	identification array of 20 words.
IRDWRT	read/write indicator.
	IRDWRT =1 initialize as input file.
	IRDWRT =2 initialize as output file
IEV	integer event variable.
	= 1 Success
	= -2001 Illegal file code
	= -2002 Number of bits per point has a
	illegal value
	= -2003 Frame coordinate and image dimension
	information not specified in-Ident-array
	= -2004 Illegal request

- = -2005 file does not exist
- = -2011 illegal min/max/NZL/nbits combination
- = -2012 illegal data mode

ERRRET

ALTERNATE RETURN TAKEN IF A ERROR OCCURS

SUBROUTINES REQUIRED:

ENTER FSTAT ICEIL KDPOP KDPUSH

MAXØ

SEEK

Sequential Write

PROGRAM TITLE: VERSION: DATE: UPDATE: AUTHOR: DOCUMENTED BY: IMPLEMENTED ON: PURPOSE: SWRITE C June 22, 1973 October 15, 1974 Robert M. Haralick Robert M. Haralick PDP 15/20

This program writes a set of lines or a file of single image data stored in standard bit compacted format. SWRITE assumes that SDKINL has also been called to initialize the file on IDAT.

ENTRY POINT:

SWRITE (IDAT, IARRAY, IDY, IDENT, IEV, ERRRET)

ARGUMENT LIST:

IDAT	file code on which 1 image resides.
IARRAY	2-dimensional array (row x column)
	in which subimage is transferred to program.
IDY	number of records for subimage. The number
	of rows and columns for a record will be taken
	from IDENT (13) and IDENT (14).
IDENT	identification array of 20 words.
IEV	integer event variable
	IEV = 1 success
	IEV = -2001 illegal file code
	IEV = -2006 /10/ too small
	1EV = -2007 EOF
	IEV = -2008 WRITE ERROR
	IEV = -2012 illegal data mode
ERRRET	ATTENATE RETURN TAKEN IF ERROR OCCURS

SUBROUTINE REQUIRED:

ADJ1 KDPOP KDPUSH PACK

COMMENTS:

IARRAY must be a two dimensional array. IDENT (13)* IDENT (14) must not be greater than 256 unless the user has a block data program to allocate more memory to labeled common area /10/.

V. Listing

ORIGINAL PAGE IS OF POOR QUALITY

F-R-R-0-R

	CERROR	E-R-R-O-R
	C C C	ASCII ERROR I/O FOR TEXTURE PROGRAM
		PROGRAM TITLE ERROR VERSION A AUTHOR CHIN-HUANG CHEN DATE FEBRUARY 1975
-		UPDATE PROGRAM LANGUAGE FORTRAN IV IMPLEMENTED ON PDP 15 DOCUMENTED BY CHIN-HUANG CHEN PURPOSE
		THIS ROUTINE TELLS THE USER EITHER LSTID OR TXTMN IS IN ERROR ON . DAT SLOT IOUT OR IBOUT ENTRY POINT ERROR(IERR, IEV, IOUT, IBOUT) ARGUMENT LIST IERR PARAMETER USED TO DETERMINE EITHER LSTID
		OR TXTMN IS IN ERROR IEV INTEGER EVENT VARIABLE IOUT ERROR MESSAGE OUTPUT . DAT SLOT IBOUT ALTERNATE ERROR MESSAGE OUTPUT . DAT SLOT
	C	SUBROUTINE ERROR(IERR, IEV, IOUT, IBOUT) DOUBLE INTEGER FDATE(3)
}	405	GO TO (304,310),IERR CALL ADATE(FDATE) WRITE(IOUT,405) FDATE FORMAT(1X,3A5)
	304 305	IF(IBOUT.NE.IOUT)WRITE(IBOUT,405) FDATE GO TO 200 WRITE(IOUT,305) IEV IF(IOUT.NE.IBOUT) WRITE(IBOUT,305) IEV FORMAT(1 LSTID ERROR1,I5)
	310 - 311 400 200	GO TO 400 WRITE(IBOUT,311) IEV IF(IBOUT.NE.IOUT) WRITE(IBOUT,311) IEV FORMAT(' TXTMN ERROR IEV=',15) CALL CLOSE(IBOUT) RETURN

ORIGINAL PAGE IS OF POOR QUALITY

160

CFPLXIT C	F-F-L-X-I-T
C TITLE	SUBROUTINE FFLXIT
C UPDATE ROB C GE C RM C CHI C PURPOSE AD C CHA	A. SINGH NOVEMBER 1972 ERT M HARALICK FEBRUARY 1974 MONAGHAN 9/20/74 HARALICK 10/10/74 N-HUANG CHEN 2/22/75 D PCLCT IN ARGUMENT LIST NGE LEX ARRAY TO SINGLE INTEGER OVERFLOW CHECK ON LEX ARRAY
C DOCUMEN- C TATION	A. SINGH
C REQUIRED C	ANY FORTRAN IV
C PURPOSE C C C C	FPLXIT COMPUTES THE FOUR NEIGHBOUR GRAY TONE MATRICES LEX1, LEX2, LEX3 AND LEX4 FOR ANGLES 90,0,135 AND 45 DEGREES RESPECTIVELY. IT WORKS FOR ALL DISTANCES.
C METHOD C C C C C C	FPLXIT CHECKS THE GRAY LEVELS OF THE NEIGHBOURS OF A CELL, AND INCREMENTS THE CORRESPONDING ELEMENT IN THE ASSOCIATED LEX ARRAY. THE NEIGHBOURS UNDER CONSIDERATION ARE A DISTANCE &D& AWAY, WHERE &D& IS THE DISTANCE FOR THAT RUN OF FPLXIT.
C CALLING C SEQUENCE C ARGUMENTS	CALL FPLXIT(IDATI, IDATA, LEX1, LEX2, LEX3, LEX4, IPT, IDENT, MM1, PCLCT, IEV, IERR1)
- C IDATI C IDATA C	INPUT FILE CODE SCRATCH ARRAY FOR MM1 LINES OF THE IMAGE
	IMAGE. LEX1, LEX2, LEX3 AND LEX4 ARE THE FOUR LEX ARRAYS FOR THE GRAY TONE MATRICES. IPT ARRAY WHICH CONTAINS THE POINTERS FOR
	IFTHRRHY WHICH CONTHINS THE FORMERS FORTHE IDATA ARRAY.IDENTIDENTIFICATION ARRAY FOR THE IMAGEMM1SPATIAL DISTANCE + 1PCLCTPERCENT OF LINES COUNTEDIEVINTEGER EVENT VARIABLE
	IEV=-5011 IF NUMPPL OR NUMLIN IS LESS THAN TWICE SPATIAL DISTANCE PARAMETER. IEV=-5010 IF LEX ARRAY IS OVERFLOW IERR1 ALTERNATE RETURN TAKEN IF ERROR OCCURS

161

NUMBER OF LINES IN THE IMAGE NUMLIN E PARAMETERS NUMBER OF POINTS PER LINE IN THE IMAGE C NUMPPL LARGEST GRAY TONE C IMAX LEAST GRAY TONE C IMIN =IMIN-1. LEAST1 IS USED FOR NORMALISING C: LEAST1 THE GRAY TONES. C NUMBER OF GRAY TONES C NOBL NOBL=IMAX-IMIN+1 C Ľ: SIZE OF A LEX ARRAY NBUBL C NBUBL=NOBL*(NOBL+1)/2 Ü IMAGE READ IN FROM FILE (02). C INPUT AND C OUTPUT C NORMAL AND ALTERNATE ERROR RETURNS C RETURNS C C SUBPROGRAMS INDEX С REQUIRED C C CALLED BY TXTMN C FPLXIT WORKS FOR ALL SPATIAL DISTANCES. IT DOES THIS C COMMENTS BY HAVING NDIS+1 LINES OF IDATA IN CORE, WHERE NDIS C IS THE SPATIAL DISTANCE PARAMETER. C C SUBROUTINE FPLXIT(IDATI, IDATA, LEX1, LEX2, LEX3, LEX4, IPT, 1 IDENT, MM1, IMGNO, POLCT, IARRAY, IEV, IERR1) DOUBLE INTEGER INT, LEX1, LEX2, LEX3, LEX4 DIMENSION IDATA(1,1), LEX1(1), LEX2(1), LEX3(1), LEX4(1), IPT(1) DIMENSION IDENT(20), IARRAY(1, 1, 1) C C C Γ. IDATA(NUMPPL, MM1), IFT(MM1) Ĉ. Ċ STACK SUBROUTINE NAME IN ERROR STACK С C CALL KDPUSH((FPLXI (/ T)) C. SET PARAMETERS Ľ. C NUMPPL=IDENT(6) NUMLIN=IDENT(7) IMIN=IDENT(15)

IMAX=IDENT(16) LEAST1=IMIN-1 NOBL=IMAX-LEAST1 NBUBL=NOBL*(NOBL+1)/2

INITIALISE THE LEX ARRAYS TO ZERO

DO 14 I=1, NBUBL

С С С

С С 14

C

С С С

C

C

C C

C

C

С С С

C

Ē:

С С

С

C

C.

С С

000000

C

€.

C

111

110

CHECK IF SIZE OF IMAGE IS TOO SMALL, RELATIVE TO THE DISTANCE PARAMETER MM

MM=MM1-1 MM2=MM*2 IEV=-5011 IF(NUMPPL.LT.MM2.OR.NUMLIN.LT.MM2) GO TO 9999

NUMPMM=NUMPPL-MM NUMLMM=NUMLIN-MM

READ IN THE FIRST MM1 LINES OF THE IMAGE AND SET UP POINTERS

DO 110 IY=1, MM1 IPT(IY)=IY CALL RREAD(IDATI, IARRAY, IMGNO, IY, 1, IDENT, IEV, ERR1) DO 111 LY=1, NUMPFL IDATA(LY, IY)=IARRAY(1, 1, LY) CONTINUE

> SETTING UP POINTERS FOR THE FIRST AND LAST ROWS OF THE IMAGE ARRAYS

IST=IPT(1) LST=IPT(MM1)

GO THROUGH ALL BUT MM ROWS OF IMAGE

NOVFL0=131017 INT=3856347531

NEXT=MM1+1

DO 105 LCNT = NEXT, NUMLIN IF(RCM(INT). GT. PCLCT) GO TO 105

> SKIP LINES RANDOMLY BY USING RANDOM NUMBER GENERATOR RCM EXTERNAL FUNCTION

GO THROUGH EACH ROW MM TIMES. THE FIRST SET OF MM COLUMNS ARE HANDLED SEPARATELY

DO 120 IRW=1, MM

ORIGINAL PAGE IS OF POOR QUALITY IRM=IRW+MM

C

C C

C

Ċ

С С

Ċ:

С

C

C:

Ľ:

C

C C

С С

Ľ:

С С

C

C C

Ľ:

С С

C

C

С

Ľ.

C

C

C

0000

С С

C

C

C

C

C

C

C

SET I, L, J AND K EQUAL TO THE (NORMALISED) VALUES OF GRAY TONES OF RESOLUTION CELLS IN POSITIONS A, B, C AND D AS IN THE DIAGRAM --

> A C B D

WHERE A INITIALLY IS THE UPPER LEFT CORNER CELL. THE CELLS ARE A DISTANCE MM APART.

I=IDATA(IRW, IST)-LEAST1 L=IDATA(IRW, LST)-LEAST1 K=IDATA(IRM, LST)-LEAST1 J=IDATA(IRM, IST)-LEAST1

> PUT THE TWO DIMENSIONAL INFORMATION INTO ONE DIMENSIONAL FORM. THE FUNCTION NEEDED TO CONVERT A DOUBLE SUBSCRI-TED ARRAY, IMM(X,Y), INTO A SINGLE SUBSCRIPTED ARRAY, IMM(Z), IS OF THE FORM G(X) + F(Y), WHERE G(X) = (X-1)*X/2AND F(Y) = Y. THEREFORE Z = (X-1)*X/2+Y

THIS IS DONE IN THE PROGRAM BY THE EXTERNAL FUNCTION INDEX(X,Y).

SINCE THE ORDER OF OCCURRENCE OF THE GRAY TONES BELONGING TO A RESOLUTION CELL PAIR IS IMMATERIAL, THE ARRAYS ARE SYMMETRIC. WE LET THE LARGER OF THE TWO HAVE THE FIRST SUBSCRIPT, I.E., THE ARRAY IS STORED IN LOWER TRIANGULAR FORM. THE ORDER OF THE SUBSCRIPTING IS AS FOLLOWS -

> IMM(1,1) = IM(1),IMM(2,1) = IMM(2),IMM(2,2) = IMM(3),IMM(3,1) = IMM(4),

IMM(NOBL, NOBL) = IMM(NBUBL).

THE SCANNING PROCEDURE, THAT IS THE METHOD BY WHICH THE PAIRWISE COMPARISONS ARE MADE, IS DESCRIBED BELOW FOR THE GENERAL CASE.

CONSIDER A RESOLUTION CELL WITH SPATIAL COORDINATES (M,N), AND CALL THIS CELL I. THE SCANNING OPERATION BEGINS IN THE UPPER LEFT HAND CORNER OF THE IMAGE AND IT THEN PROCEEDS BY COMPARING THE GRAY TONE OF &1& WITH AT MOST FOUR GRAY TONES OF ITS NEIGHBOURING RESOLUTION CELLS. THAT &1& NEVER NEEDS TO CONSIDER MORE THAN FOUR NEIGHBOURS CAN BE SEEN FROM THE DIAGRAM OF THE SEARCH PATTERN SHOWN BELOW --

I J M L K

ON A GIVEN ITERATION, &I& WILL LOOK FIRST AT ITS VERTICAL NEIGHBOUR (&L&), NEXT AT ITS HORIZONTAL NEIGHBOUR (&L&), THIRD AT ITS LOWER RIGHT NEIGHBOUR (&K&) AND FOURTH AT ITS LOWER LEFT DIAGONAL NEIGHBOUR (&M&). &I& THEN MOVES INTO THE POSITION OF THE RIGHT RESOLUTION CELL OF THE PREVIOUSLY SCANNED FIRST ROW (THE POSITION OCCUPIED BY &J&). THE OPERATION IS REPEATED UNTIL ALL NEIGHBOURING PAIRS OF RESOLUTION CELLS HAVE BEEN EXAMINED. THE PROCEDURE IS FURTHER REPEATED FOR CELLS SKIPPED OVER IF THE SPATIAL DISTANCE IS GREATER THAN ONE, TILL ALL CELLS HAVE BEEN EXHAUSTED.

IL=INDEX(I,L)

COUNT VERTICALLY ADJACENT (90-DEGREE) NEIGHBOUR

LEX1(IL) = LEX1(IL) + 1

IJ=INDEX(I,J)

COUNT HORIZONTALLY ADJACENT (O-DE+REE) NEIGHBOUR

LEX2(IJ) = LEX2(IJ) + 1

IK=INDEX(I,K)

COUNT LEFT DIAGONALLY ADJACENT (135-DEGREE) NEIGHBOUR

LEX3(IK)=LEX3(IK)+1

NOW ITERATE DOWN THE ROW

DO 130 N=IRM, NUMPMM, MM

NMM=N+MM I=J M=L L=K

_ 🗅

C

000

Ċ

Ċ

C

С С

E:

C

C C

С С

C

С С

> С С

C C

C

Ę.

С С

C

C

C

C

0

C

c J=IDATA(NMM, IST)-LEAST1 K=IDATA(NMM, LST)-LEAST1

IL=INDEX(I,L)

COUNT VERTICALLY ADJACENT (90-DEGREE) NEIGHBOUR

LEX1(IL) = LEX1(IL) + 1

IJ=INDEX(I,J)

COUNT HORIZONTALLY ADJACENT (O-DE+REE) NEIGHBOUR

LEX2(IJ)=LEX2(IJ)+1

IK=INDEX(I,K)

COUNT LEFT DIAGONALLY ADJACENT (135-DEGREE) NEIGHBOUR

LEX3(IK) = LEX3(IK) + 1

IM=INDEX(I, M)

COUNT RIGHT DIAGONALLY ADJACENT (45-DEGREE) NEIGHBOUR

LEX4(IM)=LEX4(IM)+1

130 CONTINUE

COMPUTE THE LAST SET OF MM COLUMNS SEPARATELY

I=J M=L L=K IL=INDEX(I,L)

> COUNT VERTICALLY ADJACENT (90-DEGREE) NEIGHBOUR

LEX1(IL)=LEX1(IL)+1

IM=INDEX(I,M)

COUNT RIGHT DIAGONALLY ADJACENT (45-DEGREE) NEIGHBOUR

LEX4(IM) = LEX4(IM) + 1

120 CONTINUE

C

0 0 0

C.

Ē

Ŭ.

C

C

C

C

C

C

C C

C

C

C

C

SHIFT THE POINTERS FOR THE TWO ARRAYS. THIS IS DONE BY A CYCLIC ROTATION. THE POINTER ARRAY IPT IS SUCH THAT AT ANY TIME THE ITH LOCATION OF IPT CONTAINS THE POINTER TO THE 1TH POSITION OF THE LINE IN IDATA OR JDATA ARRAY. FOR EXAMPLE, IF IPT(2)=4 THEN THE FOURTH LINE. OF THE PHYSICAL JDATA ARRAY IS ACTUALLY THE SECOND LINE, AT THAT MOMENT.

IF(LONT EQ. NUMLIN) GO TO 105

ROTATE IN A CYCLIC MANNER

ITEMP=IPT(1) DO 135 IB=1,MM 135 IPT(IB)=IPT(IB+1) IPT(MM1)=ITEMP

SET UP THE POINTERS TO THE FIRST AND LAST ROWS OF THE TWO IMAGE ARRAYS

IST=IPT(1)
LST=IPT(MM1)

C

C

Ċ C

> C C

C

112

READ IN A NEW LINE INTO THE IDATA ARRAY

CALL RREAD(IDATI, IARRAY, IMGNO, LONT, 1, IDENT, IEV, ERR1) DO 112 LY=1, NUMPPL IDATA(LY, LST)=IARRAY(1, 1, LY) IF(LEX1(IL), GT. NOVFLO) GO TO 106

IF(LEX2(IJ), GT. NOVFLO) GO TO 106 IF(LEX3(IK), GT. NOVFLO) GO TO 106 IF(LEX4(IM), GT. NOVFLO) GO TO 106

105 CONTINUE GO TO 108 106 IEV=-5010 RETURN IERR1

THE LAST MM ROWS ARE COMPUTED SEPARATELY

DO LOOP TO GO THROUGH EACH ROW MM TIMES

DO LOOP TO GO THROUGH THE MM ROWS

108 DO 140 LR=1, MM ISR=IPT(LR+1)

DO 142 IRW=1, MM

I=IDATA(IRW, ISR)-LEAST1

ORIGINAL FAGE IS OF FOOR QUALITY

C C DO LOOP TO WORK DOWN A ROW, COMPUTING С THE O-DEGREE NEIGHBOUR ONLY С DO 144 N=IRW, NUMPMM, MM NMM=N+MM J=IDATA(NMM, ISR)-LEAST1 C IJ=INDEX(I,J)C COUNT HORIZONTALLY ADJACENT (O-DEGREE) С С NEIGHBOUR C LEX2(IJ) = LEX2(IJ) + 1£ 144 I=J 142 CONTINUE _ C 140 CONTINUE C DOUBLE THE DIAGONAL TO MAKE EVERYTHING C C COME OUT RIGHT C NOBL=IMAX-IMIN+1 DO 12 I=1, NOBL C II=INDEX(I,I) C LEX1(II) = LEX1(II) * 2LEX2(II) = LEX2(II) *2LEX3(II)=LEX3(II)*2 12 LEX4(II)=LEX4(II)*2 . C CALL CLOSE(IDATI) CALL KDPOP RETURN C С ERROR C 9999 CALL CLOSE(IDAT1) RETURN IERR1 _ C END

CFUNC1 C	F-U-N-C-1
C PROGRAM C TITLE C	SUBROUTINE FUNC1
C PROGRAMMER	A. SINGH OCTOBER 1972 ROBERT M HARALICK FEDRUARY 1974 GE MONAGHAN AUGUST 8, 1974 CHIN-HUANG CHEN FEBRUARY 22, 1975
	A. SINGH
C COMPUTER C REQUIRED	ANY
C PROGRAM C LANGUAGE C	FORTRAN IV
C PURPOSE C	FUNC1 COMPUTES THE SUM PROBABILITY FEATURE OF THE IMAGE.
С МЕТНОВ С С - С	FUNC1 FIRST COMPUTES THE TOTAL NUMBER OF PAIRS FOR EACH DIRECTION. THEN $P(I, J)$ FOR THE K LEX ARRAY IS P(I, J) = LEXK(IJ)/(TOTAL NUMBER OF PAIRS FOR THE KLEX ARRAY). IJ = INDEX(I, J).
C C CALLING C SEQUENCE	CALL FUNC1(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL)
C ARGUMENTS C C C C C C C C C C C C C C C C C C C	LEX1, LEX2, LEX3 AND LEX4 ARE THE FOUR TRIANGULAR GRAY TONE MATRICES. FUNC THIS IS A TWO DIMENSIONAL ARRAY WHERE THE RESULTS OF SUBROUTINE FUNC1 ARE STORED. THESE ARE STORED IN TRIANGULAR FORM LIKE THE LEX ARRAYS. THE SECOND SUBSCRIPT CORRESPONDS TO THE DIRECTION (K=1, 2, 3 OR 4 IS 90,0,135 OR 45 DEGREES RESPECTIVELY), WHILE THE FIRST SUBSCRIPT, IJ=INDEX(I,J), IS THE LOCATION OF THE GRAY TONE PAIR (I,J) AS IN THE LEX ARRAYS. NBUBL SIZE OF A LEX ARRAY NBUBL=NOBL*(NOBL+1)/2
	NOBL NUMBER OF GRAY TONES R1,R2,R3,R4 ARE THE RECIPRICAL OF THE TOTAL NUMBER OF GRAY TONE PAIRS FOR EACH OF THE FOUR DIRECTIONS.
C INPUT AND C OUTPUT	NONE
C C RETURNS C	NO ERROR RETURNS

SUBPROGRAMS INDEX REQUIRED

CALLED BY TXTMN

SUBROUTINE FUNC1(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL, NOBL) DOUBLE INTEGER FUNC, LEX1, LEX2, LEX3, LEX4

DIMENSION LEX1(1), LEX2(1), LEX3(1), LEX4(1), FUNC(1,4)

FUNC(NBUBL, 4)

NOW COMPUTE FUNC

TO DETERMINE THE TOTAL NUMBER OF PAIRS IN A GIVEN DIRECTION

R1=0. R2=0. R3=0. R4=0.

DO 5 I=1, NOBL DO 5 J=1, NOBL IJ=INDEX(I,J) TEMP=LEX1(IJ) R1=R1+TEMP TEMP=LEX2(IJ) R2=R2+TEMP TEMP=LEX3(IJ) R3=R3+TEMP TEMP=LEX4(IJ) R4=R4+TEMP CONTINUE

TO COMPUTE AVERAGE.

AVG1=0. AVG2=0. AVG3=0. AVG4=0. DO 6 I=1, NOBL DO 6 J=1, NOBL IJ=INDEX(I,J) TEMP=LEX1(IJ) AVG1=AVG1+TEMP*TEMP TEMP=LEX2(IJ)

AVG2=AVG2+TEMP*TEMP TEMP=LEX3(IJ) AVG3=AVG3+TEMP*TEMP

C

5

С С

С

_ C

Ū.

TEMP=LEX4(1J) AV64=AV64+TEMF*TEMP CONTINUE

AVG1=AVG1/R1 AVG2=AVG2/R2 AVG3=AVG3/R3 AVG4=AVG4/R4

 $\dot{\omega}$

C C

C C

C

С С 7

DO 7 I=1, NOBL DO 7 J=I, NOBL IJ=INDEX(I,J)

TEMP=LEX1(IJ)
FUNC(IJ, 1)=(TEMP-AVG1)*1000. /R1
TEMP=LEX2(IJ)
FUNC(IJ, 2)=(TEMP-AVG2)*1000. /R2
TEMP=LEX3(IJ)
FUNC(IJ, 3)=(TEMP-AVG3)*1000. /R3
TEMP=LEX4(IJ)
FUNC(IJ, 4)=(TEMP-AVG4)*1000. /R4
CONTINUE

RETURN END

ORIGINAL PAGE IS OF POOR QUALITY

	CFUNC:2 C	2	F-	-11-14-	C-2		
	0 0 0 0	PROGRAM TITLE	SUBROUTINE FUNC2				
-		PROGRAMMER UPDATE	A SINGH OCTOBER ROBERT M HARALIC GE MONAGHAN CHIN-HUANG CHEN	К	FEBRUARY 1974 OCTOBER 1974 FEBRUARY 22,		
	с с с с	DOCUMEN- TATION	A. SINGH				
~		COMPUTER REQUIRED	ANY				· · ·
	с С С	PROGRAM LANGUAGE	FORTRAN IV				
	C C	PURPOSE	FUNCZ COMPUTES T IMAGE.	HE G	RADIENT ENTROP	Y FEATURE OF	THE
-		МЕТНОВ	FUNC2 FIRST COMP EACH DIRECTION ALOG(1.+ABS(I-J) IS P(I,J) = LEXK K LEX ARRAY). I	THE ()*AL(([]).	GRADIENT ENTRO GG(P(I,J)),WHE /(TOTAL NUMBER	PPY COMPONENT	IS BILITY
1	C C	CALLING SEQUENCE	CALL FUNC2(LEX1,	LEX2	LEX3, LEX4, FUI	NC, NBUBL)	
		ARGUMENTS	FUNC THIS I RESULT THESE THE LE CORRES IS 90, WHILE IS THE AS IN NBUBL SIZE C	TONE IS A ARE EX AR SPOND 0,13 THE E LOC THE DF A	LEX4 ARE THE MATRICES. TWO DIMENSION SUBROUTINE FU STORED IN TRIN RAYS. THE SE S TO THE DIRE 5 OR 45 DEGRE FIRST SUBSCRI ATION OF THE LEX ARRAYS. LEX ARRAY *(NOBL+1)/2	AL ARRAY WHEF JNC2 ARE STOF ANGULAR FORM COND SUBSCRIF CTION (K=1,2, ES RESPECTIVE PT, IJ=INDEX(RE THE RED, LIKE PT (3 OR 4 ELY), (I,J),
		PARAMETERS AND ARRAYS	R1, R2, R3, R4 ARE OF GR4 DIREC ⁻ RL1, 2, 3, 4 ARE FOUR I	E THE AY TO TIONS THE DIREC TO GR	NE PAIRS FOR	EACH OF THE F P(I,J), FOR AY TONE I TO	FOUR THE OCCUR

INPUT AND HONE OUTPUT

RETURNS NO ERROR RETURNS

SUBPROGRAMS INDEX REQUIRED

CALLED BY TXTMN

SUBROUTINE FUNC2(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL, NOBL)

DOUBLE INTEGER FUNC, LEX1, LEX2, LEX3, LEX4 DIMENSION LEX1(1), LEX2(1), LEX3(1), LEX4(1), FUNC(1,4)

FUNC(NEUBL, 4)

NOW COMPUTE FUNC

TO DETERMINE THE TOTAL NUMBER OF PAIRS IN A GIVEN DIRECTION -

R1≈0 82≈0 R3≈0. R4≈0.

DO 5 I=1, NOBL DO 5 J=1, NOBL IJ=INDEX(I,J)

TEMP=LEX1(IJ) R1=R1+TEMP TEMP=LEX2(IJ) R2=R2+TEMP TEMP=LEX3(IJ) R3=R3+TEMP TEMP=LEX4(IJ) R4=R4+TEMP CONTINUE

TO GET R1, R2, R3, R4 TO SAVE DIVISIONS

173

R1=1.7R1 R2=1.7R2 R3=1.7R3 R4=1.7R4

£. Ū £. Û C ¢ C C Ľ. C C C Ċ ſ., C C C 1 ι, C: ľ. С C

C

0 0 0

Ū

TO COMPUTE ANGULAR MOMENTUM COMPONENT

D0 2 I=1,NOBL D0 2 J =I,NOBL IJ=INDEX(I,J) TEMP=LEX1(IJ) RL1=TEMP*R1 TEMP=LEX2(IJ) RL2=TEMP*R2 TEMP=LEX3(IJ) RL3=TEMP*R3 TEMP=LEX4(IJ) RL4=TEMP*R4 FUNC(IJ,1)=ALOG(1.+ABS(FLOAT(I-J)))*ALOG(1.E-9+RL1)*200. FUNC(IJ,2)=ALOG(1.+ABS(FLOAT(I-J)))*ALOG(1.E-9+RL2)*207. FUNC(IJ,3)=ALOG(1.+ABS(FLOAT(I-J)))*ALOG(1.E-9+RL3)*200. FUNC(IJ,4)=ALOG(1.+ABS(FLOAT(I-J)))*ALOG(1.E-9+RL4)*200.

2 CONTINUE

C 亡 章

ି C

C

C

RETURN END

CFUNCE C	F-L-N-C-3
C PRUGEAM C TITLE	SUPPOLITINE FUNCE
C UPDATE C C	A.SINGH OCTOBER 1972 ROBERT M HARALICK FEBRUARY 1974 GE MONAGHAN OCTOBER 1974 CHIN-HUANG CHEN FEBRUARY 22, 1975
C C DOCUMEN- C TATION	A. SINGH
C COMPUTER C REQUIRED	ANY
C PROGRAM C LANGUAGE	FORTRAN IV
C PURPOSE C PURPOSE	FUNC3 COMPUTES THE ENTROPY FEATURE OF THE IMAGE.
C METHOD C C C C	FUNCS FIRST COMPUTES THE TOTAL NUMBER OF PAIRS FOR EACH DIRECTION. THE ENTROPY COMPONENT IS THEN - P(I,J)*ALOG(P(I,J)), WHERE THE PROBABILITY P(I,J) IS P(I,J) = LEXK(IJ)/(TOTAL NUMBER OF PAIRS FOR THE K LEX ARRAY). IJ = INDEX(I,J)
C CALLING C SEQUENCE C	CALL FUNC3(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL)
C ARGUMENTS C C C C C C C C C C C C C C C C C C C	LEX1, LEX2, LEX3 AND LEX4 ARE THE FOUR TRIANGULAR GRAY TONE MATRICES. FUNC THIS IS A TWO DIMENSIONAL ARRAY WHERE THE RESULTS OF SUBROUTINE FUNC3 ARE STORED. THESE ARE STORED IN TRIANGULAR FORM LIKE THE LEX ARRAYS. THE SECOND SUBSCRIPT CORRESPONDS TO THE DIRECTION (K=1,2,3 OR 4 IS 90,0,135 OR 45 DEGREES RESPECTIVELY), WHILE THE FIRST SUBSCRIPT, IJ=INDEX(I,J), IS THE LOCATION OF THE GRAY TONE PAIR (I,J) AS IN THE LEX ARRAYS. NBUBL SIZE OF A LEX ARRAY NBUBL=NOBL*(NOBL+1)/2
C PARAMETERS - C AND ARRAYS - C C C C C C C	NOBL NUMBER OF GRAY TONES R1, R2, R3, R4 ARE THE RECIPRICAL THE TOTAL NUMBER OF GRAY TONE PAIRS FOR EACH OF THE FOUR DIRECTIONS RL1, 2, 3, 4 ARE THE PROBABILITIES P(I, J), FOR THE FOUR DIRECTIONS, FOR GRAY TONE I TO OCCUR NEXT TO GRAY TONE J IN A PARTICULAR DIRECTION.
C INPUT AND	NONE ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY OUTPUT

RETURNS NO ERROR RETURNS

SUBPROGRAMS INDEX REQUIRED

CALLED BY TXTMN

SUBROUTINE FUNC3(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL, NOBL)

DOUBLE INTEGER FUNC, LEX1, LEX2, LEX3, LEX4 DIMENSION LEX1(1), LEX2(1), LEX3(1), LEX4(1), FUNC(1,4)

FUNC(NBUBL, 4)

NOW COMPUTE FUNC

TO DETERMINE THE TOTAL NUMBER OF PAIRS IN A GIVEN DIRECTION

R1 = 0.R2=0; R3=0. R4=0.DO 5 I=1, NOBL DO 5 J=1, NOBL IJ=INDEX(I,J) TEMP=LEX1(IJ) R1=R1+TEMP TEMP=LEX2(IJ) R2=R2+TEMP TEMP=LEX3(IJ) R3=R3+TEMP TEMP=LEX4(IJ) R4=R4+TEMP CONTINUE

TO GET R1, R2, R3, R4 TO SAVE DIVISIONS

R1=1. /R1 R2=1. /R2 R3=1. /R3 R4=1. /R4

5

000

_ (C

C

С С TO COMPUTE ENTROPY COMPONENTS

DO 2 I=1, NOBL DO 2 J=I, NOBL IJ=INDEX(I,J)

	TEMP=LEXI(IJ)
	RL1 - TEMP*R1
	TEMP=LEX2(LJ)
	RL2 = TEMP*R2
	TEMP=LEX3(LJ)
	RL3 = TEMP*R3
	TEMP=LEX4(1J)
	RL4 = TEMP*R4
	IF(RL1_LT_0.000001) G0_T0_31
	FUNC(I,J,1) = (-RL1*ALOG(RL1))*200.
31	IF(RL2.LT.0.000001) G0 T0 32
	FUNC(IJ,2) = (-RL2*ALOG(RL2))*200.
32	IF(RL3.LT.0.000001) GO TO 33
	FUNC(IJ,3) = (-RL3*ALOG(RL3))*200.
33	IF(RL4 LT. 0. 000001) G0 T0 2
	FUNC(I,J,4) = (-RL4*ALOG(RL4))*200.
,Ζ	CONTINUE.
	175, 177 - 177 - 18 - 1
	RETURN

END

C:

C

ORIGINAL PAGE IS OF POOR QUALITY

CFUNC4 C	F-11-N-0-4
C PROGRAM C TITLE C	SUBROUTINE FUNC4
C PROGRAMMER C UPDATE C C C	ROBERT M HARALICK MAY 1973 ROBERT M HARALICK FEBRUARY 1974 GE MONAGHAN OCTOBER 1974 CHIN-HUANG CHEN FEBRUARY 22, 1975
C DOCUMEN- C TATION C	ROBERT M HARALICK
C COMPUTER C REQUIRED C	ANY
C PROGRAM C LANGUAGE C	FORTRAN IV
C PURPOSE C C	FUNC4 COMPUTES THE GRADIENT FEATURE OF THE IMAGE.
C METHOD C C C C	FUNC4 FIRST COMPUTES THE TOTAL NUMBER OF PAIRS FOR EACH DIRECTION. THE GRADIENT COMPONENT IS ABS(I-J)/P(I,J) WHERE THE PROBABILITY P(I,J) IS P(I,J) = LEXK(IJ)/(TOTAL NUMBER OF PAIRS FOR THE K LEX ARRAY). IJ = INDEX(I,J).
C C CALLING C SEQUENCE	CALL FUNC4(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL)
C ARGUMENTS C C C C C C C C C C C C C C C C C C C	LEX1, LEX2, LEX3 AND LEX4 ARE THE FOUR TRIANGULAR GRAY TONE MATRICES. FUNC THIS IS A TWO DIMENSIONAL ARRAY WHERE THE RESULTS OF SUBROUTINE FUNC4 ARE STORED. THESE ARE STORED IN TRIANGULAR FORM LIKE THE LEX ARRAYS. THE SECOND SUBSCRIPT CORRESPONDS TO THE DIRECTION (K=1,2,3 OR 4 IS 90,0,135 OR 45 DEGREES RESPECTIVELY), WHILE THE FIRST SUBSCRIPT, IJ=INDEX(I,J), IS THE LOCATION OF THE GRAY TONE PAIR (I,J) AS IN THE LEX ARRAYS. NBUBL SIZE OF A LEX ARRAY NBUBL=NOBL*(NOBL+1)/2
C PARAMETERS C AND ARRAYS C C C C C C C C C C	NOBL NUMBER OF GRAY TONES R1, R2, R3, R4 ARE THE RECIPRICAL OF THE TOTAL NUMBER OF GRAY TONE PAIRS FOR EACH OF THE FOUR DIRECTIONS RL1, 2, 3, 4 ARE THE PROBABILITIES P(I, J), FOR THE FOUR DIRECTIONS, FOR GRAY TONE I TO OCCUR NEXT TO GRAY TONE J IN A PARTICULAR DIRECTION.

INPUT AND NONE OUTPUT RETURNS NO ERROR RETURNS

SUBPROGRAMS INDEX REQUIRED

C,

Ū.

С С

> С С

C

С С

С С

C

С С

С С

0 0 0

С С

C

CALLED BY TXTMN

SUBROUTINE FUNC4(LEX1, LEX2, LEX3, LEX4, FUNC, NBUBL, NOBL) DOUBLE INTEGER FUNC, LEX1, LEX2, LEX3, LEX4

DIMENSION LEX1(1), LEX2(1), LEX3(1), LEX4(1), FUNC(1,4)

FUNC(NEUBL, 4)

AF=1. /FLOAT(NEUEL)

NOW COMPUTE FUNC

TO DETERMINE THE TOTAL NUMBER OF PAIRS IN A GIVEN DIRECTION

R1 = 0.R2=0. R3=0. R4 = 0DO 5 I=1, NOBL DO 5 J=1, MOBL IJ=INDEX(1,J) TEMP=LEX1(IJ) R1=R1+TEMP TEMP=LEX2(1J) R2=R2+TEMP TEMP=LEX3(IJ) R3=R3+TEMP TEMP=LEX4([,]) R4=R4+TEMP CONTINUE

TO GET R1, R2, R3, R4 TO SAVE DIVISIONS

R1=1. /R1 R2=1. /R2 R3=1. /R3 R4=1. /R4

5

C:

C C

С С

C

TO COMPUTE ANGULAR MOMENTUM COMPONENT

DO 2 I=1, NOBL DO 2 J =1, NOBL IJ=INDEX(I,J) TEMP=LEX1(IJ)

TEMP=LEX2(IJ)

FUNC(IJ, 1)=(ABS(FLOAT(I-J))/(AF+TEMP*R1))*200. TEMP=LEX3(IJ) FUNC(IJ, 2)=(ABS(FLOAT(I-J))/(AF+TEMP*R2))*200. TEMP=LEX4(IJ) FUNC(IJ, 3)=(ABS(FLOAT(I-J))/(AF+TEMP*R3))*200.

FUNC(IJ,4)=(ABS(FLOAT(I-J))/(AF+TEMP*R4))*200. 2 CONTINUE

RETURN END

C

C

CFUM	25	F-U-N-	€-5					
C C C		PLEXIT QUANTIZING FUNCTION						
C C		PROGRAM TITLÉ: VERSION:	FUNC5					
c . c		DATE: AUTHOR:	NOVEMBER 23,1973 ROBERT M HARALICK					
C C		UPDATE DOCUMENTED BY:	CHIN-HUANG CHEN 2/ ROBERT M HARALICK	/22/75				
C - C C		IMPLEMENTED ON; LANGUAGE: PURPOSE:	PDP 15 FORTRAN					
		THIS SUBROUTIN ARRAYS WHICH HAVE BEEN TO THEIR DIAGONAL ELEN		JANTIZED ACCORDING				
C C C		ENTRY POINT: FUNCS	(LEX1, LEX2, LEX3, LEX4, F	FUNC, NBUBL)				
Ċ		ARGUMENT LIST:						
· C C			IS VERTICAL CO-OCC IS HORIZONTAL CO-O	CCURENCE MATRIX				
C C C		LEX3 LEX4 FUNC	IS 135 DEGREE CO-O IS 45 DEGREE CO-OC IS THE NORMALIZED	CURENCE MATRIX AND QUANTIZED				
C C			CO-OCCURENCE MATRI FUNC(NOBL,4)	n provinsi Matshing tara tara tara na pangana na pangana na pangana na pangana na pangana na pangana na pangana Pangana pangana na pangana tara pangana pangana pangana na pangana na pangana na pangana na pangana na pangana n				
C C C		NBUEL	IS THE SIZE OF THE	LEX HERHYD				
		SUBROUTINE FUNC5(LEX1 DOUBLE INTEGER FUNC,L	, LEX2, LEX3, LEX4, FUNC, EX1, LEX2, LEX3, LEX4, F	NBUBL, NOBL)				
C		DIMENSION LEX1(1),LEX Data intvd /8/	2(1),LEX3(1),LEX4(1),	FUNC(1,4),F(1)				
C		CALL ADJ1(F,FUNC(1,1))					
		CALL LEXEOP(LEX4,NOBL DO 12 I=1,NBUBL	, INTVD, F)					
Č	12	FUNC(I,4)=F(I) CALL LEXEQP(LEX3,NOBL	. INTVD. F)					
	13	DO 13 I=1, NBUBL FUNC(I,3)=F(I)						
C		CALL LEXEOP(LEX2,NOBL DO 14 I=1,NBUBL	., INTVD,F)	ORIGINAL PAGE IS OF POOR QUALITY				
C	14	FUNC(I,2)=F(I) CALL LEXE0P(LEX1,NOB	TNTUTLEY					
		RETURN DO 15 I=1, NBUBL	-7 - Α141 Υ <i>ΜΛΓ Κ</i>					

C 5

15 FUNC(I,1)=F(I) END

-

-

ORIGINAL PAGE IS OF POOR QUALITY

L-E-X-E-Q-P

EQUAL PROBABILITY QUANTIZE THE DIAGONAL OF THE LEX ARRAY

PROGRAM TITLE: VERSION: DATE: AUTHOR: UPDATE DOCUMENTED BY: LANGUAGE: PURPOSE:

LEXEQF A NOVEMBER 23,1973 ROBERT M HARALICK CHIN-HUANG CHEN 2/22/75 ROBERT M HARALICK FORTRAN IV

THIS SUBROUTINE EQUAL PROBABILITY QUANTIZES THE LEX ARRAY ON THE BASIS OF THE DIAGONAL ELEMENTS.

ENTRY POINT: LEXEQP(LEX, NOBL, INTVD, FUNC)

ARGUMENT LIST:

1

LEX	18	THE	LEX ARP	AY			
NOBL	IS	THE	NUMBER	OF	BRIGHTNE	ESS L	EVELS
INTVD	IS	THE	NUMBER	OF	DESIRED	QUAN	TIZED
	LE	/ELS					

FUNC

IS THE NORMALIZED AND QUANTIZED LEX ARRAY.

SUBROUTINE LEXEQP(LEX, NOBL, INTVD, FUNC) DOUBLE INTEGER FUNC, LEX

DIMENSION LEX(1), FUNC(1) COMMON /IO/NSIZE, F(16), FLQ(16), MEX(136), IT(176)

> PUT CUMULATIVE DISTRIBUTION OF DIAGONAL ELEMENTS OF LEX ARRAY INTO F.

IF(INTVD.GT.16) INTVD=16 NSIZE=1024 NBUBL=NOBL*(NOBL+1)/2 S=0 DO 1 I=1,NOBL II=INDEX(I,I) TEMP=LEX(II) S=S+TEMP S=1./S

TEMP=LEX(1)
F(1)=TEMP*S
D0 2 I=2,NOBL
J=INDEX(I,I)
TEMP=LEX(J)
F(I)=F(I-1)+TEMP*S

1

2

_ C

Ľ

ROBL=FLOAT(NOBL) CALL EQPONT(NOBL, INTVD, F, FLQ, ROBL, 0, 01)

CONSTRUCT THE QUANTIZED LEX MATRIX

J1=1 DO 4 J=1, INTVD IF(J.EQ.1) GO TO 12 J1=FLQ(J-1)+1. CONTINUE J2=FLQ(J) K1=1 DO 7 K=1, J IF(K.EQ.1) GO TO 13

С С

 $\frac{C}{C}$

12

13

10

7

4

C

0

Ē:

C C

C

C

C C

C

C

C C

C

K1=FLQ(K-1)+1. CONTINUE K2=FLQ(K) MM=INDEX(J,K) MEX(MM)=0

```
DO 10 JJ=J1, J2
DO 10 KK=K1, K2
LL=INDEX(JJ, KK)
MEX(MM)=MEX(MM)+LEX(LL)
CONTINUE
CONTINUE
CONTINUE
```

DEFINE THE QUANTIZING FUNCTION

J=1 DO 3 I=1, NOBL IF(FLOAT(I). LE. FLQ(J)) GO TO 5

GREY TONE I BELONGS TO THE NEXT QUANTIZING INTERVAL.

J=J+1

GREY TONE I BELONGS TO THE JTH QUANTIZING INTERVAL.

5 IT(I)=J 3 CONTINUE

TRANSFER IT TO FUNC.

DO 11 I=1, NOBL II=IT(I) DO 11 J=1, NOBL JJ=IT(J) N=INDEX(I,J) MM=INDEX(II,JJ) TEMP=MEX(MM) CONTINUE FUNC(N)=TEMP*S*1000. RETURN END

ORIGINAL PAGE IS OF POOR QUALITY

CPLXI	т. Т. а. 1 м	$\mathbf{P}-\mathbf{L}-\mathbf{X}-\mathbf{I}-\mathbf{T}$
C		
C C	PROGRAM	SUBROUTINE PLXIT
Ċ	TITLE	
С		
C	PROGRAMMER	A. SINGH NOVEMBER &72
C C	MODIFIED	5/14/73 ROBERT M HARALICK 7/10/73
č		2/2/74
C		8/10/74 GE MONAGHAN
C C		10/10/74 RM HARALICK 2/22/75 CHIN-HUANG CHEN
C		
- C	DOCUMEN-	A. SINGH
C	TATION	
, C	COMPUTER	PDP 15
C	REQUIRED	
C C	PROGRAM	FORTRAN IV
- '. C	LANGUAGE	FURTERIN, IV set of the set of
C		
_ C	PURPOSE	PLXIT COMPUTES THE JDATA IMAGE
C C	METHOD	PLXIT COMPUTES THE JDATA IMAGE UTILISING THE RESULTS
- C		OF FPLXIT AND FUNC. LET G(I, J) BE THE GRAY LEVEL OF
C		THE JTH RESOLUTION CELL IN THE ITH LINE OF THE
C C		CONSIDERED IMAGE (IDATA), AND LET V(I,J) BE THE JTH RESOLUTION CELL IN THE ITH LINE OF THE JDATA IMAGE.
ĉ		THEN
Ç		
C C	$\nabla(1,0) =$	<pre>FUNC(G(I,J+L),G(I-L,J+L),G(I-L,J),G(I-L,J-L), G(I,J-L),G(I+L,J-L),G(I+L,J),G(I+L,J+L)),</pre>
C		
÷ C		WHERE FUNC IS A FUNCTION (SUCH AS FUNC1, FUNC2 OR
C C		FUNC3) PROVIDED BY THE USER. L = 1,2,3, IS THE
- C		SEPARATION BETWEEN CELLS. L=1, MEANS NEAREST
C		NEIGHBOUR, L=2, MEANS NEXT TO NEAREST NEIGHBOUR ETC.
L C		FLXIT WORKS FOR ALL POSITIVE L.
T č	ENTRY POINT	PLXIT(IDATI, IDATJ, IDATA, JDATA, IDENT, FUNC, IPT
C		NBUBL, MM1, NXMIN, NXMAX, JDENT, IEV, IERR1)
- 6	ARGUMENTS	IDATI DAT SLOT WHERE ORIGINAL IMAGE RESIDES
č		IDATI DAT SLOT WHERE ORIGINAL IMAGE RESIDES
C	의 사람이 되었는 것이 가슴을 가지 않는다. 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 같은 것이 같이 있는 것이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 같이 없는 것이 같이 있는 것이 같이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것	IDATA SCRATCH ARRAY WHERE THE ORIGINAL IMAGE IS
ç		READ IN. INTEGED ADDAY LUEDE THE IDATA IMAGE IC
C C		JDATA INTEGER ARRAY WHERE THE JDATA IMAGE IS GENERATED AND STORED BEFORE BEING WRITTEN
С	, 가슴 가슴, 같은 것을 가슴다. 같은 것,	ONTO THE TAPE (03).
Ç		IDENT IDENTIFICATION ARRAY OF IDATA
C C		JDENT IDENTIFICATION ARRAY OF JDATA FUNC A TWO DIMENSION ARRAY CONTAINING THE

C		4,	RESULTS OF THE EXTERN	AL FUNCTION PROGRAM
С				RMINES THE DIRECTION,
Г			WHILE THE FIRST ONE C	ORRESPONDS TO THE
C			ELEMENT IN THE ASSOCI	ATED LEX ARRAY.
C		IFT	ARRAY WHICH CONTAINS	THE POINTERS FOR
ſ.,			THE IDATA AND THE JDA	ATA ARRAYS
C		NEUEL	SIZE OF A LEX ARRAY	
C			NBUBL=NOBL*(NOBL+1)/2	2, WHERE NOBL IS THE
C			NUMBER OF GRAY TONES.	
С		MM 1	SPATIAL DISTANCE + 1	
C			INIMUM JDATA VALUE	
C C	T (***)		AXIMUM JDATA VALUE	
C	IEV		3ER EVENT VARIABLE -5011 IF NUMPPL OR NUM	HITN TO LECC THAN
C		TWICE		12119 13 2233 10HM
C		1 979 I. ()	and the probability of the second s Second second seco	
Ċ	PARAMETERS	NUMLIN	NUMBER OF LINES IN TH	HE IMAGE
C		NUMPPL		LINE IN THE INPUT IMAGE
С	AND ARRAYS			
C		IMAX	LARGEST GRAY TONE ON	INPUT FILE
C		IMIN	LEAST GRAY TONE ON IN	
C		LEAST1	=IMIN-1. LEAST1 IS U	JSED FOR NORMALIZING
Ç			THE GRAY TONES.	
Ç		NOBL	NUMBER OF GRAY TONES	
G			NOBL=IMAX-IMIN+1	
C C	RETURNS			
C			K⊑ I URNAQ (Alexandra) National de la constant de la constant	
Ĉ	SUBPROGRAMS	INDEX		
C	REQUIRED			
C				
ſ.	CALLED BY	TXTMN		
С				
C	COMMENTS		KS FOR ALL SPATIAL DI	
Ç			AVING MM + 1 LINES OF	
C T		WHERE MM	IS THE SPATIAL DISTAN	
L	SUBBOULTINE P		τράτ.ι. τράτα. Ιράτα. τρ	ENT, FUNC, IPT, NBUBL, MM1,
			ENT, IARRAY, IEV, IERR1)	
c	an	Lite battatistist		
Ċ				
م میں اور	DOUBLE INTEG		가지 않는 것은 바람이 있는 것은 것이 있는 것이 있는 것이 있다. 이 국가에는 것이 같은 것을 것을 것을 수 있는 것이 있다. 이 가지 않는 것이 있는 것이 있다. 이 가지 않는 것이 있는 가 같이 같이 같이 같이 같이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 없는 것	동물 소리는 것을 물고 문수가 있는 것을
		the second se	DATA(1,1), FUNC(1,1), I	PT(1), IDENT(20)
	DIMENSION JD	ENT(20), IA	RRAY(1,1,1)	속 한 방법은 말 것 같아요. 그는 것 같은 것 같아요. 이 것 같아요. 1997년 - 1997년 -
Ç				2017년 2월 2월 11일 - 11일 - 2017년 1월 2월
Ç	IDATA(NUMP	PL, MM1), JD	ATA(NUMPPL, MM1), FUNC(NEUEL,4),IFT(MM1)
Ç			한 승규가 소리가 친구했다.	사실 수 있는 것은 것은 것을 통해 생각하는 것이 있는 것을 것을 것을 수 있다. 같은 것은 것은 것은 것을
C C				전 1877년 - 1887년 - 1977년 - 1878년 - 1878년 월 1878년 1977년 - 1878년 - 1978년 1978년 - 1878년 - 1878년 1978년 - 1878년 1978년 1978년 - 1878년 - 1978년 - 1878년 -
1			STACK SUBROUTINE NA	ME IN FEBOE STOCK
C			sa na na na sana sana kana kan sa ka na hata ina ta'ina ta'ina sa ta'ina sa ta'ina sa ta'ina sa ta'ina sa ta'in	n maan oo da tay oo daalaa taxaa ka waxaa ka wa A
	CALL KDPUS	H('PLXIT'		
C				· ~ 18
C			SET PARAMETERS	ORIGINAL PAGE IS
C				ORIGINAL PAGE D OF POOR QUALITY
				OF. 700
			and the second	

187

```
NUMPFL=IDENT(6)
        NUME IN = IDENT(7)
        IMIN=IDENT(15)
        IMAX=IDENT(16)
        LEAST1=IMIN-1
        NOBL=IMAX-LEAST1
        NBUBL=NOBL*(NOBL+1)/2
C
0
        NXMIN=131000
        NXMAX=-131000
C
C
                                  CHECK IF SIZE OF IMAGE IS TOO SMALL,
                                  RELATIVE TO THE SPATIAL DISTANCE
C
C.
                                   PARAMETER.
C
        MM = MM1 - 1
        MM2=MM*2
      IF (NUMPPL, LT. MM2, OR. NUMLIN, LT. MM2) GO TO 9999
Ċ
C
C:
C
                                  ZERO OUT THE JDATA ARRAY
C
         NUMPMM=NUMPFL-MM
         NUMLMM=NUMLIN-MM
      DO 100 I=15 NUMPPL
      DO 100 J=1, MM1
  100 JDATA(I, J)=0
C
C
Ċ
                                  READ IN THE FIRST MM1 LINES OF THE IMAGE
                                  AND SET UP POINTERS
Ċ
C.
      DO 110 IY=1, MM1
       IPT(IY)=IY
         CALL RREAD(IDATI, IARRAY, IMGNO, IY, 1, IDENT, IEV, ERR1)
         DO 111 LY=1, NUMPPL
         IDATA(LY, IY) = IARRAY(1, 1, LY)
  111
  110 CONTINUE
C
C
Ľ.
                                   SETTING UP POINTERS FOR THE FIRST AND
Ċ
                                   LAST ROWS OF THE IMAGE ARRAYS
Ľ.
       IST=IFT(1)
       LST=IFT(MM1)
C
C
                                   GO THROUGH ALL BUT MM ROWS OF IMAGE
Ċ
         NEXT=MM1+1
C
       DO 105 LCNT = 1, NUMLIN
C:
C
                                   GO THROUGH EACH ROW MM TIMES.
                                                                     THE FIRST
```

-

SET OF MM COLUMNS ARE HANDLED SEPARATELY

DO 120 IRW=1, MM

IRM=IRW+MM

C

C

Ľ:

C C

C

C

C

C C

C

С С

C

C

C

C C

C

C

C

1.

C C

C

C

C

C C

C

C

Ċ

С С

Ċ

Ċ

C C

C

0000

C

Ē.

C

C

C

Ľ:

SET I, L, J AND K EQUAL TO THE (NORMALISED) VALUES OF GRAY TONES OF RESOLUTION CELLS IN POSITIONS A, B, C AND D AS IN THE DIAGRAM --

A C

BD

WHERE A INITIALLY IS THE UPPER LEFT CORNER CELL. THE CELLS ARE A DISTANCE MM APART.

I=IDATA(IRW, IST)-LEAST1 L=IDATA(IRW, LST)-LEAST1 K=IDATA(IRM, LST)-LEAST1 J=IDATA(IRM, IST)-LEAST1

> ORIGINAL PAGE IS OR POOR QUALITY

FUT THE TWO DIMENSIONAL INFORMATION INTO ONE DIMENSIONAL FORM. THE FUNCTION NEEDED TO CONVERT A DOUBLE SUBSCRIPTED ARRAY, IMM(X,Y), INTO A SINGLE SUBSCRIPTED ARRAY, IMM(Z), IS OF THE FORM G(X) + F(Y), WHERE G(X) = (X-1)*X/2AND F(Y) = Y. THEREFORE Z = (X-1.)*X/2. THIS IS DONE IN THE PROGRAM BY THE EXTERNAL FUNCTION INDEX(X,Y).

SINCE THE ORDER OF OCCURRENCE OF THE GRAY TONES BELONGING TO A RESOLUTION CELL PAIR IS IMMATERIAL, THE ARRAYS ARE SYMMETRIC. WE LET THE LARGER OF THE TWO HAVE THE FIRST SUBSCRIPT, I.E., THE ARRAY IS STORED IN LOWER TRIANGULAR FORM. THE ORDER OF THE SUBSCRIPTING IS AS FOLLOWS -

IMM(NOBL, NOBL) = IMM(NBUBL).

THE SCANNING PROCEDURE, THAT IS THE METHOD BY WHICH THE PAIRWISE COMPARISONS ARE MADE, IS DESCRIBED BELOW FOR THE GENERAL CASE.

CONSIDER A RESOLUTION CELL WITH SPATIAL

COORDINATES (M,N), AND CALL THIS CELL I. THE SCANNING OPERATION BEGINS IN THE UPPER LEFT HAND CORNER OF THE IMAGE AND IT THEN PROCEEDS BY COMPARING THE GRAY TONE OF &I& WITH AT MOST FOUR GRAY TONES OF ITS NEIGHBOURING RESOLUTION CELLS. THAT &I& NEVER NEEDS TO CONSIDER MORE THAN FOUR NEIGHBOURS CAN BE SEEN FROM THE DIAGRAM OF THE SEARCH PATTERN SHOWN BELOW --

> I J M L K

ON A GIVEN ITERATION, &I& WILL LOOK FIRST AT ITS VERTICAL NEIGHBOUR (&L&), NEXT AT ITS HORIZONTAL NEIGHBOUR (&J&), THIRD AT ITS LOWER RIGHT NEIGHBOUR (&K&) AND FOURTH AT ITS LOWER LEFT DIAGONAL NEIGHBOUR (&M&). &I& THEN MOVES INTO THE POSITION OF THE LEFT-MOST RESOLUTION CELL OF THE PREVIOUSLY SCANNED SECOND ROW (THE POSITION OCCUPIED BY &M&). THE OPERATION IS REPEATED UNTIL ALL NEIGHBOURING PAIRS OF RESOLUTION CELLS HAVE BEEN EXAMINED. THE PROCEDURE IS FURTHER REPEATED FOR CELLS SKIPPED OVER IF THE SPATIAL DISTANCE IS GREATER THAN ONE, TILL ALL CELLS HAVE BEEN EXHAUSTED.

IL=INDEX(I,L)

C

Ũ

Ľ.

Ľ.

С С

C

C

C

C:

C C

C C C

C

C

C C

C

C

C

Ľ.

C

Ľ:

C

C

C

C

C

С С

C

1.

C

000

Ċ

C

C C

0

C.

C

C

ADD FUNC(IL, 1) TO CENTER CELL AND 90-DEGREE NEIGHBOUR

JDATA(IRW, IST) = JDATA(IRW, IST) + FUNC(IL, 1)
JDATA(IRW, LST) = JDATA(IRW, LST) + FUNC(IL, 1)

IJ=INDEX(I,J)

ADD FUNC(IJ,2) TO CENTER CELL AND 0-DEGREE NEIGHBOUR

JDATA(IRW, IST) = JDATA(IRW, IST) + FUNC(IJ, 2)
JDATA(IRM, IST) = JDATA(IRM, IST) + FUNC(IJ, 2)

IK=INDEX(I,K)

ADD FUNC(IK,3) TO CENTER CELL AND 135-DEGREE NEIGHBOUR

JDATA(IRW, IST) = JDATA(IRW, IST) + FUNC(IK, 3)
JDATA(IRM, LST) = JDATA(IRM, LST) + FUNC(IK, 3)

```
MI=IRW
                              NOW ITERATE DOWN THE ROW
   DO 130 N=IRM, NUMPMM, MM
   NMM=N+MM
   NNM=N-MM
   MI=N
   \mathbf{I} = \mathbf{I}
   M==[___
   L=K
   J=IDATA(NMM/IST)-LEAST1
   K=IDATA(NMM, LST)-LEAST1
   IL=INDEX(I,L)
                              ADD FUNC(IL, 1) TO CENTER CELL AND
                               90-DEGREE NEIGHBOUR
   JDATA( N, IST) = JDATA( N, IST) + FUNC(IL, 1)
   JDATA( N, LST) = JDATA(
                              N, LST) + FUNC(IL, 1)
   I J = I M D E X (I, J)
                               ADD FUNC(IJ, 2) TO CENTER CELL AND
                                 O-DEGREE NEIGHBOUR
   JDATA(N, IST) = JDATA(N, IST) + FUNC(IJ, 2)
   JDATA(NMM, IST) = JDATA(NMM, IST) + FUNC(IJ, 2)
   IK=INDEX(I,K)
                               ADD FUNC(IK, 3) TO CENTER CELL AND
                               135-DEGREE NEIGHBOUR
    UDATA(N, IST) = UDATA(N, IST) + FUNC(IK, 3)
    JDATA(NMM, LST) = JDATA(NMM, LST) + FUNC(IK, 3)
    IM=INDEX(I,M)
                               ADD FUNC(IM, 4) TO CENTER CELL AND
                                45-DEGREE NEIGHBOUR
    JDATA(N, IST) = JDATA(N, IST) + FUNC(IM, 4)
    JDATA(NNM, LST) = JDATA(NNM, LST) + FUNC(IM, 4)
130 CONTINUE
                               COMPUTE THE LAST SET OF MM COLUMNS
                               SEPARATELY
    N/H=NI+MM
    I=,J
    M=1_
```

C C

C

£.

Ē

С.

C

C

C:

C:

C

C C

C

C

C

Ľ.

ť.

C C

C

C

C.

C C

		L=K
C		IL=INDEX(I,L)
с с с		ADD FUNC(IL,1) TO CENTER CELL AND 90-DEGREE NEIGHBOUR
c		JDATA(NIM, IST) = JDATA(NIM, IST) + FUNC(IL, 1) JDATA(NIM, LST) = JDATA(NIM, LST) + FUNC(IL, 1)
		IM=INDEX(I,M)
C C C		ADD FUNC(IM,4) TO CENTER CELL AND 45-DEGREE NEIGHBOUR
C		JDATA(NIM, IST) = JDATA(NIM, IST) + FUNC(IM, 4) JDATA(NI,LST) = JDATA(NI,LST) + FUNC(IM, 4)
С	120	CONTINUE
C C C		TO WRITE OUT THE COMPLETED LINE OF THE JDATA IMAGE
C	699	
C	694	IF(LCNT.NE.1) GO TO 695 DO 694 J=1,NUMPPL IARRAY(1,1,J)=(JDATA(J,IST)*5)/3 CONTINUE GO TO 798
C	695 797	DO 797 J=1,NUMPPL IARRAY(1,1,J)=JDATA(J,IST)
С - С	798	CONTINUE
C		LINE=LCNT-MM1
		CALL RWRITE(IDATJ, IARRAY, 1, LINE, 1, JDENT, IEV, ERR1) DD 700 IXM=1, NUMPMM IF(JDATA(IXM, IST). LT. NXMIN) NXMIN=JDATA(IXM, IST) IF(JDATA(IXM, IST). GT. NXMAX) NXMAX=JDATA(IXM, IST)
		CONTINUE SHIFT THE POINTERS FOR THE TWO ARRAYS. THIS IS DONE BY A CYCLIC ROTATION. THE POINTER ARRAY IPT IS SUCH THAT AT ANY TIME THE ITH LOCATION OF IPT CONTAINS THE POINTER TO THE ITH POSITION OF THE

LINE IN IDATA OR JDATA ARRAY. FOR Ē. EXAMPLE, IF IFT(2)=4 THEN THE FOURTH LINE C OF THE PHYSICAL JDATA ARRAY IS ACTUALLY Ľ. THE SECOND LINE, AT THAT MOMENT. I. E. IF (LONT EQ. NUMLIN) GO TO 105 C ROTATE IN A CYCLIC MANNER Ë Ľ. ITEMP=TPT(1) DO 135 IB=1, MM 135 IPT(IE)=IPT(IE+1) IPT(MM1)=ITEMP 1 SET UP THE POINTERS TO THE FIRST AND Ľ. LAST ROWS OF THE TWO IMAGE ARRAYS Ľ, C. IST=IPT(1)LST=IFT(MM1) Ľ. READ IN A NEW LINE INTO THE, IDATA ARRAY C ľ. CALL AREAD (IDATI, IARRAY, IMGNO, LONT, 1, IDENT, IEV, ERR1) DO 112 LY=1, NUMPPL IDATA(LY, LST)=IARRAY(1, 1, LY) 112 C C ZERO OUT THE LAST LINE OF THE JDATA ARRAY C DO 145 JU=1, NUMPFL 145 JDATA(JJ,LST)=0 C 105 CONTINUE C THE LAST MM ROWS ARE COMPUTED SEPARATELY C 1 DO LOOP TO GO THROUGH THE MM ROWS C ť. ILINE=LINE DO 140 LR=1, MM ISR=IPT(LR+1) C DO LOOP TO GO THROUGH EACH ROW MM TIMES E. DO 142 IRW=1, MM £, I=IDATA(IRW, ISR)-LEAST1 C DO LOOP TO WORK DOWN A ROW, COMPUTING C THE O-DEGREE NEIGHBOUR ONLY Ċ. £ DO 144 N=IRW, NUMPMM, MM NMM=N+MM J=IDATA(NMM, ISR)-LEAST1 17 I J = I N D E X (I, J)C.

```
C
                                   ADD FUNC(IJ, 2) TO CENTER CELL AND
 C
                                      O-DEGREE NEIGHBOUR
 C
                N, ISR) = JDATA(
                                   N_{\rm J} ISR) + FUNC(IJ, 2)
       JDATA(
        UDATA(NMM, ISR) = UDATA(NMM, ISR) + FUNC(IJ, 2)
 С
   144 I=J
   142 CONTINUE
 C
                                   WRITE OUT THE COMPLETED JDATA LINE
 С
 C
          DO 698 J=1, MM
          IXM=NUMPPL-J+1
          JDATA(J, ISR)=(JDATA(J, ISR)*8)/5
          JDATA(IXM, ISR)=(JDATA(IXM, ISR)*8)/5
   698
          CONTINUE
 C
 ١Ľ,
 C
          IF (LR. NE. MM) GO TO 670
- C
          DO 696 J=1, NUMPPL
          IARRAY(1,1,J)=(JDATA(J,ISR)*5)/3
   696
          CONTINUE
          GO TO 896
 C
   670
          CONTINUE
 Ü
 C
          DO 897 J=1, NUMPPL
          IARRAY(1, 1, J) = JDATA(J, ISR)
    897
          CONTINUE
 C.
  C
    896
          CONTINUE
J C
          LINE=ILINE+LR
          CALL RWRITE(IDATJ) IARRAY, 1, LINE, 1, JDENT, IEV, ERR1)
          DO 701 IXM=1, NUMPMM
           IF(JDATA(IXM, ISR), LT. NXMIN) NXMIN=JDATA(IXM, ISR)
           IF(JDATA(IXM, ISR), GT, NXMAX) NXMAX=JDATA(IXM, ISR)
    701
          CONTINUE
  C
    140 CONTINUE
 C
          CALL CLOSE(IDATJ)
           CALL CLOSE(IDATI)
           CALL KDPOP
        RETURN
  Г.
  C
                                     ERROR RETURN
  C
   9999
           CONTINUE
           CALL CLOSE(IDATI)
           CALL CLOSE(IDATJ)
```

RETURN IERR1 END

'n.

₿.

\$

a.

CTXIN	IP T	T-X-I-N-P-T
C		e de la construction de la constru La construction de la construction d
c		
C	ACCTI I/O FOR T	HE TEXTURE PROGRAMS
C	HOCII I/O FOR I	
C	PROGRAM TITLE	TXINPT
c	VERSION	an en de la d a la la la la constante de la const En la constante Al des
		CHIN-HUANG CHEN
C	AUTHOR	FEBRUARY 1975
C	DATE	an an an an Feidruhr 1770 and an
C		FORTRAN IV
C C	PROGRAM LANGUAGE	PDP 15
C	IMPLEMENTED ON	CHIN-HUANG CHEN
	DOCUMENTED BY	n de la complete de l Complete de la complete de la complet
C	PURPOSE	INE GETS THE NECESSARY PARAMENTERS FOR THE
C		ANSFORM PACKAGE
C		TXINPT(NFUNC, NDIS, FILNMP, FILNMQ, IBOUT,
Ç	ENTRY POINT	
Ç	al an	
C	a marine 1 1 million 1 marine 1 marine 1 marine 1	
C	ARGUMENT LIST	
- C	NFUNC	PARAMETER USED TO DETERMINE WHICH FUNCTION
C		COMPUTES THE JDATA IMAGE
C		NFUNC=1 FOR SUM PROBABILITY FEATURE
c S		NFUNC=2 FOR ANGULAR MOMENTUM FEATURE
C		NFUNC=3 FOR ENTROPY FEATURE
Ç		NFUNC=4 FOR GRADIENT FEATURE
Ç		NFUNC=5 FOR NORMALIZED ARRAY WHICH HAS
C		BEEN EQUAL PROBABILITY QUANTIZED
C C	NDIS	SPATIAL DISTANCE TO BE USED TO GENERATE LEX ARRAYS
. <u>C</u>	FILNMF	INPUT FILE NAME
C	FILNMO	OUTPUT FILE NAME
C	IBOUT	ERROR MESSAGE OUTPUT . DAT SLOT
- C	PCLCT	PERCENT OF LINES COUNTED IN GENERATING THE
C	na tanàna minina minina mpikambana amin'ny faritr'o amin'ny faritr'o dia mampika mpikambana amin'ny faritr'o d Na amin'ny faritr'o dia mandritry dia mandritry dia mangka amin'ny faritr'o dia mandritry dia mangka amin'ny far	FOUR NEIGHBOR GRAY TONE MATRICES (LEX ARRAYS)
С		
م الم الم الم الم		NPT(NFUNC, NDIS, FILNMP, FILNMQ, IBOUT, PCLCT)
		FILNMP, FILNMQ, FDATE
		MP(2),FILNMQ(2),FDATE(3)
	IOUT = 6	
	IDIN = 4	
C		GET PARAMETERS
C	رمار رفار الى المحمدية الإرسان علم الا المسوعية علم المسوع الى	a na bana ang balang ang bana ang bana Ng bana ang b
200	WRITE(IOUT, 100	
100		NFUNC, NDIS, IBOUT, PCLCT, I/O FILE NAMES')
-	WRITE(IOUT, 11C	
110		AT IS 315, F4. 2, A9, A9) () NELLAS NETS TECHT ELLAND ELLAND
		NEUNC, NDIS, IBOUT, POLOT, FILNMP, FILNMQ
101		2,A5,A4,A5,A4) ()NFUNC,NDIS,IBOUT,PCLCT,FILNMP,FILNMQ
		UT)WRITE(IBOUT, 102)NFUNC, NDIS, IBOUT, FILNMP,
		NY/WRITE(IBUUT/ICZ/NEUNG/NDIS/IBUUT/EIENNE)
	2FILNMQ	2X, F4. 2, 2X, A5, A4, 2X, A5, A4)
102	FORMATUX, 310,	laan een aan aan baraan baraan baraa baraan ah
C		anna 1997 an taona 1997 ao amin'ny taona 2008. Ilay kaodim-paositra dia kaodim-paositra dia mampiasa dia mampi N FET
	CALL ADATE (FDA	
	WRITE(IOUT, 405	17 PLB I C. State and the state of the st
		~ 이거 그는 눈눈 그 것은 이거에 가는 것이라고 것이다. 그 것 같아? 강경에 나가 가지 않는 것은 것은 물건에 가장 같은 것 같.

IF(IBO	JT. NE.	IOUT)	VRITE (IBOUT	,405)	FDATE
FORMAT	(1X) 34	45)				
RETURN						
END						

405

-

••••

~

~

~

~

<u>ب</u>

÷

~

بنه

-

×

*

OFIGINALI PAGE IS OF POOR QUALITY

T-X-J-D-M

TEXTURE JDATA MAINLINE

PROGRAM TITLE: VERSION: AUTHOR: DATE UPDATE

CTXJDM

С С

C C

CC

С

C

C

C

C

С

С

CCCC

Ľ.

C

С

Ĉ

C

С С

C

С

Ċ

C

C

Ç.

Ċ

Ċ

С

C

Ċ,

C

C

C

Ċ

Ľ.

C

C C

200

0

TXJDM A ROBERT M HARALICK NOVEMBER 1974 FEBRUARY 1975 CHIN-HUANG CHEN FORTRAN IV PDP 15

PROGRAM LANGUAGE: IMPLEMENTED ON: PURPOSE:

THIS ROUTINE IS THE MAIN LINE FOR THE JDATA GENERATION DISPLAY . INPUT PARAMETERS ARE FUNCTION TYPE, SPATIAL DISTANCE RELATIONSHIP, ERROR MESSAGE OUTPUT . DAT SLOT, PERCENT OF LINES COUNTED IN GENERATING THE FOUR NEIGHBOR GRAY TONE MATRICES, INPUT FILE NAME, AND OUTPUT FILE NAME.

SUBROUTINES CALLED: TXINPT ERROR TXTMN SDKINL SKPDSC FFLXIT SREAD INDEX FUNC1 FUNC2 FUNC3 FUNC4 FUNC5 EQPONT LEXEQP PLXIT INDEX SREAD

DOUBLE INTEGER NPPCAL, NTOTAL, FILNMP, FILNMQ DIMENSION FILNMQ(2), FILNMP(2) COMMON IWORK(8000), IWRK(7000) COMMON /DFA/ NG, F(50) COMMON/DFB/AMEAN, VAR, NPPCAL, NTOTAL, START, END, NCALL, NNTERS, DANGE COMMON /IO/ NSIZE, IDUM(2048) COMMON /IO/ NSIZE, IDUM(2048) COMMON /TXT/ ITXT(10) DATA IOUT, IDATK, IDATQ, NDIM/6, 2, 1, 15000/ NSIZE = 1024 CONTINUE

GET INPUT PARAMETERS

198

Ū. CALL TXINPT(NEUNC, NDIS, FILNMP, FILNMQ, IBOUT, PCLCT) Ê Û C, Ċ WRITE THE INPUT IMAGE IDENTIFICATION C BLOCK C CALL LSTID (IDATK, FILNMP, IBOUT, 1, IEV, @304) C Ľ, Ē. C COMPUTE THE INTEGER TEXTURE IMAGE C CALL TXTMN(IWORK, NDIM, FILNMP, FILNMQ, NDIS, NFUNC, 2NXMIN, NXMAX, PCLCT, IEV, @310) C C WRITE THE OUTPUT IMAGE IDENTIFICATION Ľ: BLOCK Ľ CALL LSTID (IDATO, FILNMO, IBOUT, 1, IEV, @304) C * Ę. C CALL CLOSE(IBOUT) GO TO 200 304 IERR=1 GO TO 500 310 IERR=2 500 CALL ERROR(IERR, IEV, IOUT, IBOUT) GO TO 200 END

£

PROGRAM	SUBROUTINE	. TXTMN		
			OCTOBER &72 ROBERT M HARALIC	
				7/10/73 2/2/74 6/30/74
UPDATE			GE MONAGHAN RM HARALICK CHIN-HUANG CHEN	9/20/74 10/10/74
DOCUMEN- TATION	A. SINGH,	OCTOBER &	72	
COMPUTER REQUIRED	PDP-15			
PROGRAM LANGUAGE	FORTRAN I	V		
PURPOSE			NE SUBROUTINE FOR COMPUTE THE JDATA	
METHOD	TAKES READS SETS U	IN THE IMA SETS P DYNAMIC	AND PARAMETERS FF GE FROM FILE (02)	MINIMUM GRAY LEVELS RAMETERS AND
ENTRY POINT			DIM, S, T, NDIS, IFUN LCT, IEV, ERR1)	νC,
ARGUMENTS	IWORK		RRAY WHERE THE IN LATER IT IS USED	
	NDIM	SIZE OF S EITHER NU 2*(M*(A+1 IS LARGER	CRATCH ARRAY. JMPPL*NUMLIN OR .)+1)+4*B*(B+1), L	WHICH EVER ONE
		IMAGE, B LEVELS PO	NUMBER OF POINTS, IS THE MAXIMUM N DSSIBLE AND M IS DISTANCE THE PRO	UMBER OF GRAY THE LARGEST
	S T NDIS IFUNC	NAME OF F NAME OF F SPACING I PARAMETEF COMPUTES IFUNC=1	SETWEEN NEIGHBORL	ATA IMAGE IS CREATED Y RESOLUTION CELLS NE WHICH FUNCTION ITY

	IFUNC=3 FOR ENTROPY FEATURE IFUNC=4 FOR GRADIENT FEATURE OF THE IMAGE IFUNC=5 FOR NORMALIZED LEX ARRAY WHICH HAS BEEN EQUAL PROBABILITY QUANTIZED NXMIN IS THE MINIMUM ON THE JDATA IMAGE NXMAX IS THE MAXIMUM ON THE JDATA IMAGE PCLCT IS THE PERCENT OF LINES COUNTED IEV INTEGER EVENT VARIABLE ERR1 ALTERNATE ERROR RETURN	
PARAMETERS AND ARRAYS		
	NUMLIN NUMBER OF LINES IN THE INPUT IMAGE NUMPPL NUMBER OF POINTS PER LINE IN THE INPUT IMAGE IMAX MAXIMUM GRAY LEVEL IMIN MINIMUM GRAY LEVEL LEAST1 =IMIN-1 NOBL NUMBER OF GRAY LEVELS NBUBL =NOBL*(NOBL+1)/2 IS THE SIZE OF A LEX ARRAY NIDATA, NJDATA, NLEX1, 2, 3, 4, NFUNC AND NTOT ARE POINTERS FOR DYNAMIC ALLOCATION IN IWORK.	
INFLIT AND		
	READ IN FROM FILE (02) ERROR FOR INCORRECT SIZE OF IWORK, ERROR IF PARAMETER IFUNC HAS BEEN INITIALIZED INCORRECTLY. INPUT IMAGE ON FILE CODE IDATI. WRITES JDATA IMAGE ON FILE CODE IDATJ.	
SUBPROGRAMS	FPLXIT, PLXIT, INDEX, FUNC1, FUNC2, FUNC3, FUNC4, FUNC5 SEEK SYSTEM LIBRARY CLOSE SYSTEM LIBRARY	
REQUIRED		
RETURNS	NORMAL AND ALTERNATE PROGRAM TERMINATED FOR INCORRECT SIZE OF IWORK, ERROR IF IFUNC INITIALISED INCORRECTLY.	
CALLED BY	MAIN LINE PROGRAM TXJDM	
SUBROUTINE T 2NXMAX, PCLCT,	XTMN(IWORK, NDIM, S, T, NDIS, IFUNC, NXMIN, IEV, ERR1)	•
	그는 그는 것 같은 것 같	
DIMENSION IN	JORK(1), LEX1(1), LEX2(1), LEX3(1), LEX4(1), IDATA(1,1), T(2)	

C

C C

DIMENSION IDENT(20),S(2),JDENT(20),FDATE(3) DIMENSION JDATA(1,1),IPT(1),FUNC(1,1) DIMENSION CC1(8),RR1(8),LEX(13),C1(2),R1(2)

IDATA(NUMPPL,MM1), JDATA(NUMPPL,MM1), LEX1(NBUBL), LEX2(NBUBL), LEX3(NBUBL), LEX4(NBUBL), IPT(MMAX), FUNCT(NBUBL, 4)

COMMON /TXT/ IMAX, IMIN, NUMPPL, NUMLIN, NBUBL, NOBL, LEAST1 DATA A, B, IZ, IONE, ITWO/YTXTMN/, / /, 0, 1, 2/ DATA IDATI, IDATJ/2, 3/ DATA LEX/YLEX /, YARRAY/, 11*/ // DATA C1, R1/YCOL /, / /, YROW /, /// DATA C1/YC1/, YC2/, YC3/, YC4/, YC5/, YC6/, YC7/, YC8// DATA RR1/YR1/, YR2/, YR3/, YR4/, YR5/, YR6/, YR7/, YR8//

CALL KDPUSH(A,B) CALL SDKINL(IDATI,S,IDENT,1,IEV,ERR1) NUMPFL=IDENT(6) NUMLIN=IDENT(7) IMIN=IDENT(15) IMAX=IDENT(16)

LEAST1=IMIN-1 NOBL=IMAX-LEAST1 NBUBL=NOBL*(NOBL+1)/2

C

É.

00000

С

000

C

C

C

C

C

C

C C

C

SET DYNAMIC ALLOCATION PARAMETERS

SINCE THE SIZE OF IDATA, JDATA AND IPT ARE DIFFERENT FOR DIFFERENT REDUCTIONS, THE MAXIMUM SPACE THEY WILL REQUIRE HAS TO BE RESERVED. IDATA AND JDATA THIS WILL BE (NDIS+1)*NUMPPL, AND FOR IPT JUST NDIS+1.

MM1=NDIS+1 NIDATA=1 NJDATA=NIDATA+NUMPPL*MM1 NLEX1=NJDATA+NUMPPL*MM1 NLEX2=NLEX1+NBUBL NLEX3=NLEX2+NBUBL NLEX4=NLEX3+NBUBL NFUNC=NLEX1 NIPT=(NLEX4+NBUBL)*2 NTOT=NIPT+MM1

CHECKING IF THE SIZE OF IWORK IS ENOUGH

IF(NTOT.GT.NDIM)GO TO 78 NBIG=NDIM-NTOT CALL ADJ2(IDATA, IWORK(NIDATA), NUMPPL) CALL ADJ2(JDATA, IWORK(NJDATA), NUMPPL) CALL ADJ1(LEX1, IWORK(NLEX1)) CALL ADJ1(LEX2, IWORK(NLEX2)) CALL ADJ1(LEX3, IWORK(NLEX3)) CALL ADJ1(LEX4, IWORK(NLEX4)) CALL ADJ2(FUNC, IWORK(NFUNC), NBUBL) CALL ADJ2(FUNC, IWORK(NIPT)) ZERO OUT THE SCRATCH AREA

DO 30 JLK=1,NDIM 30 IWORK(JLK)=0

C C

C.

000

С С

C

* C

Ċ

C C

C C C

€.

¢

79

C C

¥,

SKIP THE DESCRIPTOR RECORDS

ADJUST THE DIMENSIONS

CALL SKPDSC(IDATI, IDENT, IEV, ERR1)

COMPUTE THE FOUR LEX ARRAYS

CALL FPLXIT(IDATI, IDATA, LEX1, LEX2, LEX3, LEX4, IPT, IDENT, MM1, 2PCLCT, IEV, ERR1)

WRITE OUT THE LEX ARRAYS

CALL IMTRXP(LEX1, 8, 8, 8, LEX, C1, R1, CC1, RR1, 4) CALL IMTRXP(LEX2, 8, 8, 8, LEX, C1, R1, CC1, RR1, 4) CALL IMTRXP(LEX3, 8, 8, 8, LEX, C1, R1, CC1, RR1, 4) CALL IMTRXP(LEX4, 8, 8, 8, LEX, C1, R1, CC1, RR1, 4)

CALL PROPER FUNCTION SUBPROGRAM

IEV=-5011 IF(IFUNC.EQ.1) CALL FUNC1(LEX1,LEX2,LEX3,LEX4,FUNC,NBUBL) IF(IFUNC.EQ.2) CALL FUNC2(LEX1,LEX2,LEX3,LEX4,FUNC,NBUBL) IF(IFUNC.EQ.3) CALL FUNC3(LEX1,LEX2,LEX3,LEX4,FUNC,NBUBL) IF(IFUNC.EQ.4) CALL FUNC4(LEX1,LEX2,LEX3,LEX4,FUNC,NBUBL) IF(IFUNC.EQ.5) CALL FUNC5(LEX1,LEX2,LEX3,LEX4,FUNC,NBUBL) IF(IFUNC.LE.O.OR.IFUNC.GE.6) RETURN ERR1 DO 79 I=1,20 JDENT(I)=IDENT(I) CONTINUE

JDENT(5)=10 JDENT(19)=1

```
JDENT(10)=3

JDENT(11)=512

JDENT(15)=-256

JDENT(16)=255

CALL CPYDSC(IDATI,S,IDATJ,T,JDENT,IEV,ERR1)

CALL ADATE(FDATE)

NW=JDENT(12)*2

WRITE(IDATJ) A, B,FDATE,S,(IZ,I=15,NW)

WRITE(IDATJ) IONE,(IZ,I=2,NW)

WRITE(IDATJ) ITWO,IFUNC,NDIS,(IZ,I=3,NW)
```

CALL PLXIT(IDATI, IDATJ, IDATA, JDATA, IDENT, FUNC, IPT, NBUBL, MM1, 2NXMIN, NXMAX, JDENT, IEV, ERR1) 4 CONTINUE CALL KDPOP RETURN

ERROR RETURN FOR NOT ENOUGH WORK SPACE

IEV=-5010 RETURN ERR1

END

C

C C

C

C