General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DOCUMENTATION OF PROCEDURES FOR TEXTURAL/SPATIAL PATTERN RECOGNITION TECHNIQUES

FINAL REPORT

April 15, 1976

RSL Technical Report 278-1

Robert M. Haralick
William F. Bryant

```
(NASA-CR-150C95) DOCUMENTATION OF
N76-33598
PROCEDURES FCA TEXTUEAL/SPATIAL PATTERN
QECOGNITION TECHNIQUES Final Report (Kansas
Univ. Center for Research, Inc.) 219 pHC Uncles
\(\$ 7.75\)
```

Funded by:
NASA LYNDON B. JOHNSON SPACE CENTER Contract NAS 9-14453

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
2291 Irving Hill Drive-Compus West Lawrence, Kansas 66045

Documentation of Procedures for Textural/Spatial Pattern Recognition Techniques

Final Report

April 15, 1976

RSL Technical Report 278-1

Robert M. Haralick
William F. Bryant

> NASA Lyndon B. Johnson Space Center Contract NAS $9-14453$ Houston, Texas 77058

Funded by:

Table of Contents

Page

List of Figures ii
List of Tables viii
I Introduction 1
I. 1 Contingency Tables of Classification Results 4
II Table Look-Up Decision Rule 6
III Texture 14
III. 1 Optical Processing Methods and Texture 15
III. 2 Texture and Edges 16
III. 3 Digital Transform Methods and Texture- 17
III. 4 Spatial Grey Tone Dependence: Co-occurrence 18
III. 5 A Textural Transform 19
IV Spatial Pre-Processing 21
$V \quad$ Spatial Post-Processing 22
VI Spectral Analysis: Edit 6 27
VII Spectral Analysis: Edit 9 41
VIII Spectral Analysis: Edit 14 53
IX Spectral Analysis: Edit 3 67
$X \quad$ Spectral-Textural Analysis: Edit 6 79
XI Spectral-Textural Analysis: Edit 9 97
XII Spectral-Textural Analysis: Edit 14 118
XIII Spectral-Textural Analysis: Edit 3 123
XIV Conclusions 133
References 134
Appendix 1 - Textural Transform Programs 137

List of Figures

Figure Number Title

Page
II. 1

Illustrates how quantizing can be done differently 12 for each category.
II. 2 Illustrates a graph of the number of reserved 13 decisions versus probability threshold alpha.
V.la Illustrates the 4-neighborhood of a resolution 23
V.1b
V. 2
V. 3
VI. 1 cell.
Illustrates the 8-neighborhood of a resolution
cell. cell.
Illustrates the effect of 4 and 8-filling or a single 24
resolution cell.

$$
\text { VI. } 2
$$

Illustrates the relationship between set convexity26 and regularity.
The .72-. 76 micrometer band 30
The ground truth training data overlayed on the 30 . 72 - . 76 micrometer band.

$$
\text { VI. } 3
$$

The classification of the best two band pairs for 31 alpha-beta thresholds of .3 and . 021 .
VI. 9
VI. 10
VI. 4
V.
VI. 5
VI. 6 The classified image of Figure VI. 3 after 4 -fill
VI. 7
VI. 8

The classified image of Figure VI. 3 after a31 complefe filling.
The classified image of Figure VI. 3 after 4-fill, $\quad 34$ 8 -fill, 4-shrink, and then complete filling operations. 34 8-fill, 4-shrink, 8-shrink, and then complete filling operations.
-

The classification of the three best band pairs for 36 alpha-beta thresholds of .6 and . 042 .
The classified image of Figure VI. 7 after a complete 36
filling.

The classified image of Figure VI. 8 after a 4-shrink38 operation and then a complete filling.
The classified image of Figure VI. 7 after 4-fill, 8-38 fill, 4-shrink, 8 -shrink and complete filling operations.

List of Figures (Continued)

Figure Number
VII. 1 The . 72 - . 76 micrometer band,

Page
VII. 2 The ground truth training data overlayed on the 43 .72 - . 76 micrometer band.
VII. 3 The classification of the best two band pairs for 45 alpha-beta thresholds of .3 and .021 .
VII. 4 The classified image of Figure VII. 3 after a 45 complete filling.
VII. $5 \quad$ The classified image of Figure VII. 3 after 4- 47 shrink and complete filling operations.
VII. 6 A plot of the alphathresholds versus number of 48 reserved decisions.
VII. $7 \quad$ The classification of the three best band pairs for 50 alpha-beta thresholds of .6 and .042 .
VII. 8 The classified image of Figure VII. 7 after a 50 complete filling.
VII. 9 The classified image of Figure VII. 7 after 4-fill, 52 8-fill, 4-shrink, 8-shrink and complete filling operations.
The . 72 - . 76 micrometer band. 55
VIII. 2 The ground truth training data overlayed on the 55 . 72 - . 76 micrometer band.
VIII. 3 The classification of the three best band pairs for 58 alpha-beta thresholds of .62 and .042 .
VIII. 4 The classified image of Figure VIII. 3 after a complete 58 filling.
VIII. $5 \quad$ The classified image of Figure VIII. 4 after a $4-\quad 60$ shrink operation.
VIII. $6 \quad$ The classified image of Figure VIII. 5 after a com- $\quad 60$ plete filling.
VIII. $7 \quad$ The classified image of Figure VIII. 3 after a $4-\quad 62$ fill operation.
VIII. $8 \quad$ The classified image of Figure VIII. 3 after 4- 62 and 8 -fill operations.

List of Figures (Continued)

Figure Number	Title	Page
VIII. 9	The classified image of Figure VIII. 3 after 4fill, 8-fill, and 4-shrink operations.	64
VIII. 10	The classified image of Figure VIII. 3 after 4fill, 8-fill, 4-shrink and 8-shrink operations.	64
VIII. 11	The classified image of Figure VIII. 3 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	66
IX. 1	The . $72-.76$ micrometer band.	69
IX. 2	The ground truth training data overlayed on the .72 - .76 micrometer band.	69
IX. 3	Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs, spectral only for edit \#3.	70
IX. 4	Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs, spectral only for edit \#3.	73
IX. 5	The classification of the three best band pairs for alpha-beta thresholds of .5 and . 035 .	75
IX. 6	The classified image of Figure IX. 5 after 4-fill and 8 -fill operations.	75
IX. 7	The classified image of Figure IX. 5 after 4-fill, 8 -fill, and 4-shrink operations.	77
IX. 8	The classified image of Figure IX. 5 after 4-fill, 8-fill, 4-shrink, 8 -shrink and complete filling operations.	77
X. 1	The classification of the best 2 band pairs for alpha-beta thresholds of .3 and .021 .	84
X. 2	The classified image of Figure X .1 after a complete filling.	84
$\times .3$	The classified image of Figure $X .1$ after complete filling, 4-shrink, and complete filling operations.	86
X. 4	The classified image of Figure X. 1 after 4 -fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.	86

List of Figures (Continued)

Figure
Number Title Page
X. 5 The classified image of Figure X .1 after $4-\mathrm{fill}$, 88 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.
X. 6 The classification of the best 2 band pairs for 88alpha-beta thresholds of .5 and .035 .
$X .7$ The classified image of Figure $X .6$ after a 90complete filling.
X. 8 The classified image of Figure $X .6$ after complete 90filling, 4-shrink and complete filling operations.X. 9 The classified image of Figure $X .6$ after 4 -fill,928-fill, 4-shrink, 8 -shrink, and complete fillingoperations.
$X .10$
The classified image of Figure $X .6$ after $4-f i l l$, 928 -fill, 4-shrink and complete filling operations.
$X_{0} 11$ The classification of the best 3 band pairs for 95alpha-beta thresholds of .7 and .049 aftercomplete filling, 4 -shrink, and complete fillingoperations.
X. 12
The ciassification of the best 3 band pairs for 95alpha-beta thresholds of .7 and . 049 after $4-$ fill,8-fill, 4-shrink, 8-shrink, and complete fillingoperations.
XI. 1 The . 82 - . 88 micrometer band used for the texture 100transform.
XI. 2 Shows Figure XI. 1 after a 2×2 rectangular convolution. 100
XI. 3 Shows Figure XI. 1 after a 3×3 rectangular convolution. 101
XI. 4 The texture transform of Figure XI. 1 101
XI. 5 The texture transform of Figure XI. 2 102
XI. 6 The texture transform of Figure XI. 3 102
XI. 7 Shows Figure XI. 4 after a 2×2 rectangular 103convolution.
XI. 8 Shows Figure XI. 5 after a 2×2 rectangular 103 convolution.
XI. 9 Shows Figure XI. 6 after a 2×2 rectangular 104 convolution.

List of Figures (Continued)

Figure
Number
XI. 10

Shows Figure XI. 4 after a 3×3 rectangular 104
convolution.
XI. 11 Shows Figure XI. 5 after a 3×3 rectangular 105 convolution.
XI. 12 Shows Figure XI. 6 after a 3×3 rectangular 105 convolution.
XI. 13 Number of reserved decisions as a function of 106 probability threshold alpha for best 2 band pairs with texture for edit \#9.
XI. 14 Number of reserved decisions as a function of 107 probability threshold alpha for best 3 band pairs spectral only for edit \#9.
XI. 15 The classification of the best 3 band pairs for 109 alpha-beta thresholds of . 3 and .021.
XI. $16 \quad$ The classified image of Figure XI. 15 after 4- 109 shrink and complete filling operations.
XI.17 The classified image of Figure X. 15 after 4-fill, 111 4-shrink, and complete filling oferations.
XI. 18 The classification of the best 3 band pairs for 111 alpha-beta thresholds of .7 and .049 after 4 -fill, 8 -fill, 4 -shrink, 8 -shrink, and complete filling operations.
XI. 19 The classification of the best 2 band pairs for 115 alpha-beta thresholds of .3 and . 021.
XI. $20 \quad$ The classified image of Figure XI. 19 after 4 -fill, 115 4-shrink, and complete filling operations.
XI. 21 The classified image of Figure XI. 19 after 4- 117 shrink and complete filling operations.
XII.1 The . $82-.88$ micrometer band used for the texture 119 transform.
$\begin{array}{cl}\text { XII. } 2 & \begin{array}{l}\text { The texture transform of Figure XII. } 1 \text { with a } 3 \times 3 \\ \text { rectangular convolution before the texture trans }\end{array} \\ \text { form and a } 3 \times 3 \text { rectangular convolution after. }\end{array} \quad 119$

> List of Figures (Continued)

Figure
Number
$\begin{array}{llll}\text { XII. } 3 & \begin{array}{ll}\text { The texture transform of Figure XII. } 1 \text { with no } \\ \text { rectangular convolution before the texture trans- } \\ \text { form and a } 3 \times 3 \text { rectangular convolution affer. }\end{array} & 120 \\ \text { XIII. } 1 & \begin{array}{l}\text { Number of reserved decisions as a function of } \\ \text { probability threshold alpha for best } 2 \text { band pairs } \\ \text { with texture for edit } \# 3 .\end{array} & 125\end{array}$
XIII.2 Number of reserved decisions as a function of 127 probability threshold alpha for best 3 band pairs with texture for edit \#3.
XIII. 3 The classification of the three best band pairs for 129 alpha-beta thresholds of . 6 and . 042 .
XIII. 4 The classified image of Figure XIII. 3 after 4-fill 129 and 8 -fill operations.
XIII. 5 The classified image of Figure XIII. 3 after 4-fill, 132 8-fill and 4-shrink operations.
XIII. 6 The classified image of Figure XIII. 3 after 4-fill, 132 8-fill, 4-shrink, 8-shrink, and complete filling operations.

List of Tables

TableNumber Title PageI. 1 The type (classes) and condition classes (sub-classes of forest features of interest in SamHouston National Forest of Texas.
I. 2 Summarizes the error rates obtained from thespectral versus the spectral-textural classifica-tion using 3 band pairs and no spatial postprocessing.
1.3 Summarizes the error rates obtained from the 5spectral versus the spectral-textural classifica-tion using 3 band pairs and spatial post pro-cessing.
VI. 1 The contingency table of the best 2 band pairs for2alpha-beta thresholds of .3 and .021.
VI. 2 The contingency table of the best 2 band pairs after 32
a complete filling.
VI. 3 The contingency table of the best 2 band pairs after 33complete filling, 4 -shrink, and complete fillingoperations.
VI. 4 The contingency table of the best 2 band pairs after 334-fill, 8-fill, 4-shrink, and complete fillingoperations.
VI. 5 The contingency table of the best 2 band pairs after 354-fill, 8-fill, 4-shrink, 8-shrink, and completefilling operations.
VI. 6 The contingency table of the best 2 band pairs after 35 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8- shrink and complete filling operations.
VI. 7 The contingency table for the best 3 band pairs for 37alpha-beta thresholds of .6 and . 042 .
VI. 8 The contingency table of the best 3 band pairs after 37a complete filling.
VI. 9 The contingency table of the best 3 band pairs after 39complete filling, 4-shrink, and complete fillingoperations.
V1. 10 The contingency table of the best 3 band pairs after 39 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

List of Tables (Continued)

Table
Number Title Page
VI. 11 The contingency rable of the best 3 band pairs after 40 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8shrink and complete filling operations.
VII. 1 The contingency table of the best 2 band pairs for 44 alpha-beta thresholds of .3 and .021 .
VII. 2
VII.
VII.
VII.
VII.
VII. 7
VIII. 1
VIII. 2 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.
VIII. 3 The contingency table of the best 3 band pairs for alpha-beta thresholds of . 6 and .042 .
VIII. 4 The contingency table of the best 3 band pairs 57 after a complete filling.
VIII. 5 The contingency table of the best 3 band pairs 59 after complete filling and 4 -shrink operations.
VIII. 6 The contingency table of the best 3 band pairs 59 after complete filling, 4 -shrink and complete filling operations.
VIII. 7
VIII. 8 The contingency table of the best 3 band pairs 61 after 4 -fill, and 8 -fill operations.

List of Tables (Continued)

Table Number	Title	Page
VIII. 9	The contingency table of the best 3 band pairs after 4 -fill, 8 -fill and 4 -shrink operations.	63
VIII. 10	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, and 8-shrink operations.	63
VIII. 11	The contingency table of the best 3 band pairs after 4 -fill, 8 -fill, 4 -shrink, 8 -shrink and complete filling operations.	65
IX. 1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and . 021 .	61
IX. 2	The contingency table of the best 2 band pairs for alpha-beta thresholds of .4 and .028 .	71
IX. 3	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 .	72
IX. 4	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after a complete filling.	72
IX. 5	The contingency table of the best 3 band pairs for alpha-beta thresholds of .5 and .035 .	74
IX. 6	The contingency table of the best 3 band pairs after 4 -fill and 8 -fill operations.	74
IX. 7	The contingency table of the best 3 band pairs after 4-fill, 8-fill and 4-shrink operations.	76
IX. 8	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	76
IX. 9	Contingency table created by combining subclass types of the same class.	78
X. 1	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and . 021 .	83
X. 2	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after a complete filling.	83

List of Tables (Continued)

Table Number	Title	Page
$\times .3$	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after complete filling, 4-shrink, and complete filling operations.	85
$\times .4$	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after 4 -fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.	85
X. 5	The contingency table of the best 2 band pairs for alpha-beta thresholds of .3 and .021 after 4 -fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink, and complete filling operations.	87
X. 6	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 .	87
$\times .7$	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after a complete filling.	89
X. 8	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after complete filling, 4 -shrink, and complete filling operations.	89
X. 9	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after 4 -fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.	91
X. 10	The contingency table of the best 2 band pairs for alpha-beta thresholds of .5 and .035 after 4-fill, 8 -fill, 4-shrink, and complete filling operations.	91
X. 11	The contingency table of the best 3 band pairs for alpha-beta thresholds of ,7 and . 049 .	93
X. 12	The contingency table of the west 3 band pairs after a complete filling.	93
$\times .13$	The contingency table of the best 3 band puirs after 4-fill, 8-fill, 4 -shrink, 8 -shrink and complete filling operations.	94
X. 15	The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink 8 -shrink, and complete filling operations.	96

List of Tables (Continued)

Table		
Number		
XI. 1	Title	Page
XI. 2	The contingency table of the best 3 band pairs for alpha-beta thresholds of .3 and .021.	108
The contingency table of the best 3 band pairs		
for alpha-beta thresholds of .3 and .021 after		
4-shrink and complete filling operations.		
The contingency table of the best 3 band pairs		
for alpha-beta thresholds of .3 and . 021 after		
4-fill, 4-shrink and complete filling operations.		

List of Tables (Continued)

Table
Number Title Page
XIII. 1 The contingency table of the best 2 band pairs for 126 alpha-beta thresholds of .5 and .035 .
XIII. 2 The contingency table of the best 2 band pairs 126 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.
XIII. 3 The contingency table of the best 3 band pairs for 128alpha-beta thresholds of .6 and .042 .
Xill. 4 The contingency table of the best 3 band pairs 128after 4 -fill, and $8-$ fill operations.
XIII. 5 The contingency table of the best 3 band pairs 130after 4 -fill, 8 -fill, and 4 -shrink operations.
XIII. 6 The contingency table of the best 3 band pairs 130 after 4-fill, 8-fill, 4-shrink and 8-shrink operations.
XIII. $7 \quad$ The contingency table of the best 3 band pairs 131
after 4 -fill, 8 -fill, 4 -shrink, 8 -shrink and complete filling operations.

Introduction

This research was undertaken in an effort to aid the Forestry Application Project on Timber Resources. Mission M230 of the C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude. The Bendix 24 channel multispectral scanner collected the data. Four forest scenes of this data set were selected for study. They were edits $3,6,9$, and 14 . The categories of timber classes and subclasses are shown in Table I. 1.

The application oriented research was to apply and document the capability of existing textural and spatial automatic processing techniques at the University of Kansas to classify the MSS imagery into specified timber categories. The ground truth for the study was supplied by the Forestry Applications Project.

Over a hundred classification experiments were performed on this data using feature selected from the spectral bands and a textural transform band. The textural transform band is an image whose resolution cells have grey tone intensities which indicate one parameter of local neighborhood texture. The textural transform concept is discussed in Section III. The classification was done by equal interval quantizing the images to 32 levels and using a non-parametric table look-up rule discussed in Section II. The various spatial pre- and post-processing options are discussed in Sections IV and V. Sections VI through IX discuss the results using only spectral features. Sections X through XIII discuss the combined spectral textural results.

The results indicate that
(1) spatial post-processing a classified image can cut the classification error to ${ }^{*} 1 / 2$ or $1 / 3$ of its initial value.
(2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features.
(3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

TABLE I. 1 THE TYPE (CLASSES) AND CONDITION CLASSES (SUBCLASSES) OF FOREST FEATURES OF INTEREST IN SAM HOUSTON NATIONAL FOREST OF TEXAS

Type No.	Type (Class)	Subclass No.	Condition Class (Subclass)
1	Shortleaf pine	1.1	Plantation - 3 years old
		1.2	Poletimber - immature
		1.3	Sawtimber - immature
		1.4	Sawtimber - mature
2	Loblolly pine	2.1	Plantation - 1 year old
		2.2	Plantation - 3 years old
		2.3	Seedling and Sapling adequately stocked
		2.4	Poletimber - immature
		2.5	Sawtimber - immature
		2.6	Sawtimber - mature
3	Laurel oak willow oak	3.1	Sawtimber - immature
4	Sweetgum - nuttal oak - willow oak	4.1	Sawtimber - low quality
		4.2	Sawtimber - immature
		4.3	Sawtimber - mature
5	Post oak - black oak	5.1	Sawtimber - immature
6	Loblolly pine hardwoods	6.1	Sawtimber - immature
7	Cut-over land	7.1	Site prepared and windrowed
		7.2	Not site prepared

These results mean that regardless of how the image is classified, spatial postm processing should be used to reduce the error rate. Furthermore, the best post processing results can be obtained if textural features are used; but, if no spatial post-processing is going to be utilized, spectral bands only will give about the same results as the combined spectral textural bands.

These conclusions are based on classification into all timber subclasses using large training sets averaging more than 25,000 points per image. Because the training sets were orders of magnitude larger than the number of categories times the number of features, the statistics must be considered as large sample statistics and we used, justifiably, the training data as the test data.

Tables I. 2 and I. 3 summarize the basis of our conclusions. The results of each experiment can be summarized in three ways: by average error, by average misidentification error, and by average false identification error. The average error is defined as the total number of incorrect category assignments divided by the total number of assignments. The average misidentification error is defined as the equally we ighted average over all categories of the number of times the category is incorrectly assigned divided by the total number of times the category occurs in the ground truth. The average false identification error is defined as the equally weighted average over all categories of the number of times an incorrect assignment is made to the category divided by the total number of times an assignment is made to the category.

When the ground truth has each category occurring with equal frequency, the average misidentification error will equal the average error. When the number of assignments to each category is the same, the average false identification error will equal the average error. If the prior probability for a category is high and the category has a high misidentification error, then all other things being equal, the average error will be higher than the average misidentification error. If the prior probability for a category is low, and the category has high misidentification error, then all other things being equal, the average error will be lower than the average misidentification error.

From Tables I. 2 and I. 3 it is readily apparent that both the use of textural features and spatial post processing tends to increase and equalize the average misidentification error and false identification error while cutting the average error to less than half its initial value.

1. 1 Contingency Tables of Classification Results

All results are reported with a complete contingency table. The contingency tables are all organized in the same manner. The title for the contingency table tells which images are being compared. The first nine character file name is the name of the ground truth image file. The number following it is the symbolic band number used from that multi-image file. The second nine character file name is the name of the classified image file. The number following it is the number of the symbolic band used from that multi-image file. The row label UNKWN means unknown true category identification. The column label R DEC means reserved decision.

The contingency tables have a column labeled ERR. This column designates the number of the resolution cells in ench category misidentified. The next column is labeled \% ERR and it designates the percent of misidentification error. The contingency tables have a row labeled ERR. This row designates the number of resolution cells in each category faisely identified. The next row is labeled \% ERR and it designates the percent of false identification error. The label \% SD stands for the percent standard deviation of the error estimates. The entry whose row is labeled TOTAL and whose column is weighted $\%$ ERR is the equally weighted average of the misidentification error percentages. The entry whose column is labeled total and whose row is weighted $\%$ ERR is the equally weighted average of the false identification error percentages.

	Average Average Error			Average Misidenti- fication Error	False Identifi- cation Error	Average Average Error	Misidenti- fication Error	False Identifi- cation Error
Edit 6	22%	30%	5%	22%	23%	6%		
Edit 9	28%	9%	9%	28%	8%	11%		
Edit 14	30%	13%	9%	texture band not selected by feature selector				
Edit 3	42%	14%	25%	40%	25%	29%		

Table I. 2 summarizes the error rates obtained from the spectral versus the spectraltextural classification using 3 band pairs and no spatial post processing.

	Spectral			Spectral-Texture		
	Average Error	Average Misidentification Error	Average False identification Error	Average Error	Average Misidentification Error	Average False Identification Error
Edit 6	9.3\%	34\%	33\%	6.8\%	38\%	37\%
Edit 9	19\%	25\%	32\%	15\%	27\%	33\%
Edit 14	12\%	32\%	31\%	texture b	nd not sele	by feature selector
Edit 3	24\%	35\%	40\%	12\%	40\%	44\%

Table I. 3 summarizes the error rates obtained from the spectral versus the spectraltextural classification using 3 band pairs and spatial post processing.

Brooner, Haralick and Dinstein (1971) used a table look-up approach on high altitude multiband photography flown over Imperial Valley, California to determine crop types. Their approach to the storage problem was to perform an e qual probability quantizing from the original 64 digitized grey levels to ten quantized levels for each of the three bands: green, red, and near infrared. Then after the conditional probabilities were empirically estimated, they used a Bayes rule to assign a category to each of the 10^{3} possible quantized vectors in the 3dimensional measurement space. Those vectors which occurred too few times in the training set for any category were deferred assignment.

The rather direct approach employed by Brooner et al. has the disadvantage of requiring a rather small number of quantized levels. Furthermore, it cannot be used with measurement vectors of dimension greater than four; for if the number of quantized levels is about 10, then the curse of dimensionality forces the number of possible quantized vectors to an unreasonably large size: Recognizing the grey level precision restriction forced by the quantizing cocrsening effect, Eppler, Welmke, and Evans (1971) suggest a way to maintain greater quantizing precision by defining a quantization rule for each category - measurement dimension as follows:
(1) fix a category and a measurement dimension component;
(2) determine the set of all measurement patterns which would be assigned by the decision rule to the fixed category;
(3) examine all the measurement patterns in this set and determine the minimum and maximum grey levels for the fixed measurement component;
(4) construct the quantizing rule for the fixed category and measurement dimension pair by dividing the range between the minimum and maximum grey levels for the category into equal spaced quantizing intervals.
This multiple quantizing rule in effect determines for each category a rectangular parallelepiped in measurement space which contains all the measurement patterns assigned to it. Then as shown in Figure II.1, the equal interval quantizing lays a grid over the rectangular parallelepiped. Notice how for a fixed number of quantizing levels, the use of multiple quantizing rules in each band allows greater
grey level quantizing precision compared to the single quantization rule for each band.

A binary table for each category can be constructed by associating each entry of the table with one corresponding cell in the gridded rectangular parallelepiped. An entry is a binary 1 if the decision rule assigns a majority of the measurement patterns in the corresponding cell to the specified category; otherwise, the entry is assigned to be a binary 0 .

The binary tables are used in the implementation of the multiple quantization rule table look-up in the following way. Order the categories in some meaningful manner such as by prior probability. Quantize the multispectral measurement pattern using the quantization rule for category c_{1}. Use the quantized pattern as an address to look up the entry in the binary table for category c_{1} to determine whether or not the pre-stored decision rule would assign the pattern to category c_{1}. If the decision rule makes the assignment to category c_{1} the entry would be a binary 1 and, all is finished. If the decision rule does not make the assignment to category c_{1}, the entry would be a binary 0 and the process would repeat in a similar manner with the quantization rule and table for the next category.

One advantage to this form of the table look-up decision rule is the flexibility to use different subsers of bands for each category look-up table and thereby take full advantage of the feature selecting capability to define an optimal subset of bands to discriminate one category from all the others. A disadvantage to this form of the table look-up decision rule is the large amount of computational work required to determine the rectangular parallelepipeds for each category and the still large amount of memory storage required (about 5,000 8 bit bytes per category).

Eppler (1974) discusses a modification of the table look-up rule which enables memory storage to be reduced by five times and decision rule assignment time to be decreased by 2 times. Instead of pre-storing in tables a quantized measurement space image of the decision rule, he suggests a systematic way of storing in tables the boundaries or end-points for each region in measurement space satisfying a regularity condition and having all its measurement patterns assigned to the same category.

Let $D=D_{1} \times D_{2} \times \ldots \times D_{N}$ be measurement space. A subset $R \subseteq D_{1} \times D_{2} \times \ldots \times D_{N}$ is a regular region if and only if there exists constants
L_{1} and H_{1} and functions $L_{2}, L_{3}, \ldots, L_{N}, H_{2}, H_{3}, \ldots, H_{N}$

$$
\left(\left(L_{n}: D_{1} \times D_{2} \times \ldots \times D_{n-1} \rightarrow(-a, \infty) ; H_{n}: D_{1} \times D_{2} \times \ldots \times D_{n-1}+(-\infty, \infty)\right)\right.
$$

such that

$$
\begin{aligned}
& R=\left\{\left(x_{1}, \ldots, x_{N}\right) \in D \mid L_{1} \leqslant x_{1} \leqslant H_{1}\right. \\
& L_{2}\left(x_{1}\right) \leqslant x_{2} \leqslant H_{2}\left(x_{1}\right) \\
& \vdots \\
& \vdots \\
&\left.L_{N}\left(x_{1}, x_{2}, \ldots, x_{N-1}\right) \leqslant x_{N} \leqslant H_{N}\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)\right\}
\end{aligned}
$$

From the definition of a regular region, it is easy to see how the table look-up by boundaries decision rule can be implemented. Let $d=\left(d_{1}, \ldots, d_{N}\right)$ be the measurement pattern to be assigned a category. To determine if d lies within a regular region R associated with category c we look up the numbers L_{1} and H_{1} and test to see if d_{1} lies between L_{1} and H_{1}. If so, we look up the numbers $L_{2}\left(d_{1}\right)$ and $H_{2}\left(d_{1}\right)$ and so on. If all the tests are satisfied, the decision rule can assign measurement pattern d to category c. If one of the tests fails, tests for the regular region corresponding to the next category can be made.

The memory reduction in this kind of table look-up rule is achieved by only storing boundary or end-points of decision regions and the speed-up is achieved by having one-dimensional tables whose addresses are easier to compute than the three or four-dimensional tables required by the initial table look-up decision rule. However, the price paid for by these advantages is the regularity condition imposed on the decision regions for each category. This regularity condition is stronger than set connectedness but weaker than set convexity.

Another approach to the table look-up rule can be based on Ashby's (1964) technique of constraint analysis. Ashby suggests representing in an approximate way subsets of Cartesian product sets by their projections on various smaller dimensional spaces. Using this idea for two-dimensional spaces we can formulate the following kind of table look-up rule.

Let $D=D_{1} \times D_{2} \times \ldots \times D_{N}$ be measurement space, C be the set of categories, and $\mathrm{J} \subseteq\{1,2, \ldots, N\} \times\{1,2, \ldots, N\} b e$ an index set for the selected two-dimensional
spaces. Let the probability threshold α be given. Let $(i, j) \in J ;$ for each $\left(x_{1}, x_{2}\right) \in D_{i} \times D_{j}$ define the set $S_{i j}\left(x_{1}, x_{2}\right)$ of categories having the highest conditional probabilities given $\left(x_{1}, x_{2}\right)$ by

$$
\left.S_{i j}\left(x_{1}, x_{2}\right)=\left\{c \in C \mid P_{x_{1}, x_{2}}(c) \geqslant \alpha_{i j}\right)\right\} \text {, where } \alpha_{i j} \text { is the largest number }
$$

which satisfies

$$
\sum_{c \in S_{i j}\left(x_{1}, x_{2}\right)} P_{x_{1}, x_{2}}(c) \geqslant \alpha
$$

$S_{i j}\left(x_{1}, x_{2}\right)$ is the set of likely categories given that components i and j of the measurement pattern take the values $\left(x_{1}, x_{2}\right)$.

The sets $S_{i j},(i, j) \in J$, can be represented in the computer by tables. In the $(i, j)^{\text {th }}$ table $S_{i j}$ the $\left(x_{1}, x_{2}\right)^{\text {th }}$ entry contains the set of all categories of sufficiently high conditional probabilities given the marginal measurements (x_{1}, x_{2}) from measurement components i and j, respectively. This set of categories is easily represented by a one word table entry; a set containing categories c_{1}, c_{7}, c_{9}, and c_{12}, for example, would be represented by a word having bits 1, 7, 9, and 12 on and all other bits off.

The decision region $R(c)$ containing the set of all measurement patterns to be assigned to category c can be defined from the $S_{i j}$ sets by

$$
R(c)=\left\{\left(d_{1}, d_{2}, \ldots, d_{N}\right) \in D_{1} \times D_{2} \times \ldots \times D_{N} \mid\{c\}=\bigcap_{(i, j) \in J} S_{i j}\left(d_{i}, d_{j}\right)\right\}
$$

This kind of a table look-up rule can be implemented by using successive pairs of components (defined by the index set J) of the (quantized) measurement patterns as addresses in the just mentioned two-dimensional tables. The set intersection required by the definition of the decision region $R(c)$ is implemented by taking the Boolean AND of the words obtained from the table look-ups for the measurement to be assigned a category. Note that this Boolean operation makes full use of the natural parallel compute capability the computer has on bits of a word. If the $k^{\text {th }}$ bit is the only bit which remains on in the resulting word, then the measurement pattern is assigned to category c_{k}. If there is more than one bit on or no bits are on, then the measurement pattern is deferred its assignment (reserved decision).

Thus we see that this form of a table look-up rule utilizes a set of "loose" Bayes rules in the lower dimensional projection spaces and intersects the resulting multiple category assignment sets to obtain a category assignment for the measurement pattern in the full measurement space.

Because of the natural effect which the category prior probabilities have on the category assignments produced by a Bayes rule it is possible for a measurement pattern to be the most probable pattern for one category yet be assigned by the Bayes rule to another category having much higher prior probability. This effect will be pronounced in the table look-up rule just described because the elimination of such a category assignment from the set possible categories by one table look-up will completely eliminate it from consideration because of the Boolean AND or set intersection operation. However, by using an appropriate combination of maximum likelihood and Bayes rules, something can be done about this.

For any pair (\mathbf{i}, j) of measurement components, fixed category c ; and probability threshold β, we can construct the set of $T_{i j}(c)$ having the most probable pairs of measurement values from component i and j arising from category c. The set $T_{i j}(c)$ is defined by

$$
T_{i j}(c)=\left\{\left(x_{1}, x_{2}\right) \in D_{i} \times D_{j} \mid P_{c}\left(x_{1}, x_{2}\right) \geqslant \beta_{i j}(c)\right\},
$$

where $\beta_{i j}(c)$ is the largest number satisfying

$$
\sum_{\left(x_{1}, x_{2}\right) \in T_{i j}(c)} P_{c}\left(x_{1}, x_{2}\right) \geqslant B
$$

Tables which can be addressed by (quantized) measurement components can be constructed by combining the $S_{i j}$ and $T_{i j}$ sets. Define $Q_{i j}\left(x_{1}, x_{2}\right)$ by

$$
Q_{i j}\left(x_{1}, x_{2}\right)\left\{c \in C \mid\left(x_{1}, x_{2}\right) \in T_{i j}(c)\right\} \cup S_{i j}\left(x_{1}, x_{2}\right)
$$

The set $Q_{i j}\left(x_{1}, x_{2}\right)$ contains all the categories whose respective conditional probabilities given measurement values (x_{1}, x_{2}) of components i and j are sufficiently high (a Bayes rule criteria) as well as all those categories whose most probable measurement values for components i and j respectively are $\left(x_{1}, x_{2}\right)$ (a maximum likelihood criteria). A decision region $R(c)$ containing all the (quantized) measurement patterns can then be defined as before using the $Q_{i j}$ sets:

$$
R(c)=\left\{\left(d_{1}, d_{2}, \ldots, d_{N}\right) \in D_{1} \times D_{2} \ldots \times D_{N} \mid\{c\}=\cap_{(i, j) \in J} Q_{i j}\left(d_{i}, d_{j}\right)\right\}
$$

A majority vote version of this kind of table look-up rule can be defined by assigning a measurement to the category most frequently selected in the lower dimensional spaces.

$$
\begin{aligned}
& R(c)=\left\{\left(d_{1}, d_{2}, \ldots, d_{N}\right) \in D_{1} \times D_{2} \times \ldots \times D_{N} \mid\right. \\
& \#\left\{\left(i_{i}, j\right) \in J \mid c \in Q_{i j}\left(d_{i}, d_{j}\right)\right\} \geqslant \#\left\{(i, j) \in J \mid c \in Q_{i j}\left(d_{i} d_{j}\right)\right. \\
& \quad \text { for every } c \in C-\{c\}\}
\end{aligned}
$$

Classification results were run with $\beta=.07 \alpha$ and α chosen to minimize the number of reserved decisions. Figure II. 2 illustrates a graph of the number of reserved decisions versus probability threshold α.

Figure II. 1 illustrates how quantizing can be done differently for each category thereby enabling more accurate classification by the following table look-up rule: (1) quantize the measurement by the quantizing rule for category one (2) use the quantized measurement as an address in a table and test if the entry is a binary one or binary zero, (3) if it is a binary cne assign the measurement to category one; if it is a binary zero, repeat the procedure for category two.

Figure 11.2 illustrates a graph of the number of reserved decisions versus probability threshold α.

Spatial environments can be understood as being spatial distributions of various area-extensive objects having characteristic size and reflectance or emissive qualities. The spatial organization and relationships of the area-extensive objects appear as spatial distributions of grey tone on imagery taken of the environment. We call the pattern of spatial distributions of grey tone, texture.

Figure III. 1, taken from Lewis (1971), illustrates how texture relates to geomorphology. There are some plains, low hills, high hills, and mountains in the Panama and Columbia area taken by the Westinghouse AN/APQ 97 K -band radar imager system. The plains have apparent relief of $0-50$ meters, the hills have apparent relief of 50-350 meters, and the mountains have apparent relief of more than 350 meters. The low hills have little dissection and are generally smooth convex surfaces whereas the high hills are highly dissected and have prominent ridge crests.

The mountain texture is distinguishable from the hill texture on the basis of the extent of radar shadowing (black tonal areas). The mountains have shadowing over more than half the area and the hills have shadowing over less than half the area. The hills can be subdivided from low to high on the basis of the abruptness of tonal change from terrain front slope to terrain back slope.

There have been six basic approaches to the measurement and quantification of image texture: autocorrelation functions (Kaizer, 1955), optical transforms, (Lendaris and Stanley, 1970), digital transforms, (Gramenopoulos, 1973; Hornurg and Smith, 1973; Kirvida and Johnson, 1973), edgeness (Rosenfeld and Thurston, 1971), structural elements, (Matheron, 1967; Serra, 1973), and spatial grey tone co-occurrence probabilities, (Haralick et al., 1973). The first three of these approaches are related in that they all measure spatial frequency directly or indirectly. Spatial frequency is related to texture because fine textures are rich in high spatial frequencies while coarse textures are rich in low spatial frequencies.

An alternative to viewing texture as spatial frequency distribution is to view texture as amount of edge per unit area. Coarse textures have a small number of edges per unit area. Fine textures have a high number of edges per unit area.

The structural element approach uses a matching procedure to detect the spatial regularity of shapes called structural elements in a binary image. When
the structural elements themselves are single resolution cells, the information provided by this approach is the autocorrelation function of the binary image. By using larger and more complex shapes, a more generalized autocorrelation can be computed.

The grey tone co-occurrence approach characterizes texture by the spatial distribution of its grey tones. Coarse textures are those for which the distribution changes only slightly with distance and fine textures are those for which the distribution changes rapidly with distance.

III. 1 Optical Processing Methods and Texture

Edward O'Neill's (1956) article on spatial filtering introduced the engineering community to the fact that optical systems can perform filtering of the kind used in communication systems. In the case of the optical systems, however, the filtering is two-dimensional. The basis for the filtering capability of optical systems lies in the fact that the light amplitude distributions at the front and back focal planes of lens are Fourier Transforms of one another. The light distribution produced by the lens is more commonly known as the Fraunhofer diffraction pattern. Thus, optical methods facilitate two-dimensional frequency analysis of images.

The paper by Cutrona et al. (1960) provides a good review of optical processing methods for the interested reader. More recent books by Goodman (1968), Preston (1972), Shulman (1970) comprehensively survey the area.

In this section, we describe the experiments done by Lendaris and Stanley, Egbert ef al., and Swanlund using optical processing methods in aerial or satellite imagery. Lendaris and Stanley (1970) illuminated small circular sections of low altitude aerial photography and used the Fraunhofer diffraction pattern as features for identifying the sections. The circular sections represented a circular area on the ground of 750 feet. The major category distinction they were interested in making was man-made versus non man-made. They further subdivided the man-made category into roads, road intersections, buildings, and orchards.

The pattern vectors they used from the diffraction pattern consisted of 40 components. Twenty components were averages of the energy in 9° wedges of the diffraction pattern. They obtained over 90 percent identification accuracy.

Ulaby and McNaughton used an optical processing system to examine the texture of ERTS imagery over Kansas. They used circular areas corresponding to a ground diameter of about 37 km and looked at the diffraction patterns for four different physiographic regions in Kansas. They used a diffraction patterri sampling unit having 32 sector wedges and 32 annular rings to sample and measure the diffraction patterns. (See Jensen (1973) for a description of the sampling unit and its use in coarse diffraction pattern analysis.) They were able to interpret the resulting angular orientation graphs in terms of dominant drainage patterns, roads and fields but interpreted the spatial frequency graphs in terms of stress patterns, rough terrain and field patterns. Their results indicated that the spatial frequency information was highly correlated with physiography.

Swanlund (1969) has done work using optical processing on aerial images to identify species of trees. Using imagery obtained from Itasca State Park in northern Minnesota, photo interpreters identified five (mixture) species of trees on the basis of the texture: Upland Hardwoods, Jack pine overstory/Aspen understory/Upland Hardwoods understory, Red pine overstory/Aspen understory, and Aspen. They achieved classification accuracy of over 90 percent.

III. 2 Texture and Edges

The autocorrelation function, the optical transforms, and the fast digital transforms (FFT and FHT) basically all reference texture to spatial frequency. Rosenfeld and Thurston (1971) conceive of texture not in terms of spatial frequency but in terms of edgeness per unit area. An edge passing through a resolution cell is detected by comparing the values for local properties obtained in pairs of nonoverlapping neighborhoods boarding the resolution cell. To detect microedges, small neighborhoods must be used. To detect macroedges, large neighborhoods must be used.

The local property which Rosenfeld and Thurston suggested was the quick Roberts gradient (the sum of the absolute value of the differences between diagonally opposite neighboring pixels). Thus, a measure of texture for any subimage is obtained by computing the Roberts gradient image for the subimage and from it determining the average value of the gradient in the subimage. Triendl (1972) uses the Laplacian instead of the Roberts gradient.

Sutton and Hall (1972) extended Rosenfeld and Thurston's idea by making the gradient a function of the distance between the pixels. Thus, for every distance d and subimage I defined over a neighborhood N of resolution cells, they compute

$$
\begin{aligned}
g(d)=\sum_{(i, j) N}\{\mid I(i, j) & =I(i+d, j)|+|I(i, j)-I(i-d, j)| \\
& +|I(i, j)-I(i, j+d)|+|I(i, j)-I(i, j-d)|\}
\end{aligned}
$$

The graph of $g(d)$ is like the graph of the minus autocorrelation function translated vertically.

Sutton and Hall applied this textural measure in a pulmonary disease identification experiment using radiographic imagery and obtained identification accuracy in the 80 percentile range for discriminating between normal and abnormal lungs when using a 128×128 subimage.

III. 3 Digital Transform Methods and Texture

In the digital transform method of texture analysis, the digital image is typically divided into a set of non-overlapping small square subimages. Suppose the size of the subimage is $n \times n$ resolution cells, then the n^{2} grey tones in the subimage can be thought of as the n^{2} components of an n^{2}-dimensional vector. In the transform technique, each of these vectors is re-expressed in a new coordinate system. The Fourier Transform uses the sine-cosine basis set. The Hadamard Transform uses the Walsh function basis set, etc. The point to the transformation is that the basis vectors of the new coordinate system have an interpretation that relates to spatial frequency (sequency) and since frequency (sequency) is a close relative of texture, we see that such transformation can be useful.

Gramenopoulos (1973) used a transform technique using the sine-cosine basis vectors (and implemented it with the FFT algorithm) on ERTS imagery to investigate the power of texture and spatial pattern to do terrain type recognition. He used subimages of 32 by 32 resolution cells and found that on Phoenix, Arizona ERTS image 1940-17324-5 spatial frequencies larger than 3.5 cycles $/ \mathrm{km}$ and smaller than 5.9 cycles $/ \mathrm{km}$ contain most of the information needed to discriminate between terrain types. The terrain classes were: clouds, water, desert, farms, mountains, urban, riverbed, and cloud shadows. He achieved an overall identification accuracy of 87 percent.

Hornung and Smith (1973) have done work similar to Gramenopoulos but with aerial multispectral scanner imagery instead of ERTS imagery. Maurer (1974)
used Fourier series analysis on some color aerial film to obtain textural features to help determine crop types.

Kirvida and Johnson (1973) compared the fast Fourier, Hadamard, and Slant Transforms for textural features on ERTS imagery over Minnesota. They used 8×8 subimages and five categories: Hardwoods, Confiers, Open, Water, City. Using only spectral information, they obtained 74 percent correct identification accuracy. When they added textural information, they increased the identification accuracy to 99 percent. They found little difference between the different transform methods.

III.4 Spatial Grey Tone Dependence: Co-occurrence

One aspect of texture is concerned with the spatial distribution and spatial dependence among the grey tones in a local area. Darling (1968) used statistics obtained from the nearest neighbor grey tone transition matrix to measure this dependence for satellite images of clouds and was able to identify cloud types on the basis of their texture. Read and Jayaramamurthy (1972) divided an image into all possible (overlapping) subimages of reasonably small and fixed size and counted the frequency for all the distinct grey tone patterns. This is one step more general than Darling but one that requires too much memory if the grey tones can take on very many values. Haralick (1971) and Haralick et al. $(1972,1973)$ suggested an approach which is a compromise between the two. He measures the spatial dependence of grey tones in a co-occurrence matrix for each fixed distance and/or angular spatial relationship and uses statistics of the matrix as measures of image texture.

The co-occurrence matrix $P=\left(p_{i j}\right)$ has its $(i, j)^{\text {th }}$ entry $P_{i j}$ defined as the number of times grey tone i and grey tone j occur in resolution cells of a subimage having a specified spatial relation, such as distance 1 neighbors. The textural features for the subimage are obtainable from the co-occurrence matrix by measures such as

$$
\sum_{i} \sum_{j} P_{i j}^{2}, \sum_{i} \sum_{j} P_{i j} \log p_{i j}
$$

and

$$
\sum_{i} \sum_{j} \frac{P_{i j}}{1+|i-j|}
$$

Haralick et al. (1973) list 14 different kinds of measures.
Using statistics of the co-occurrence matrix, Haralick performed a number of identification experiments. On a set of aerial imagery and eight terrain classes (old residential, new residential, lake, swamp, marsh, urban, railroad yard, scrub or wooded), he obtained 82 percent correct identification with 64×64 subimages. On an ERTS Monterey Bay, California, image, he obtained 84 percent correct identification using 64×64 subimages and both spectral and textural features on seven terrain classes: coastal forest, woodlands, annual grasslands, urbán areas, large irrigated fields, small irrigated fields, and water. On a set of sandstone photomicrographs, he obtained 89 percent correct identification on five sandstone classes: Dexter-L, Dexter-H, St. Peter, Upper Muddy, Gaskel.

The wide class of images on which they found that grey tone co-occurrence carries much of the texture information is probably indicative of the power and generality of this approach.

111.5 A Textural Transform
 Each of the approaches described for the quantification of textural features

 had the common property that the textural features were computed for subimages of typical sizes such as $8 \times 8,16 \times 16,32 \times 32$, or 64×64 resolution cells. To determine the textural features for one pixel we would naturally center a subimage on the specified resolution cell and compute the textural features for the subimage. If we had to determine the textural features for each pixel in an image we would be in for a lot of computation work and would significantly increase the size of our data set. Thus, the usual approach has been to divide the image into mutually exclusive subimages and compute the textural features on the selected subimages. Unfortunately, this procedure produces textural features at a coarser resolution than the original image.In this section we generalize the grey tone co-occurrence textural feature extractor to the textural transform mode and show how by only doubling or tripling the computation time required to determine the grey tone co-occurrence matrix it is possible to produce a resolution perserving textural transform in which each pixel in the transformed image has textural information about its own neighborhood derived from both local and global grey tone co-occurrence in the image. This kind of textural transform is in the class of image dependent non-linear spatial filters.

Let $Z_{r} \times Z_{c}$ be the set of resolution cells of an image I (by row-column coordinates). Let G be the set of grey tones possible to appear on image I. Then I: $Z_{r} \times Z_{c} \rightarrow G$. Let R be a binary relation on $Z_{r} \times Z_{c}$ pairing together all those resolution cells in the desired spatial relation. The co-occurrence matrix $P, P: G \times G \rightarrow[0,1]$, for image I and binary relation R is defined by

$$
P(i, j)=\frac{\#\{((a, b),(c, d)) \in R \mid I(a, b)=i \text { and } I(c, d)=j\}}{\# R}
$$

The textural transform $J_{,} J: Z_{r} \times Z_{c}(-\infty, \infty)$, of inage I relative to function f, is defined by

$$
J(y, x)=\frac{1}{\# R(y, x)} \sum_{(a, b) \in R(y, x)} f[P(I(y, x), I(a, b))]
$$

Assuming f to be the identity function, the meaning of $J(y, x)$ is as follows. The set $R(y, x)$ is the set of all those resolution cells in $Z_{r} \times Z_{c}$ in the desired spatial relation to resolution cell (y, x). For any resolution cell $(a, b) \in R(y, x)$, $P(I(y, x), I(a, b))$ is the relative frequency by which the grey tone $I(y, x)$, appearing at resolution cell (y, x), and the grey tone $I(a, b)$, appearing at resolution cell (a, b), co-occur together in the desired spatial relation on the entire image. The sum

$$
\sum_{(a, b) \in R(y, x)} P(I(y, x), I(a, b))
$$

is just the sum of the relative frequencies of grey tone co-occurrence over all resolution cells in the specified relation to resolution cell (y, x). The factor $\frac{1}{\# R(y, x)}$, the reciprocal of the number of resolution cells in the desired spatial relation to (y, x) is just a normalizing factor.

Spatial enhancement processes can be implemented before or after the classification of the original images. One spatial averaging process which can be used before classification of the original image is rectangular convolution. A 2×2 rectangular convolution, for example, is the process that replaces the left upper resolution cell of each 2×2 window by the average of the grey tones in the 2×2 window. A 3×3 rectangular convolution replaces each grey tone with the average of the grey tones in a 3×3 window centered around it. The process of rectangular convolution can be implemented before or after texture transform. The window size for the rectangular convolution process can be as big as required.

Figure IV illustrates how the rectangular convolution can enhance the textural transform processed images. Notice that the rectangular region on the left lower corner is not easy to distinguish on the image with no rectangular convolution before or after texture transform, Figure Na , but it is distinguishable on Figure IVd, the image with 2×2 rectangular convolution before texture transform and no rectangular convolution after texture transform, as it is on Figures IVe to IVi. The two strips on the middle of the image are not easily distinguished on Figures IV a to IVf, but they are easily distinguished on Figure IV g, the image with 3×3 rectangular convolution before texture transform and no rectangular convolution after texture transform. They are also distinguishable on images IV h and IV i which have been processed with a 3×3 convolution after the textural transform. For distinguishing rectangular region and the two strips on the image, Figure IV i, the image with 3×3 rectangular convolution before and after texture transform seems best.

V

Spatial Post-Processing

Spatial post processing the classified image can be used to reduce image complexity and achieve some degree of spatial simplification and generalization. Two post processing techniques are region filling and shrinking. A region filling operation assigns an unassigned resolution cell to the caregory assignment of one of its neighboring resolution cells.

A resolution cell can be defined to have the four resolution cells above, below, to the left, and to the right of it as neighbors or to have those plus the resolution cells diagonally neighboring it as its neighbors. The first set of resolution cells is called its 4 -neighbors and the second set of resolution cells is called its 8 -neighbors. The concepts of 4 -neighboring and 8 -neighboring is illustrated in Figure V. 1.

A region filling operation which assigns an unlabeled resolution cell to the category assignment of one of its four nearest neighbors is called a 4-fill operation. A region filling operation which assigns an unlabeled resolution cell to the category assignment of one of its eight nearest neighbors is called an 8 -fill operation. A region filling operation which iterates first filling using 4 neighbors and then 8 neighbors then 4 then 8 etc., until all resolution cells are labeled, we shall for simplicity call region filling.

Figure V. 2 illustrates the advantage of region filling alternating between 4-neighbors or 8 -neighbors. A labeled resolution cell in an area of unlabeled resolution cells would grow as a diamond region under repetitive 4 -fill operations. It would grow as a square region under repetitive 8 -fill operations. And it would grow almost as a circle under repetitive 8 -fill and 4 -fill operations.

Region shrinking is the opposite kind of operation from region filling. A region shrinking operation assigns a labeled resolution to "unassigned" if its ne ighbors have different labels from it.

A region shrinking operation which assigns a labeled resolution cell to "unassigned" if k of its four nearest neighbors have labels which are different than its own label is called a $4-k$ shrink operation. A region shrinking operation which assigns a labeled resolution cell to "unassigned" if k of its eight nearest neighbors have labels which are different from its own label is called and $8-k$ shrink operation.

a
b

Figure V. 1 a illustrates the 4-neighborhood of a resolution cell and
Figure V.1b illustrates the 8-neighborhood of a resolution cell.

Figure V. 2 illustrates the effect of 4 and 8-filling or a single resolution cell.

In Figure V. 3 we illustrate the effect of the filling and shrinking operations on a classified image. Figure V. 3 a is a classified image. The black areas represent unassigned resolution cells. (The decision rule leaves unassigned those resolution cells having multispectral signatures which do not provide enough information to make a reliable assignment.) Figure V .3 b shows the classified image of Figure V .3 a after a complete region filling. Notice that after a complete region filling, all resolution cells have a label. Figure V .3 c shows the classified image of Figure V .3 a after a 4-0 shrink. Notice that it has more black area than the image in Figure V .3 a due to the effect of its relabeling labeled resolution cells to "unassigned".

Example showing that convex sets are regular

Figure 3 illustrates the relationship between set convexity and regularity

Of the 6 best spectral bands on edit \#6, .40- .44, . 588-. 643, .65.69, .72-.76,. 981 - 1.045, and 2.10-2.36 micrometers, the feature selection procedure selected band pairs . 40-. 44 and $.65-.60$ with $.40-.44$ and 2.102.36 micrometers as the best 2 band pairs for the table look-up rule. Figure VI. 1 shows the $.72-.76$ micrometer band and Figure VI. 2 shows the ground truth training data overlay on this band. The alpha-beta thresholds were set at .3 and .021. This threshold selection was too low for of the 159,500 points to be classified, 67,323 were reserved assignments because of incompatible assignments between the first and second band pairs and 6,928 were reserved assignment because there was more than one possible assignment common to the two band pairs. Figure VI .3 shows the resulting classification. The contingency table, Table $\mathrm{VI}_{0} 1$ shows an equally weighted misidentification error rate of 36% and equally weighted false identification error rate of 34%. The largest cause of the misidentification error was category 2.4 , immature poletimber loblolly pine, being assigned to category 1.3, immature sawtimber shortleaf pine, and category 2.6 , mature sawtimber loblolly pine being assigned to category 2.5 , immafure sawtimber loblolly pine anci being assigned to category 2.3 , seedling and sapling loblolly pine.

If the classified image is filled so that all resolution cells whose category assignment was reserved is assigned to the category of its spatially nearest resolution cell neighbor which is assigned, the error rate remains substantially the same, about a 36% misidentification and false identification error rate (Figure VI. 4 and Table V1.2). This implies that for those resolution cells whose assignment was reserved because of the low probability of cortct assianment, category assignments, almost as good as those originally assigned, can be made using the spatial information carried by the initially classified image with the reserved decisions.

Perhaps what is even more surprising about the amount of spatial information the classified image has is that by performing spatial operations on it, the classification accuracy can increase. For example, if the completely fi!!ed image is shrunk for one iteration with a simple 4 -shrink operutor and then filled up again, Table VI. 3 shows an accuracy increase: 33% misidentification error rate and 35% false identification error rate. Comparable results are also obtained by using the initially classified image with reserved decisions and performing a 4 -fill iteration followed
by an 8-fill iteration followed by a 4-shrink iteration and then completely filled (Figure VI. 5 and Table VI。4)。

The best (percentage wise) 2 band pair results came from starting with the initially classified image with reserved decisions and doing a 4 -fill, an 8-fill, a 4 -shrink, an 8-shrink, and then a complete filling up. This yields a 31% misidentification error rate and 7\% false identification error rate (Table VI. 5 and Figure VI.6). Notice, however, that all the points in category 2.4, poletimber immature loblolly, have been misidentified as category 1.3 , sawtimber immature shortleaf pine, and all the points in category 2.6, mature sawtimber loblolly pine, have been misidentified as categories $1.3,2.3$ and 2.5. Furthermore, no points were assigned to categories 2.4 and 2.6 . This suggests that the tree stands in those areas of immature loblolly and mature sawtimber loblolly pine had a substantial number of trees spectrally similar to those in categories 1.3,2.3, and 2.5. Areas predominantely in categories 2.4 and 2.6 would have some resolution cells initially assigned to categories 2.4 and 2.6 plus wrong assignments to categories $1.3,2.3$, or 2.5 . Hence, a context sensitive shrinking operation on the 4 -fill and 8 -fill image which would leave alone any resolution cell assigned to category 2.4 if it neighbors a resolution cell of category 1.3 and which would leave alone any resolution cell assigned to category 2.6 if it neighbors a resolution cell of category $1.3,2.3$ or 2.5 has the possibility of permitting a higher probability of correct identification.

If instead of doing only one 4 -shrink then 8 -shrink iterations, two such iterations are made before a complete filling, then the results are not quite as good: 34% misidentification error rate and 6% false identification error rate. (Table VI.6).

The use of additional spectral bands can sometimes increase identification accuracy. In the case of the edit \#6 data, this did not seem to be the case. The three best band pairs were:
(1) . $40-.44$ and $.65-.69$ micrometers
(2) . $40-.44$ and 2.10-2.36 micrometers
(3) . $72-.76$ and $.981-1.045$ micrometers

The alpha-beta thresholds were set at .6 and .042 , respectively. The resulting number of reserved decisions due to no common category assignment was 51,794
and the number of reserved decisions due to more than one possible category assignment was 19,706 (Figure VI . 7 and Table VI .7)。Higher thresholds would have been better.

After a complete filling, there was a 34% misidentification and 33% false identification error rate (Figure VI. 8 and Table VI.8). If the completely filled image had a 4 -shrink operation and then another complete filling, the misidentification error rate improved to 31% and false identification error rate improved to 16% (Figure VI. 9 and Table VI.9). If before the complete filling is done an iteration of a 4 -fill followed by an 8-fill and a 4 -shrink followed by an 8-shrink is done, the misidentification error rate improves to 30% and the false identification error rate improves to 5%, the best 3-band pair result (Figure VI. 10 and Table VI.10). As in the two band pair case, doing two iterations of the 4-shrink followed by the 8 -shrink instead of one iteration, does not provide as much improvement: a 36% misidentification error rate and a 6% false identification error rate (Table $\mathrm{VI}_{.} 11$). The best 3 band pair result confused the same categories as the best 2 band pair result. Category 2.4, poletimber immature loblolly was assigned as category 1.3 , immature shortleaf pine. Category 2.6 , mature sawtimber loblolly pine was assigned to categories 2.3 and 2.5 , seedling and sapling loblolly and sawtimber immature loblolly pine.

Figure VI. 1 The . 72 - . 76 micrometer band

Figure VI. 2 The ground truth training data overlayed on the . 72 - . 76 micrometer band.

Figure VI. 3 The classification of the best two band pairs for alphabeta thresholds of .3 and .021 .

Figure V1. 4 The classified image of Figure VI. 3 after a complete filling.

CONTINGENCY TABLE FOR SAMH2IGOT - 1 SAMH2BBOI - 1 SCALE. FACTOR 10*P_ O_

Table VI. 1 The contingency table of the best 2 band pairs for alphabeta thresholds of .3 and .021 .

COMTINGFNCY TABLE FOR SAMH2 GDT - 1 SMH2F7RO1-1 SCALE FACTOR 10** 0

Table VI. 2 The contingency table of the best 2 band pairs after a complete filling.

rnıilidg．		COL	－$=\Lambda . S$	SICA C		ROW ：	TRIIE	CAT			
β	OEC	1.3	1.4	$2 \cdot 3$	$2 \cdot 4$	2.5	2.6	7.2	TOTAL	ERR	ERR
	）	26835	22575	340169	837	275.55	52°	17449	130425	0	0
1\％2	0	6 ¢人 5	68	49	109	0	n	53	6956	891	13
1．4	0	$?$	2499	97	0	72	n	0	2670	171	6
？． 3	\cdots	\bigcirc	\because	7571	6	159	n	－ 0	7727	156	2
$\therefore .4$	＇，	555	6	11	57	0	n	0	679	572	91
$\therefore 5$	\cap	374	211	37.3	45	3314	－	0	4034	720	18
？－6	\because	16ち	＂	586	0	682	\cdots	0	1434	1434	100
7.2	n	55	10%	0	0	0	\cdots	5470	5625	155	3
YTTAL	0	345° ？	25880	43285	1054	31773	532	22977	159500	4009	33
FE\％	9	$11\ulcorner 2$	e？6	1.66	160	904	\wedge	53	4099	＊＊＊＊＊	＊＊＊＊＊
Fワ7	n	19	74	17	74	71	100	1	35	＊＊＊＊＊	＊＊＊＊＊

Table VI． 3 The contingency table of the best 2 bariu pairs after complete filling，4－shrink，and complete filling operations．

Table VI． 4 The contingency table of the best 2 band pairs after 4 －fill， 8 －fill， 4 －shrink，and complete filling operations．

Figure VI. 5 The classified image of Figure VI. 3 after 4-fill, 8-fill, 4-shrink, and then complete filling operations.

Figure VI. 6 The classified image of Figure VI. 3 after 4-fill, 8-fill, 4-shrink, 8-shrink, and then complete filling operations.

CCL. ASSIGN CAT ROW = TRIIE CAT

R	R OFC	$1 \cdot 3$	1.4	7.3	2.4	2.5	2.6	7.2	TOTAL	FRR	ERR
'raprit!	$\stackrel{ }{ }$	2775	21575	35747	0	7.7636	n	18607	130425	0	0
1.:	,	6551	4.6	- 1	0	0	0	0	6956	456	6
1.4	(1)	\%	2499	70	0	101	0	0	2670	171	6
2.7	1	1	,	7727	0	0	0	0	7727	0	0
?.4	$\stackrel{\square}{ }$	629	0	0	0	0	0	0	629	$6<9$	100
2. 5	$1:$	351	n	72	0	3611	n	0	4034	423	10
?. K	r.	572	0	303	0	608	n	0	14.34	14:4	100
7.2	$\stackrel{ }{ }$	n	17	\bigcirc	0	0	0	5613	5675	12	0
TSTAL	,	353 の7	24517	42514	0	31956	n	24215	159500	3075	31
FİR	:	1503	418	445	0	709	0	0	3075	*****	*****
FRR	?	19	14	5	0	16	0	0	7	*****	*****

Table V1. 5 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

Table VI. 6 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.

Figure VI. 7 The classification of the three best band pairs for alphabeta thresholds of . 6 and . 042 .

Figure VI. 8 The classified image of Figure VI. 7 after a complete filling.

```
    CONTINGENCY TABLE FOR SAMHZIGDI - 1 SAMH2BBOZ - 1. SCALE FACTOR 10首_O
```

COL. \quad ASSIGN CAT_ROW_TRUE CAI								
R DEC	$1 \cdot 3$	1.4	$2 \cdot 3$	$2 \cdot 4$	2.5	2.6 7.2	TOTAL ERF!	ERR
UNKWNG0679	15894	. 9302	. 14353	3.90	15106	$4988 \quad 2713$	$130425 \ldots$	0
1.32903	3387	113	. 74	66	157	117.139	6956 666	16
1.4 751)	34	1807	7	0	43	$22 \ldots 7$	- $2670-111$	-6
2.3 2541	139	7	4521	2	339	137 41	7727665	13
2.4311	217	13	4	23	- 31	$21-9$	629_29!.	93
2.5 1879	260	20	84	3.	1535	246	$4034 \quad 621$	29
2.6 . 754	137	6	83	2	290	152_10	1434-5201	78
7.21683	115	119	47	2	17	- 5 - 3653	5625 281)	7
TOTALT1500	20183	11387	19173	488	17502	568A 13579	$\underline{159500 \ldots 3176}$	**** 34
ERR 0	902	278	299	75	861	548 213	$3176 * * * 4$	*****
ERR : 0	21	13	\ldots	77	36	78.6		* \# \% \# \#

Table VI. 7 The contingency table of the best 3 band pairs for alpha beta thresholds of .6 and .042 .

Table VI. 8 The contingency table of the best 3 band pairs after a complete filling.

Figure VI. 9 The classified image of Figure VI. 8 after a 4-shrink operation and then a complete filling.

Figure VI. 10 The classified image of Figure VI. 7 after 4-fill, 8-fill, 4-shrink, 8-shrink and complete filling operations.

Table VI. 9 The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.

Table VI. 10 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

Table VI. 11 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8 -shrink, 4 -shrink, 8 -shrink and complete filling operations.

Using the same initial six spectral bands to select features from, the feature selector chose band pairs . $40-.44$ and $.65-.69$ with $.72-.76$ and . 981 - 1.045 micrometers as the best 2 band pairs for the table look-up rule. Figure VII. 1 shows the .72 - . 76 micrometer band and Figure VII .2 shows the ground truth training data overlayed on this band. The alpha-beta thresholds were set at . 3 and . 021 .

The contingency table (Table VII_{\circ}) for the best 2 band pairs classification with an alpha threshold of .3 and a beta threshold of .021 gave a misidentification error rate of 22% and a false identification error rate of 32%. There were 79,670 reserved assignments because of incompatible assignments between the first and second band pairs and 2,357 were reserved assignments because there was more than one possible assignment common to the two band pairs. The raw classified image is shown in Figure VII.3. The main cause of error is the confusion between category 1.3 , shortleaf pine, and category 2.5 , loblolly pine. This error is due to assigning category 1.3 when the true category is 2.5. A look at the timber stand map for edit ${ }^{\#} 9$ shows a patch of category 2.5 , which is surrounded by category 1.3, in the lower right-hand corner. It is this area that gets misassigned the most.

If the classified image is filled so that all resolution cells whose category assignment was reserved is assigned to the category of its spatially nearest resolution cell neighbor which is assigned, the error rate remains substantially the same, about a 25% misidentification error rate and 32% false identification error rate (Figure VII. 4 and Table VII.2) If we do 6 iterations of 4 -fills and then do a 4 -shrink and fill up, the resulting contingency table is Table VII . 3. The misidentification and false identification error rates of 21% and 26% are lower than before, but the misidentification error rate category 2.5 went from 43% to 44% with category 1.3 still the problem.

The best 2 band pair results were obtained from doing a 4-shrink following the original classification and then filling (Figure VII.5). Table VII. 4 shows a misidentification error rate of 14% and a false identification error rate of 17%, but still the misidentification of category 2.5 is the main cause of error. The
shrinking first does eliminate a significant amount of error between category 3.1, laurel oak, and category 4.2, low quality sweetgum. Neither procedure has trouble classifying category 2.5 on the left-side of the timber stand. Only on the right side where category 2.5 resembles category 1.3 spectrally is there confusion. This confusion could be ultimately due to sun angle.

The three best band pairs were:
(1) . $40-.44$ and $.65-.69$ micrometers
(2) . $72-.76$ and $.981-1.045$ micrometers
(3) . 40-. 44 and 2.10-2.36 micrometers

Figure VII. 6 shows a plot of the alpha threshold versus the number of reserved decisions. For the three best band pairs, the alpha and beta thresholds that minimized the number of reserved decisions was 6 and .042, respectively. The raw classified image is shown in Figure VII.7. The contingency table indicates a misidentification error of 24% and a false identification error of 30\% (Table VII.5).

After a complete filling, there was a 25% misidentification and 32% false identification error rate (Figure VII. 8 and Table VII.6). If instead, our post processing consisted of a 4-fill, 8-fill, 4-shrink, 8-shrink and then a complete filling the misidentification error rate was 9% and the false identification error rate was 9% (Table VII. 7 and Figure VII.9).

Figure VII. 1 The . 72 - . 76 micrometer band.

Figure VII. 2 The ground iruth training data overlayed on the . 72 - . 76 micrometer band.

Table VII. 1 The contingency table of the best 2 band pairs for alphabeta thresholds of .3 and . 021 .

CONTINGENOY TAELE FOR SAMHS GOT - 1 SMHSF1CT1-1 SCALE FACTOR 1O** 0

COL = ASSIGN CAT RUW = TRUE CAT

	R UEC	1. 3	2. 3	2. 5	2. 6	3. 1	4. 2	7. 2	TOTAL	\#ERR	\% ERR
LNKWN	0	26123	5502	21805	20888	8814	13025	20021	116183	0	0
1. 3	0	8197	236	164	69	0	0	19	86:5	485	6
2. 3	0	50	759	6	19	0	6	55	925	136	15
2. 5	0	3657	471	6072	1257	21	167	34	11679	5607	48
2.6	0	44	83	511	1621	88	215	75	2645	1024	39
3.1	0	0	0	6	97	1185	174	65	1527	342	22
4.2	0	0	0	61	99	393	1121	27	1701	550	34
7. 2	0	0	6	0	42	16	87	1054	1205	151	13
TOTAL	0	33076	7087	286:25	24092	10525	14795	21350	144550	5323	25
\#ERR	0	3751	796	748	1583	526	649	275	8325	*****	*****
\% ERR	0	31	50	11	49	31	37	21	32	*****	*****

Table VII. 2 The contingency table of the best 2 band pairs after a complete filling.

Figure VII. 3 The classification of the best two band pairs for alpha beta thresholds of .3 and .021 .

Figure VII. 4 The classified image of Figure VII. 3 after a complete
filling.

Table VII. 3 The contingency table of the best 2 band pairs after complete filling, 4-shrink, and complete filling operations.
 1 COL. $=A S S I G N C A I \quad$ ROW $=$ IRUE CAT

	R DEC 1.3	$2 \cdot 3$	2.5	2.6	3.1	4.2	$7 \cdot 2$	TOTAL	FRII	ERR
-uiknild	U 28258	3222	22459	12124	8025	11277	22118	116183	-)	0
1.7	U 8679	41	15	0	0	0	0	8685	51	1
-2.3	$0 . \quad 22$	9\%:)	0	0	n	13	9.25	43	5
2.5	(4353	227	6781	209	0	n	9	11679	4893	42
-2.6	0 O 0	82	476	1252	42	77	2	2645	682	26
3.1	00	0	0	0	1360	105	62	1577	167	11
-4.2	$0 \quad 0$	0	31	22	196	145?	0	1701	24.7	15
7.7		U	0	6	0	35	1164	1275	41	3
IOTAL	641285	4462	29762	21420	9623	12045	24368	144550	6122	14
ERR	$\checkmark 4382$	357	522	337	238	217	86	6139	*****	*****
ERR	$0 \quad 34$	29	7	15	15	17	7	17	*****	*****

Table VII. 4 The contingency table of the best 2 band pairs after 4-shrink, and complete filling operations.

$$
\begin{aligned}
& R A L D P A G E I S \\
& O O R Z U L I T Y I
\end{aligned}
$$

Figure VII. 5 The classified image of Figure VII. 3 after 4-shrink and complete filling operations.

Figure VII. 6 A plot of the alpha thresholds versus number of reserved decisions
CONTINGENEY TAELE FUR SAMHS GUT - 1 SMHBF1EO4-1 SCALE FACTOR 10** 0
COL. $=$ ASSIGN CAT ROW $=$ TRUE CAT
R DEC 1.3
2. 3
2. 5
2. 6
3. 1
4. 2
7. 2
TOTAL
\#ERR
\% ERR
UINKWN

1. 3
2. 3
024710
The contingency table of the best 3 band pairs for alpha beta thresholds of .6 and .042 .

2. 5	0	3293	332	67.00	1001	16	267	40	11679	4047	42
2. 6	0	16	78	566	1532	130	268	54	2645	1113	42

3.1	0	0	0	29	78	1137	229	54	1527	390	26
4.2	0	0	6	59	86	278	1226	46	1701	475	29
7.2	0	0	12	0	29	60	33	1071	1205	134	11
TQTAL	0	36191	6354	31196	25308	11944	13045	19612	144550	7673	25

$\begin{array}{llllllllllll}\times & \text { ERR } & 0 & 30 & 45 & 14 & 47 & 30 & 39 & 21 & 32\end{array}$
Table VII. 6 The contingency table of the best 3 band pairs after a complete
filling.

Figure VII. 7 The classification of the three best band pairs for alpha beta thresholds of .6 and .042 .

Figure VII. 8 The classified image of Figure VII. 7 after a complete filling.

```
CONTIMGEN:Y TAELE FOF GAMH3 GET - 1 SMHSF7EO4 - 1 SCALE FACTOR 1O** O
```

COL = ASSIGN CAT ROW = TFILE CAT

	R DEC	1. 3	2. 3	2. 5	2. 6	3. 1	4. 2	7. 2	TOTAL	\#ERR	\% ERR
UNKWN	0	30218	2169	21290	17317	8203	10275	26702	116183	0	0
1. 3	0	8885	0	0	0	\bigcirc	0	0	8685	0	0
2. 3	0	0	925	0	0	0	0	0	925	0	0
2. 5	0	4459	0	6906	0	0	0	234	11679	4773	41
2.6	0	0	0	531	2039	0	7	68	2645	606	23
3.1	0	0	0	0	0	1521	0	6	1527	6	0
4. 2	0	0	0	0	0	0	1701	\bigcirc	1701	0	0
7.2	0	0	0	0	0	0	0	1205	1205	0	0
YOTAL	0	43392	3094	23736	19356	9724	11983	23265	144550	5335	9
*ERR	0	4489	0	531	0	0	7	353	5355	*****	*****
\% ERR	0	34	0	7	0	0	0	23	9	*****	\#\#***

Table VII. 7 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.

Figure VII. 9 The classified image of Figure VII. 7 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

The same six spectral bands were chosen from edit ${ }^{\#} 14$ as were taken from edit \#6 and edit \#9. Figure VIII. 1 shows the . 72 - . 76 micrometer band for edit 14 and Figure VIII. 2 shows the selected ground truth training data. The selection procedure chose . 40-. 44 and 2.10-2.36 with . 588-. 643 and 2.10-2.36 micrometers as the best 2 band pairs for the table look-up rule. The alpha and beta thresholds were set at .3 and .021 respectively. The thresholds were too low and resulted in 56,320 reserved decisions in the contingency table for classification (Table VIII.1). The resulting misidentification error rate was 28% and false identification error rate was 29%. The result on the best 2 band pairs with 4 -fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations (Table VIII.2), was a misidentification error rate of 15% and a false identification error rate of 17%.

The feature selection procedure chose band pairs . $40-.44$ and $.65-.69$ micrometers, along with the best 2 band pairs for the best 3 band pairs. Using alpha and beta thresholds of .6 and .042 , respectively, the number of reserved decisions was 43,236 , with 25,794 points reserved because no assignment was possible and 17,442 reserved due to possible multiple assignments.

The largest cause of error for best 3 band pairs (Table VIII.3) was the confusion between categories 2.3 and 2.5, different ages of loblolly pine, and the confusion of each of these with category 4.1, low quality sweetgum. The misidentification and false identification error rates (46% and 48%) for category 4.1 are high but the number of points whose true category is 4.1 is small. Figure VIII. 3 shows the resulting classification. There was such a small area of swe etgum, category 4.1, on the timber stand map that the ground truth may not be adequate to allow good spectral estimation.

The first post processing procedure we used was a complete filling (Table VIII. 4 and Figure VIII.4). The errors were increased by the procedure, so one 4 -shrink operation was performed on the image and this reduced the misidentification error to 9% and false identification error to 4% (Table VIII. 5 and Figure VIII. 5), but the low error rates were helped by the fact that there were 84,828 reserved decisions. Table VIII. 5 does show that the confusion with category 4.1 , was almost eliminated, though the misidentification error rate caused by assigning
2.3 to $2.5,21 \%$ was still high．Completely filling the image resulted in a mis－ identification error rate of 17% and false identification error rate of 13%（Table VIII． 6 and Figure VIII．6）．

If on the raw classified image we do one 4 －fill（Table VIII． 7 and Figure VIII．7）and then one 8－fill，the resulting contingency table（Table VIII ． 8 and Figure VIII ．8）is almost identical to Table VIII。3．The error rates on each are exactly the same．Then doing a 4－shrink（Table VIII． 9 and Figure VIII 9 ）we find a contingency table almost identical to Table VIII．4。 But if instead of filling we do an 8－shrink，we almost totally eliminate error（Table VIII。 10 and Figure VIII，10）．Only 2 points are incorrectly identified．Now if we completely fill the image we get our best results（Table VIII． 11 and Figure VIII．11）：13\％ misidentification and 9% false identification error rates．Visual comparisons show the closeness of the two operations．Following the fills with a 4－shrink produces Figure VIII ．5．Figure VIII 6 is the final classified image after complete filling，a 4 －shrink and then a complete filling，while Figure VIII。11 is the final result of a 4 －fill， 8 －fill， 4 －shrink， 8 －shrink，and complete filling．From the figures，we can see that the extra shrink allowed the categories to be more dense． The contingency table of the image should show better results since the categories on the timber stand map tend to be dense，which is the case．

The results of the shrinking operations indicate that the errors that did occur were sparse enough to be wiped out with the shrinking．The reason that a shrink operation is not performed first on the image is that it tends to eliminate small area categories，even though correctly assigned，on the image．

Figure VIII. 1 The . $72-.76$ micrometer band.

Figure VIII. 2 The ground truth training data overlayed on the . 72 - . 76 micrometer band.

```
        CONTINGFACY TABLE FOR SA:IH4 GNT - 1 SAMH4 ROS - 1 SCAIEE FACTOR 1OE: O
            COL. ASSICANCAT ROW= TRIIE CAT
        ROFS2.2 2.5 4.1 7.2 TOTAL FRP FRR SN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 19.18 & 893 & 8.418 & 19856 & 13565 & 29402 & 123134 & \(\cdots\) & 0 & 0 \\
\hline 2.7 & 1759 & 1553 & 739 & 515 & 209 & 4975 & 1462 & 49 & 0 \\
\hline 7.5 & 958 & 196 & 3567 & 193 & 6,4 & 4978 & \(45 \%\) & 11 & 0 \\
\hline 4.1 & 765 & 23.3 & 147 & 594 & 10 & 1749 & 39 n & 40 & 0 \\
\hline 7.7 & 745 & 81 & 158 & 75 & 1855 & 2914 & 314 & 14 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Tntals & & 10481 & 24467 & 14942 & 31540 & 137750 & 2620 & 28 & 0 \\
\hline FPR & \(\bigcirc\) & 510 & 1044 & 787 & 283 & 2670 & ***** & ***** & ***** \\
\hline FPR & 0 & 25 & 23 & 57 & 13 & 29 &  & **** & ***** \\
\hline
\end{tabular}
```

Table VIII. 1 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and . 021 .

CONTINGFNEY TABLE FOR SAMHICGDT - 1 SMHAF5BO5-1 SCALE FACTOR 10 - 0
COL = ASSIGN CAT ROW = TRII CAT
R DFK 2.3 2.5 2.1 TOTAL FRR ERR SD

UHKNN	0	6857	4.1525	18750	56002	123134	\bigcirc	0	0
$2 \cdot 3$	4	268 U	1234	1061	0	4975	2295	46	0
2. 5	6	13 i	4848	1	0	4978	130	3	0
4.1	U	5	128	1621	0	1749	128	7	0
7.2	0	0	195	1	2719	2914	195	7	0
TOTAL	1	9667	47936	21432	58721	137750	2748	15	0
ERR	11	130	1557	1461	0	2748	*****	*****	
ERR	0	5	24	40	0	17.	*****	*****	*****

Table VIII. 2 The contingency table of the best 2 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

CONTINGENCY TABLE FOR SAMHA GDT - 1 SAMHA BOG-1 SCALE FACTOR 1O** O

Table VIII. 3 The contingency table of the best 3 band pairs for alpha beta thresholds of .6 and .042 .

Table VIII. 4 The contingency table of the best 3 band pairs after a complete filling.

Figure VIII. 3 The classification of the three best band pairs for alphabeta thresholds of .6 and .042 .

Figure VIII. 4 The classified image of Figure VIII. 3 after a complete filling.

		POL. = ASSIGN CAT				RO: $=$	TRIP.	CAT	
	R DFC	?.7	7.5	4.1	7.2	TOTAL	FRD	ERR	SD
\cdots	75944	274.4	12650	3200	78497	123134	\wedge	0	0
7.3	4095	637	119	6	58	4975	182	21	0
7.9	1977	10	2994	4	3	4978	17	1	0
4.1	1421	29	10	289	0	1749	30	12	0
7.7	1391	10	35	0	1478	2914	45	3	0
Tnr	84878	7400	15708	3508	30036	137750	284	9	0
rn	n	49	18.4	10	G 1	284	*****	***	**
	0	7	5	1	4	4	****	***	***

Table VIII. 5 The contingency table of the best 3 band pairs after complete filling and 4-shrink operations.

Table VIII. 6 The contingency table of the best 3 band pairs after complete filling, 4-shrink, and complete filling operations.

Figure VIII. 5 The classified image of Figure VIII. 4 after a 4-shrink operation.

Figure VIII. 6 The classified image of Figure VIII. 5 after a complete filling.
CCL. = ASSIÚN CAT ROW = TRIE CAT
R DFC 2.2 2.5 4.1 7.7 TOTAL ERR ERR SD

1?:Ywn	2375	$233 \cdot 2$	31470	16785	49202	123134	0	0
7.7	23	2821	1111	573	447	4975	2131	43
7.5	19	495	4716	154	94	4978	742	15
4.1	16	5,2	258	747	31	1742	791	46
7.7	6	363	289	55	2201	2914	707	24
TgTAL	2439	2748?	37744	18500	51975	137750	4377	32
FRR	$1 \cdot$	$136{ }^{\circ}$	1658	79?	57 ?	437 ?	*****	***
FPR	1	33	28	45	21	31	*****	***

Table VIII. 7 The contingency table of the best 3 band pairs after a 4-fill operation.
CONTINGFNCY TABLE FOR SAMH4 GDT - 1 SMH4F4B06-1 SCALE FACTOR 10** 0
COL. = ASSIGN CAT ROW = TRIIE CAT
R DEC 2.3 2.5 4.1 7.2 TOTAL FRR ERR SC

Table VIII. 8 The contingency table of the best 3 band pairs after 4-fill, and 8 -fill operations.

Figure VIII. 7 The classified image of Figure VIII. 3 after a 4-fill operation.

Figure VIII. 8 The classified image of Figure VIII. 3 after 4-fill and 8 -fill operations.

```
        CONTINGF:ISY TAPLF FOK SA:YHG GOT - 1 SMH4C3ROG - 1 SCA'.E FACTOR 1O** O
            COL. = ASSIGNCAT ROW= TRIIE CAT
                        R DFC 2.3 2.5 4.1 7.2 TOTAL ERR ERR SD
\begin{tabular}{rrrrrrrrr}
\(11!\times 4 N 76121\) & 2744 & 12647 & 3259 & 28362 & 123134 & 0 & 0 & 0 \\
2.3 & 4095 & 697 & 119 & 6 & 58 & 4975 & 187 & 21 \\
2.5 & 1977 & 11 & 2984 & 4 & 3 & 4978 & 17 & 1 \\
4.1 & 1421 & 79 & 10 & 289 & 0 & 1749 & 30 & 12 \\
7.2 & 1391 & 10 & 35 & 0 & 1478 & 2914 & 45 & 0 \\
0
\end{tabular}
```


Table VIII. $9 \begin{aligned} & \text { The contingency table of the best } 3 \text { band pairs after 4-fill, } \\ & \text { 8-fill and 4-shrink operations. }\end{aligned}$

1':KWM*****	65	3448	567	13030	123134	n	0	0
2.9 4967	8	1	0	0	4975	n	0	0
$2.5 \quad 3708$	0	1270	0	0	4978	0	0	0
4.11737	\bigcirc	0	12	0	1749	0	0	0
7.2 227	0	2	0	642	2914	?	0	0
TOTAL*****	73	4720	574	13672	137750	?	0	0
FRR 0	0	2	ก	0	2	*****		
FRR O	0	0	n	0	0	*****		

Table VIII. 10 The contingency table of the best 3 band pairs after 4-fill, 8 -fill, 4 -shrink, and 8 -shrink operations.

Figure VIII. 9 The classified image of Figure VIII. 3 after 4-fill, 8-fill, and 4-shrink operations.

Figure VIII. 10 The classified image of Figure VIII. 3 after 4-fill, 8-fill, 4-shrink and 8-shrink operations.

[^0]IX Spectral Analysis: Edit 3
As with the other edits, the same 6 spectral bands were chosen, . 40-. 44, . 588 - . 643, . $65-.69, .72-.76, .981-1.045$, and 2.10-2.36 micrometers. Figure IX. 1 shows the .72 - . 76 micrometer band of edit 3 and Figure IX 2 shows the selected ground truth training data.

The feature extractor chose bands . 40-. 44 and $.588-.643$ with $.588-$.643 and $.65-.69$ micrometers as the best 2 band pairs. To minimize the total number of reserved decisions and to try and equalize the number of reserved decisions due to more than one assignment and no assignment, classification for the two best band pairs was done using a variety of alpha and beta thresholds. Figure IX. 3 is a graph of the thresholds versus the number of reserved decisions.

Table IX. 1 is the contingency table for best 2 band pairs with .3 and .021 alpha and beta thresholds, respectively. The resulting error rates of 36% misidentification and 38% false identification are better than the corresponding error rates of 37% and 41% for the classification with alpha, beta thresholds of .4, . 028 (Table IX.2) and the corresponding error rates of 37% and 40% for the classification with alpha, beta thresholds of .5, . 035 (Table IX.3). But the total number of reserved decisions for the .3 and .021 thresholds is 47,749. This is the highest number of reserved decisions and the lower error rates could be caused by lack of assignments. In this case, the fill operations would tend to propagate the error. Therefore, we chose .5 and .035 thresholds to work with. The raw classified image was post processed with 4-fill, 8-fill, 4 -shrink, 8 -shrink and complete filling operations. The resulting contingency table (Table IX.4) indicates an 18% misidentification error and 27% false identification error. The major confusion was poletimber immature shortleaf pine being classified as sawtimber immature shortleaf pine or poletimber immature loblolly pine.

The three best band pairs consisted of the fwo best band pairs plus band pair . $40-.44$ and $.65-.69$ micrometers. To minimize the total number of reserved decisions and to try to equalize the two causes for reserved decisions, classification was done for the three best band pairs using a variety of alpha beta thresholds. The resulting graph (Figure IX.4) indicates good alpha beta thresholds

[^1]are .5 and .035 . Contingency table (Table IX. 5) shows a 34% misidentification rate and 38% false identification rate with 48,475 reserved decisions. Figure IX. 5 shows the resulting classification. Category 1.2 was the largest cause of error. It was confused with category 1.3, sawtimber immature shortleaf pine and categories 2.4 and 2.6, two kinds of loblolly pine.

A 4-fill and an 8-fill operation reduces the misidentification error rate but propagates the false identification error rate (Table IX. 6 and Figure IX.6). Doing a 4-shrink reduces the error rates to 18% and 23% for misidentification and false identification. This is as expected since fewer assignments are made to spatially uncertain categories but the misidentification error rate for category 2.1 was not reduced (Table IX. 7 and Figure IX.7). The final 8-shrink and then fill all the way up results in a misidentification error rate of 14% and a false identification error rate of 25% (Table IX. 8 and Figure IX.8). Most of the error is due to category 1.2 being confused with categories $1.3,2.4$, and 2.6. Thus, category 1.2 has a misidentification error rate of 60% compared to 6% for the next most highly confused category. Most of the confusion is between subclasses in the same class rather than between classes. Contingency table IX. 9 shows the resulting classification when categories 1.2 and 1.3 are combined and categories 2.4 and 2.6 are combined. The misidentification error rate is 10% and the false identification error rate is 14%.

Figure IX. 1 The . $72-.76$ micrometer band.

Figure IX. 2 The ground truth training data overlayed on the .72-.76 micrometer band.

Figure IX. 3 Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs, spectral only for edit \#3

Table IX. 1 The contingency table of the best 2 band pairs for alpha beta thresholds of . 3 and . 021 .

Table IX. 2 The contingency table of the best 2 band pairs for alpha beta thresholds of .4 and .028 .

Table IX. 3 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and $=035$.

UNKWH	0	11586	8018	25376	3425	21950	70355	0	0	0
1. 2	0	6041	2853	1727	612	835	12088	6027	50	0
1. 3	0	44	1760	59	0	0	1863	103	6	0
2. 4	0	0	0	9476	0	496	9972	496	5	0
2. 6	0	968	0	269	4632	536	6405	1773	28	0
7.1	0	0	0	124	0	4045	4169	124	3	0
TOTAL	0	18639	12631	37031	8869	27862	104832	8523	18	0
\# EFR	0	1012	2853	2179	612	1867	8523	*****	****	****
\% EFR	0	14	62	19	12	32	27	*****	*****	****

Table IX. 4 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 after a complete filling.

Figure IX. 4 Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs, spectral only for edit \#3


```
        MML. = AraIr** CAT ROB: = TRUF CAT
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 7.1347 & & 71 & \(1 / 6{ }_{6}\) & 77 & 7597 & 4960 & 228 & 6 & 0 \\
\hline －TAL43476． & 7ram & 9119 & 19\％\％ & 11315 & 17056 & 104832 & 73ヵ4 & 34 & 0 \\
\hline 「ッ＊ & 35 & 7：57 & 741\％ & 16：5 & \(8{ }^{\text {Pr }}\) & 7264 & ＊＊＊＊ & ＊＊＊＊＊ & ＊＊女＊＊ \\
\hline rip & 1 A & 75 & 37 & 45 & 18 & 3 p & ＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊＊ \\
\hline
\end{tabular}
```

Table IX． 5 The contingency table of the best 3 band pairs for alpha－ beta thresholds of .5 and .035 ．

	COL．\quad ASSIGN CAT					RCIW	TRUE	CAT		
	R DEC	8． 2	1． 3	2． 4	2． 6	7.1	TOTAL	\＃ERR	\％ERR	$x \mathrm{sb}$
UNKWN	400	6172	11323	25736	15022	11702	70355	0	0	0
1． 2	36	3689	3275	2503	1943	602	12088	8343	69	0
1． 3	0	265	1267	169	160	2	1863	596	32	1
2． 4	0	90	1032	7227	1166	457	9972	2745	28	0
2． 6	0	259	147 ．	1921	3916	162	6405	2489	39	0
7.1	0	0	36	247	132	3754	4169	415	10	0
TOTAL	436	10475	17100	37803	22339	16679	104832	14588	35	0
\＃ERR	0	614	4510	4840	3401	1223	14588	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊
\％ERR	0	14	78	40	46	25	40	＊＊\＃\＃	＊＊＊＊＊	为为为

Table IX． 6 The contingency table of the best 3 band pairs after 4－fill and 8－fill operations．

Figure IX. 5 The classification of the three best band pairs for alpha beta thresholds of .5 and .035 .

Figure IX. 6 The classified image of Figure IX. 5 after 4-fill and 8-fill operations.

```
    CONTINGENCY TABLE FOR SAMHI ODT - 1 SMHISIBO2 - 1 SCALE FACTOR 1O** 0'
    COL. = ASSIGN CAT ROW = TRUE CAT
    R DEC 1.2 1.3 2.4 2.6 7.1 TOTAL HERR X ERR % SD
\begin{tabular}{rrrrrrrrrrr} 
UAriWN50182 & 1053 & 3338 & 7257 & 2358 & 6167 & 70355 & 0 & 0 & 0 \\
1.2 & 8421 & 1073 & 1468 & 683 & 210 & 213 & 12068 & 2574 & 71 & 0 \\
1.3 & 1159 & 13 & 659 & 0 & 2 & 0 & 1863 & 15 & 2 & 0 \\
2.4 & 6350 & 0 & 56 & 3455 & 29 & 82 & 9972 & 167 & 5 & 0 \\
2.6 & 5080 & 4 & 1 & 157 & 1161 & 2 & 6405 & 164 & 12 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7.1 & 714 & 0 & 0 & 52 & 10 & 3393 & 4169 & 62 & 2 & \(\bigcirc\) \\
\hline TOTAL71 & 936 & 2143 & 5522 & 11604 & 3770 & 9857 & 104832 & 2982 & 18 & 0 \\
\hline \#ERR & 0 & 17 & 1525 & 892 & 251 & 297 & 2982 & ***** & *** & ***** \\
\hline \% ERR & 0 & 2 & 70 & 21 & 18 & 8 & 23 & ***** & ***** & ***** \\
\hline
\end{tabular}
Table IX. 7 The contingency table of the best 3 band pairs after 4-fill, 8-fill and 4-shrink operations.
```

COL. = ASSIGN CAT ROH = TRUJE CAT

```
COL. = ASSIGN CAT ROH = TRUJE CAT
R DEC 1.2 1.3 2.4 2.6 7.1 TOTAL #ERR % ERR % SD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline UNKWN & 0 & 5027 & 11407 & 23738 & 12077 & 18106 & 70355 & 0 & 0 & 0 \\
\hline 1. 2 & 0 & 47.85 & 3780 & 1427 & 1241 & \(8: 35\) & 12068 & 7283 & 60 & 0 \\
\hline 1. 3 & 0 & 0 & 1863 & 0 & 0 & 0 & 1863 & 0 & 0 & 0 \\
\hline 2.4 & 0 & 0 & 192 & 9346 & 4 & 430 & 9972 & 826 & 6 & 0 \\
\hline 2. 6 & 0 & 0 & 0 & 397 & 6008 & 0 & 6405 & 397 & 6 & 0 \\
\hline 7.1 & 0 & 0 & 0 & 84 & 0 & \(40: 35\) & 4169 & 84 & 2 & \(\bigcirc\) \\
\hline total & 0 & 9812 & 17242 & 34992 & 19330 & 234.56 & 104832 & 8390 & 14 & 0 \\
\hline *ERR & 0 & 0 & 3972 & 1908 & 1245 & 12.55 & 8390 & ***** & ***** & ***** \\
\hline \(\times\) ERR & 0 & 0 & 68 & 17 & 17 & :24 & 25 & ***** & ***** & ** \\
\hline
\end{tabular}
```

Table IX. 8 The contingency table of the best 3 band pairs after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

Figure IX. 7 The classified image of Figure IX. 5 after 4-fill, 8-fill and 4"shrink operations.

Figure IX. 8 The classified image of Figure IX. 5 after 4-fill, 8-fill, 4-shrink, 8 -shrink and complete filling operations.

Col. $=$ Assign Cat. \quad Row $=$ True Cat.

	1	2	7	Total	\#Err	\% Err
Unknown	16434	35815	18106	70355	0	0
1	10428	2668	835	13931	3503	25
2	192	15755	430	16377	622	4
7	0	84	4085	4169	84	2
Total	27054	54322	23456	104832	4209	10
\#Err	192	2752	1265	4209		
$\%$ Err	2	15	24	14		

Contingency Table Created by Combining Subclass Types of the Same Class

Table IX. 9

We began the spectral-textural analysis of the edit \#6 data by using five spectral bands and two texture bands and letting the feature selection procedure pick the best two and best three band pairs for the table look-up decision rule. The five spectral bands were:
. 40 - . 44 micrometers
. 65 - . 69 micrometers
. 72 - . 76 micrometers
. 981 - 1.045 micrometers
2.10-2.36 micrometers

The textural transform was done on a 3×3 convolution of the $.82-.88$ micrometer band. A second textural information band was created by doing a 3×3 convolution of the initial textural transform image.

The feature selection procedure selected the two best band pairs consisting of:
(1) . $40-.44$ micrometer band with the 3×3 convolution before and after the textural transform of the . $82-.88$ micrometer band
(2) . 65-. 69 and . $981-1.045$ micrometer bands.

The alpha-beta thresholds were set at .3 and .021 , respectively. This threshold selection was too low for of the 159,500 points to be classified, 74,326 were reserved assignments because of incompatible category assignments between the first and second band pairs and 1,904 were reserved assignment because there was more than one possible assignment common to the two band pairs. The resulting contingency table, (Table $X . I$ and Figure $X .1$) shows a misidentification error rate of 36% and a false identification error rate of 37%. After filling the classified image to remove all reserved assignments, the misidentification error rate was 38% and false identification error rate was 39%, Table X. 2 and Figure X.2. This is worse than the best two band pair spectral results indicating that either the alpha-beta thresholds used created such a high number of reserved decisions that the classification accuracy was lowered or that a feature selection procedure which minimizes a lower bound on the error rate does not necessarily produce the features of the best classification.

Spatial processing can improve the identification accuracy of the initially classified image. For example, if the completely filled image is shrunk for one iteration with a 4 -shrink operator and then filled again, the misidentification and false identification error rates improve to 33%, Table $X .3$ and Figure X.3. The biggest cause of errors was category 2.4 being assigned to category 1.3 and category 2.6 being assigned to categories $1.3,2.3$ and 2.5. A still greater increase in identification accuracy results if the initially classified image with reserved decisions is operated on with a 4 -fill, then 8 -fill, then 4 -shrink, then 8-shrink operations and then filled up compleiely (Figure X.4). The resilting contingency table, Table X.4, shows a 32\% misidentification error rate and 7% false identification error rate. This is about the same as the best two-band spectral results.

Doing two iterations of a 4-shrink followed by an 8-shrink (Figure $X .5$) instead of just one iteration as described for the previous classification produces not as good results. Table X. 5 shows a 34% misidentification error rate and 7% false identification error rate.

Repeating the 2 band experiment with an alphathreshold of .5 and a beta threshold of .035 reduces the number of reserved decisions to 42,226 with 25,173 reserved decisions due to no assignment and 17,053 reserved decisions due to multiple assignments. The resulting classification (Table $\times .6$ and Figure X .6) gives a misidentification error rate of 37% and a false identification error rate of 38%.

A complete filling of the image (Table $X .7$ and Figure $X .7$) gives a misidentification error rate of 38% and 39%. The main cause of error is assigning sategory 1.3 when the true category is 2.4 and assigning 2.5 when the true category is 2.6 . If we do a 4 -shrink on the filled image and then completely fill it again (Table X. 8 and Figure $X .8$) we get a misidentification error rate of 32% and a false identification error rate of 36%, but now categories 2.4 and 2.6 are completely misidentified. If instead we do a 4 -fill, 8 -fill, 4-shrink, 8-shrink and then completely fill up the raw classification (Table $X .9$ and Figure X.9) we get a misidentification error rate of 30% and a false identification error rate of only 5%. This improvement over the (. 3 and . 021) result is due to better thresholding. So, even though the raw classification using an alpha threshold of .3 was a few percentage points better than the raw classification using an alpha threshold of .5 , the large number of reserved decisions hindered classification accuracy with the fill and shrink operations.

We also did a 4-fill, 8-fill, 4-shrink and complete filling (Table X. 10 and Figure $X .10$) on the raw classification using alpha threshold of .5 to see if we were doing too much shrinking. The resulting misidentification error rate of 32% and false identification error rate of 36% indicates that we were not.

The best 3 band pairs results did significantly increase the accuracy over the two best spectral band pair accuracy and the two best spectral-textural band pair results. The band pairs selected by the feature selection procedure were:
(1) . $40-.44$ micrometer band with the 3×3 convolution before and after the textural transform of the . $82-.88$ micrometer band
(2) . 65-. 69 and 2.10-2.36 micrometer bands
(3) . 72 - . 76 and $.981-1.045$ micrometer bands.

The alpha-beta thresholds were set at .7 and .049 , respectively. This resulted in 25,590 reserved decisions due to no common category assignment and 43,889 reserved decisions because of more than one possible category assignment. The thresholds were set just a little too high.

The contingency table of the initially classified image with reserved decisions is shown in Table X.11. It indicates a 35% misidentification error rate and 37% false identification error rate. Completely filling the initially classified image with reserved decisions yields a misidentification error rate of 38% and false identification error rate of 37%. This identification accuracy (Table X. 12) is just below the best 3 band pair spectral results.

If the completely filled image is operated on with one iteration of a 4-shrink operation and then completely filled, the misidentification error rato improves to 29% and false identification error rate improves to 30% (Table X. 13 and Figure $X .11$). The results indicate that almost all resolution cells originally assigned to category 2.4 were neighboring resolution cells of a different category. Hence, the 4 -shrink operation eliminated most of the assignments to category 2.4.

The basically scattered assignments to category 2.4 was manifest in the next experiment in which we did a 4 -fill, then an 8 -fill, then a 4 -shrink, then an 8 -shrink and a complete filling of the initially classified image with reserved decisions. The contingency table (Table X. 14 and Figure X.12) shows a 23% misidentification error rate and a 6% false identification error rate. These results
are definitely better than the corresponding three best spectral band pair results. The main reason for the identification accuracy increase is that most of category 2.6 was assigned to category 2.6 ; only some of category 2.6 was assigned to category 2.5 and hardly any at all to category 1.3. All of category 2.4, however, was misidentified as category 1.3.

Following the pattern of the previous results, if a double 4-shrink and then 8 -shrink operation is applied instead of a single 4-shrink and then 8-shrink, the classification results are not quite as good: a 39% misidentification error rate and 12% false identification error rate. As shown in Table X. 15, category 2.4 is misidentified as category 1.3 and category 2.6 is misidentified as category 2.3 and category 2.5.

Table X. 1 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and .021 .

	COL $=$ ASSIGN CAT						ROW	TRIIE	CAT			
	R	DEC	1.3	. $1 \cdot 4$	$2 \cdot 3$	2.4	2.5	2.6	7.2	total	ERR	ERR
		0	2914°	27n78	28.10	2397	24513	4574	16400	127021	0	0
1.7		0	$5 \bigcirc 53$	43 ?	507	144	476	170	170	6956	1903	27
1.4		0	38	2463	56	20	50	2 h	17	2673	207	8
2.7		0	128	37	6720	115	322	297	108	7727	1007	13
$2 \cdot 4$		7	417	16	27	89	53	10	8	629	540	86
2.5		n	539	133	409	37	2712	ISA	38	4034	1322	33
?.6 6		$?$	$2{ }^{3} 6$	31	319	0	711	144	23	1434	1290	90
7.2		0	137	416	28	107	3	2	4931	5675	694	1.2
TOIAL		\bigcirc	35667	25556	36.711	2709	28840	5350	21695	156096	6963	38
FRR		0	1465	1065	1341	423	1615	690	364	6963	*****	*****

Table X. 2 The contingency table of the best 2 band pairs for alphabeta thresholds of .3 and .021 after a complete filling.

Figure X. 1 The classification of the best 2 band pairs for alpha beta thresholds of .3 and .021 .

Figure X. 2 The classified image of Figure X .1 after a complete filling.

	COL - ASSICIN CAT					ROW = TRIIF.		CAT			
	R IFC	1.3	1.4	2.3	2.4	$2 \cdot 5$	2.6	7.2	TOTAL	ERR	ERR
1: 3 rin	\bigcirc	20668	208:4	30615	995	27276	990	16714	127021	0	0
1.3	\bigcirc	6291	183	231	0	160	\bigcirc	91	6956	665	10
1.4	0	30	2479	48	0	84	0	0	2670	172	6
7.7	0	9	n	7342	93	201	45	37	7727	385	5
7.4	n	550	0	0	70	1	月	0	629	559	89
7.5	ๆ	474	79	290	72	3145	47	17	-4034	889	22
2.6	0	188	1	507	0	727	8	3	1434	1426	99
7.2	1	24	3-7	0	0	0	0	5294	5675	331	6
TiTAL	0	37184	23873	3913.3	1190	31544	111 A	22156	156096	4426	33
FRR	0	1225	570	$1 \cup 76$	17.5	1173	$10 ?$	148	4426	*****	*****
FRR	0	16	19	13	64	27	93	3	33	*****	*****

Table X. 3 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and .021 after complete filling, 4 -shrink, and complete filling operations.

Table X. 4 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and . 021 after 4 -fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.
ORIGINAL PAGE IS
OF POOR QUAJUTY

Figure X .3 The classified image of Figure X .1 after complete filling, 4 -shrink, and complete filling operations.

Figure X. 4 The classified image of Figure X .1 after 4-fill, 8-fill, 4 -shrink, 8 -shrink and complete filling operations.

Table X. 5 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and . 021 after 4-fill, 8 -fill, 4-shrink, 8-shrink, 4 -shrink, 8 -shrink, and complete filling operations.

CONTINGENCY TAELE FÓK SAMH22GDT-1 SAMHZ BI5-1 SCALE FACTOR 1O* 0

$$
C O L=\text { ASSION CAT } \quad \text { ROW }=\text { TRUE } \quad \text { CAT }
$$

$\begin{array}{lllllllll}\text { R IECC } & 1.3 & 1.4 & 23 & 24 & 25 & 26 & 7.2 & \text { TOTAL EEPF }\end{array}$ \% ERR

WKXW	Stos	2441	3587	18099	1359	19459	2868	11772	127021	0	0
1.3	1706	4328	273	140	59	276	64	110	655\%	922:	18
1.4	6.21	19	1894	25	23	5	10	22	2670	155	8
2.3	1875	110	12	5165	29	296	187	53	7727	697	12
2.4	177	359	20	6	24	29	11	3	629	428:	95
25	106.4	465	44	190	26	2106	131	8	4034	868	29
2.6	502	157	11	155	5	534	60	10	1434	87\%	94
7.2	775	130	201	29	43	1	5	4388	5225	45%	
total	42226	30032	16022	23909	¢548	22757	3235	10:661	156096	40, ${ }^{\prime \prime}$	37
1EFK	0	12%	561	545	165	1192	408	206	4387	H**	

Table X. 6 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 .

Figure X. 5 The classified image of Figure X .1 after 4 -fill, 8-fill, 4-shrink, 8-shrink, 4-shrink, 8-shrink and complete filling operations.

Figure X. 6 The classifcation of the best 2 band pairs for alpha beta thresholds of .5 and .035 .

COL = ASSIGNCAT RON = TKUE CAT

$\begin{array}{llllllll}\text { R DEC } 1.3 & 1.4 & 23 & 2.4 & 2.5 & 2.6 & 7.2 & \text { TOTAL HEFR } \% ~ E R R ~\end{array}$

UNTHN	0	33786	19622	24926	1979	27212	4298	14958127021	0	0
1.3	0	5639	390	220	77	365	95	170	6956	1517
1.4	0	31	2436	45	30	79	17	32	2670	234
2.3	0	169	19	6683	48	443	295	70	7727	1644
24	0	496	24	9	35	41	19	5	679	594
24										

25	0	625	70	285	39	2816	186	13	4034	1118	30
26	0	256	21	250	7	784	99	17	1434	$1: 35$	93
7.2	0	265	284	37	62	1	7	4969	5625	656	12
TOTAL	0	41267	23066	32515	2277	31741	5016	202141560966648	38		
IERR	0	1842	808	846	263	1713	619	307	6598	4744	$444 *$

X ERR	0	25	25	11	88	38	86	6	39	$\# H+\#$

Table X. 7 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 after a complete filling.

CCNTINGENCY TAELE FOR SAMH22GITT - 1 SHHZF2B05-1 SCALE FACTIR 1O** 0

$$
C O L=A S S I G N \text { CAT } \quad \text { RON }=\text { TFLE } \quad \text { CAT }
$$

R IEC 1.3 1.4 $23 \quad 24 \quad 25 \quad 26 \quad 7.2$ TOTAL ERR \% ERR

UHMN	0	33077	716	27493	227	32280	246	15032	27021	0	0
1. 3	0	6849	53	24	0	15	0	15	6956	107	2
1.1	0	12	2498	47	0	112	0	1	2670	172	6
23	0	20	0	7431	3	260	13	0	7727	296	4
24	0	629	0	0	0	0	0	0	629	629	100

2.5	0	387	10	154	0	3483	0	0	4034	551	14
2.6	0	130	0	330	0	974	0	0	1434	1434	100
7.2	0	112	133	0	8	0	0	5372	5625	253	4
TOTAL	0	41216	21410	35479	238	37074	259	20420156096344	32		
HERR	0	1290	196	555	11	1361	13	16	3442	$4+4$	$H+4$

Table X. 8 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 after complete filling, 4-shrink, and complete filling operations.

Figure $X .7$ The classified image of Figure $X .6$ after a complete filling.

Figure $X .8$ The classified image of Figure $X .6$ after complete filling, 4 -shrink and complete filling operations.

$$
C O L=A S S I O N \text { CAT } \quad \text { FON }=\text { THYE CAT }
$$

Livan		3245\%	17232	$33 \% 4$		26684		166231	12702	10	0
1.3	0	69.6	0	0	0	0	- 0	0	6956	0	0
1.4	0	0	245%	140	0	31	0	0	2670	171	
23	0	0	0	7717	0	10	0	0	7727	10	0
24	0	629	0	0	0	0	0	0	629	629	100
25	0	351	0	0	0	3683	0	0	4034	351	
2.6	0	0		825	0	609	0	0	1434	1434	100
7.2	0	18	19	0	0	0	0	5588	5625	37	
TOTA		40452	19750)	42666		31017		222111	560	2632	30
EER	0	948	19	965	0	650	0	0	2632	****	

Table X.9. The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and .035 after 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

CONI INGENCY TAELE FUR SAMH22GDT-1 SHAZF6EO5-1 SCALE FACTOR 10* 0

$$
C O L=A S S I C N C A T \quad \text { KON }=\text { THLE CAT }
$$

$\begin{array}{llllllll}\text { R DEC } & 1.3 & 1.4 & 23 & 24 & 25 & 26 & 7.2\end{array}$ TOTAL HERF $\%$ ERR

UNWN	0330771871427493				22932230		24615032127021			c	0
1.3	0	6849	53	24	0	15	. 0	15	6956	107	2
1.4	0	12	2498	47	0	112	0	1	2670	172	6
23	0	20	0	7431	3	260	13	0	7727	296	4
24	0	629	0	0	0	0	0	0	629	629	100

25	0	387	10	154	0	3483	0	0	4034	551	14
2.6	0	130	0	330	0	974	0	0	1434	1434	100
7.2	0	112	133	0	8	0	0	5372	5625	25%	
TOTAL	0	41216	21408	35479	240	37074	259	204201	5609	63442	32
IERR	0	1290	196	555	11	1361	13	16	3442	\#\#\#	

$\begin{array}{lllllllllll}\text { X ERR } & 0 & 16 & 7 & 7 & 100 & 28 & 100 & 0 & 36 & \text { +4+H +i+th }\end{array}$

Table X. 10 The contingency table of the best 2 band pairs for alpha beta thresholds of .5 and . 035 after 4-fill, 8 -fill, 4 -shrink, and complete filling operations.

Figure $\mathrm{X.9} \quad$ The classified image of Figure X .6 after 4-fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.

Figure X .10 The classified image of Figure X .6 after 4-fill, 8-fill, 4 -shrink and complete filling operations.

CONTINGENCY TABLE FOR SAMH22GDT - 1 SAMH2BBO4-1. SCALE FACTOR 10**. O

Table X. $11 \quad \begin{aligned} & \text { The contingency table of the best } 3 \text { band pairs for alpha - } \\ & \text { beta thresholds of } .7 \text { and } .049 .\end{aligned}$

CONTIMGFNCY TABLF FOR SA:IH22GNT - 1 SMH2FTRO4-1 SCALF FACTOR 10** 0

Table X. 12 The contingency table of the best 3 band pairs after a complete filling.

	COL＝ASSIGN CAT						RO's =2.5	$\begin{aligned} & \text { TRIIE } \\ & 2.6 \end{aligned}$	CAT			
	R	DF．	$1 \cdot 3$	$1 \cdot 4$	2.7	2.4			7.2	TOTAL	ER 7	ERR
リハK：		U	29161	17710	24.631	19	26491	14884	14646	127021	0	0
$1 . ?$		ก	6739	23	ก	0	22	69	112	6956	217	3
1.4		＇	18	2481	0	0	36	135	0	2670	187	7
2.3		0	\％	0	7155	0	276	296	0	7727	572	7
$?: 4$		n	581	0	1	0	28	10	0	629	627	100
7．5		r	416	0	． 172	6	3172	268	0	4034	862	21
2－6		$?$	ก	0	106	0	715	612	0	1434	821	57
7.2		i	279	196	$1 \cdot$	0	0	0	5150	5625	475	8
TCIAL		$1)$	37193	2：490	31465	25	30740	16275	19908	156096	3765	29
EHPT		U	1294	219	279	6	1077	77月	112	3765	＊＊＊＊＊	
FRP		0°	16	8	4	100	25	56	2	30	＊＊＊＊＊	

Table X． 13 The contingency table of the best 3 band pairs after complete filling，4－shrink，and complete filling operations．

		COL	－$=A S$	SIGN C		ROW＝	true	CAT			
R	R DEC	1.3	1.4	$2 \cdot 3$	2.4	2.5	2.6	7.2	TOTAL	Ef：R	ERR
	0	31125	16788	29548	0	26088	6799	16680	127021	0	0
1．？	）	6956	\bigcirc	\bigcirc	0	0	0	0	6956	0	0
1.4	0	0	2499	67	0	0	104	0	2670	1^{-1}	6
$2 \cdot ?$	i	0	0	7727	0	0	n	0	7727	0	0
2.4	0	629	0	0	0	0	0	0	629	6：：9	100
2.5	\bigcirc	351	C	0	0	3683	0	0	4034	3！11	9
2.6	4		c	2	0	609	827	0	1434	6.2	43
7.2	\square	169	52	\checkmark	0	0	0	5404	5625	$2: 1$	4
TOIAL	11	39231	19339	37344	0	30380	7718	22084	156096	19134	23
EIR	\cdots	115%	52	69	0	609	104	0	1984	＊＊＊＊	＊＊＊＊＊
FRR	n	14	2	1	0	－ 14	11	0	6	＊＊＊ $4 *$	＊＊＊＊＊

Table X． 14 The contingency iable of the best 3 band pairs after 4－fill， 8－fill，4－shrink，8－shrink and complete filling operations．

Figure X. 11 The classification of the best 3 band pairs for alpha - beta thresholds of .7 and .049 after complete filling, 4 -shrink, and complete filling operations.

Figure X. 12 The classification of the best 3 band pairs for alpha - beta thresholds of .7 and . 049 after 4 -fill, 8 -fill, 4 -shrink, 8 -shrink, and complete filling operations.

R	R DFC	1.3	1.4	2.3	2.4	2.5	2.6	7.2	TOTAL	E．RR	ERR
10ヶ以吅	\square	28375	111） 5	47409	0	16118	n	23994	127021	0	0
1.7	0	6956	r．	\bigcirc	0	0	n	0	6956	0	0
1.4	0	1	2499	171.	0	0	n	0	2670	171	6
2.3	11	4	${ }^{\circ}$	7551	0	176	n	0	7727	876	2
2.4	$1 \cdot$	62.9	？	0	0	0	n	0	629	6.29	100
2.5	u	245	L．	2513	0	1276	0	0	4034	2758	68
？． 6	0	0	0	825	0	609	n	0	1434	1434	100
7.2	9	$\hat{3}$	87	${ }^{1}$	0	0	\bigcirc	5538	5625	87	2
tiral	－	36225	13691	58463	0	18179	0	29532	156096	5255	39
FPR	0	874	87	3509	0	785	0	0	5255	＊＊＊＊	＊＊＊＊＊
FRR	0	11	3	32	0	38	n	0	12	＊＊＊＊	＊＊＊＊＊

Table X． 15 The contingency table of the best 3 band pairs after 4－fill， 8－fill，4－shrink，8－shrink，4－shrink，8－shrink，and complete filling operations．

With this edit we experimented to find the best texture transforms. The .82 - . 88 micrometer band was chosen as the band having the most spatial information (Figure XI.1). Figure XI. 2 is a 2×2 rectangular convolution of the $.82-.88$ micrometer band and Figure XI. 3 is a 3×3 rectangular convolution of the band. Each of these bands were used as inputs into the texture transform. The resulting textural transform images are shown in Figures XI.4, XI. 5 and $X 1.6$. Each of these were convoluted with a 2×2 window size (shown in Figures XI.7, XI.8, XI.9). Finally the textured transforms were convoluted with a 3×3 convolution window giving us 3 more texture images (Figures XI.10, XI. 11 XI.12). Using our own visual discretion we chose the textural transform with a 3×3 rectangular convolution after and the 3×3 rectangular convolution before transforming with a 3×3 rectangular convolution after transforming as the two texture bands with the most information (these are shown in Figures XI. 10 and XI.12).

We combined these 2 texture bands with the spectral bands and the feature selector chose band pairs . $40-.44$ micrometers and the 3×3 rectangular convolution before and after the textured transform with .65-.69 and 2.102.36 micrometers as the 2 best band pairs for classification. Band pair . 72 - . 76 and .981-1.045 micrometers was selected with the other two for the best 3 band pairs. Figure XI. 13 and XI. 14 show the graphs of the threshold alpha against the number of reserved decisions. For best 3 band pairs the best alpha threshold was .7 with a beta threshold of .049 .

To check the choice of thresholds we checked several results using different thresholds. The best 3 band pairs classification with alpha, beta thresholds of . 3 and . 021 gave us a misidentification error rate of 20% and a false identification error rate of 20% (Table XI, 1 and Figure XI.15). The error rate was low but the total number of reserved decisions 104,531 is high. Only 89 of these points were reserved due to more than one assignment, while 104,443 points were reserved because of no assignment. The largest cause of error was due to misidentification of category 2.6 as category 2.5 , both subclasses of loblolly pine.

Post processing with a 4 -shrink and then a complete filling we obtained misidentification and false identification error rates of 36% and 20%. Both category 2.6 and category 3.1, laurel oak, had misidentification error rates of 100% (Table XI. 2 and Figure XI.16). Though the shrink operation usually reduces error, if a sparse category is assigned correctly, the shrink operation here tended to wipe out the category. Table XI. 2 shows us that this happened to category 2.6 and category 3.1. If instead of a shrink we first did a 4 -fill, then a 4-shrink and then a complete filling, the resulting contingency table is Table XI. 3 (Figure XI.17). The misidentification error rate was 18% and the false identification error rate was 16%, but the misidentification error rate for category 2.6 was still high at 41%. The main cause of error is the confusion of 2.6 and 2.5. The only way left to eliminate the confusion is to change thresholds.

Values of .6 and .042 for the alpha, beta thresholds resulted in a misidentification error rate of 25% and a false identification error rate of 28% (Table XI.4). The misidentification error rate for categories 2.5 and 2.6 were 31% and 34%, respectively. If . 7 and .049 are chosen for the alpha and beta thresholds we get error rates of 25% and 31%, but the misidentification error rate for category 2.6 is only 24% and the misidentification error rate of category 2.5 is 31% (Table XI.5). The number of reserved decisions is 71,919 with 43,045 points being reserved because of more than one assignment and 28,874 points reserved because of no assignment. With thresholds for alpha and beta of .8 and .063 , the misidentification and false identification error rates were 28% and 32%, respectively (Table XI.6). Though the misidentification error rate for category 2.6 has been reduced to 19% and for category 2.5 it was reduced to 21%, the misidentification and false identification error rates for category 3.1 have grown to 62% and 62%, and for category 4.2 the rates have gone up to 52% and 45%. In addition the number of reserved decisions has risen to 121,716 indicating that the thresholds have gotten too high.

Since the error rates for Table XI. 4 and Table XI. 5 were almost the same, the results from the classification with thresholds of .7 and .049 should be better for post processing. The main cause of error had been with categories 2.5 and 2.5 and this classification showed lower arror rates for these categories.

If we fill up the image with alternating 4 -fill and 8 -fills we get a misidentification error rate of 27% and a false identification error rate of 33% (Table XI.7). This is no improvement on the raw classification so the shrink operation is needed to eliminate incorrect assignments. Post processing with a 4 -fill and an 8 -fill so the shrink operations do not wipe out sparsely populated categories, then doing a 4 -shrink and 8 -shrink and finally a complete filling, we obtain a misidentification error rate of 8% and a false identification error rate of 11% (Table XI. 8 and Figure XI.18). The misidentification error rate for category 2.6 was reduced to 0 and the confusion between category 3.1 and 4.2 was small. As was the case with the spectral analysis the misidentification of category 2.5 with 1.3 is the main cause of error. Though the texture analysis gives better overall results, it cannot overcome the inability of the decision rise to separate categor:es 2.5 and 1.3 in the lower right hand corner of the timber stand map.

The results of the best 2 band pairs classification were not as good. The contingency table resulting from alpha, beta thresholds of .3 and .021 resulted in a misidentification error rate of 25% and a false identification error rate of 31% (Table XI. 9 and Figure XI. 19). If we do a 4 -fill, 4 -shrink and fill up we get error rates of 23% and 29% (Table XI. 10 and Figure XI.20). If we shrink first and then fill up, the results showed improvement with a misidentification error rate of 15% and a false identification error rate of 20% (Table XI. 11 and Figure XI.21).

Figure XI. 1 The . $82-.88$ micrometer band used for the texture transform.

Figure XI. 2 Shows Figure XI. 1 after a 2×2 rectangular convolution.

Figure XI. 3 Shows Figure XI. 1 after a 3×3 rectangular convolution.

Figure XI. 4 The texture transform of Figure XI. 1.

Figure XI. 5 The texture transform of Figure XI. 2 .

Figure XI. 6 The texture transform of Figure XI.3.

Figure XI. 7 Shows Figure XI. 4 after a 2×2 rectangular convolution.

Figure XI. 8 Shows Figure X1. 5 after a 2×2 rectangular convolution.

Figure XI. 9 Shows Figure XI. 6 after a 2×2 rectangular convolution.

Figure XI. 10 Shows Figure XI. 4 after a 3×3 rectangular convolution.

Figure XI. 11 Shows Figure XI. 5 after a 3×3 rectangular convolution.

Figure XI. 12 Shows Figure XI. 6 after a 3×3 rectangular convolution.

Figure XI. 13 Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs with texture for edit \#9

Figure XI. 14 Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs spectral only for edit \#?

```
CONTINGENCY TABLE FOR SAMH33GTD - -1-0- SAMH3BBO1.-.-1
```


- Table XI. 1 The contingency table of the best 3 band pairs for alpha - beta thresholds of .3 and . 021 .

— DEC 1.3 2.3_2.5 2.6 3.1 4.2 7.2 TOTAL ERR ERR

Table XI. 2 The contingency table of the best 3 band pairs for alpha beta thresholds of .3 and .021 after 4 -shrink and complete filling operations.

Figure XI. 15 The classification of the best 3 band pairs for alphabeta thresholds of .3 and .021 .

Figure XI. $16 \begin{aligned} & \text { The classified image of Figure XI. } 15 \text { after } 4 \text {-shrink and } \\ & \text { complete filling operations. }\end{aligned}$

R DEC 1.3 2.3._2.5_2.6_3.1_4.2_7.2_IOTAL_ERR_ERR

-.- Table XI. 3 The contingency table of the best 3 band pairs for alpha beta thresholds of .3 and .021 after 4-fill, 4-shrink, and complete filling operations.

- Table XI. 4 The contingency table of the best 3 band pairs for alpha - beta thresholds of .6 and .042 .

Figure XI. 17 The classified image of Figure XI. 15 after 4-fill, 4-shrink and complete filling operations.

Figure XI. 18 The classification of the best 3 band pairs for alpha - beta thresholds of . 7 and . 049 after 4-fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.

Table XI. 5 The contingency table of the best 3 band pairs for alpha beta thresholds of .7 and .049 .

Table XI. 7 The contingency table of the best 3 band pairs for alpha beta thresholds of .7 and .049 after a complete filling.

CONTIMGFNCY TARLF FOR SAMHABGTN - $1-\operatorname{SVH} 3 F 3505-1$
COL. $=$ ASSIGN CAT RSV'+ = TRIE CAT 3

+ +	SEC 1.3	2.23	2.6	3.1	$4 \cdot 2$	$7 \cdot 2$	TOTAL	ERT	ERR
U"以号	0.206111	199627817	78848	15027	7502	16077	112859	\bigcirc	0
1.9	08347	C- उत	0	0	\%	0	3655	328	4
$2 \cdot 3$	$0 \quad 0$	925 a	0	0	n	0	925	0	0
215	$\therefore 2671$	8175	6F3	73		त	1167	357	31
2.6	$0 \quad 0$	$0 \quad 0$	2645	0	n	0	2645	0	0
$\cdots 3.1$	0	$2-0$	0	1459	68	-	7527	62	4
4.7	$0 \quad 9$	0	0	184	1517	\bigcirc	1701	194	11
7.3	0	त-0	0	1874		1131	137		6
total	U 31634	6941331256	32156	16978	9089	17204	141226	4239	8
- ERR	J-7.677	7\% 3 \%	¢\%	775	68	0	$4{ }^{2} 8$	***x	*****
EFR	$0 \quad 24$	$0 \quad 4$	20	25	4	0	11	*****	*****

- Table XI. 8 The contingency table of the best 3 band pairs for alpha beta thresholds of .7 and .049 after 4-fill, 8-fill, 4-shrink, 8 -shrink, and complete filling operations.

Table XI. 9 The contingency table of the best 2 band pairs for alpha beta thresholds of .3 and . 021 .

CONTINGENCY PÄGLE FOR SAMH33GTD-1 -1

	R DEC 1.3	$2 \cdot 3$	2.5	2.6	3.1	4.2	7.2	TOTAL	ERR	ERR
UNKWN	024365	8111	15641	19961	12645	15073	17063	112859	0	0
1.3	08255	9	246	114	1	21	38	8685	430	5
2.3	$0 \cdot 37$	690	-18	-79	29	\%	72	-925	235	25
2.5	03371	113	6561	1357	0	234	43	11679	5118	44
2.6	0 - 8	238	340	1619	102	320	18	2645	1026	39
3.1	$0 \quad 0$	20	4	21	1299	159	24	1527	2.28	15
4.2	$0-0$		-2	74	270	1314	32	1701	-388	23
7.2	$0 \quad 0$	24	0	2	106	'9.	1064	1205	141	12
TOTAL	036036	9215	22812	23221	14453	17120	18354	141226	1585	23
ERR	$0 \quad 3416$	414	610	1647	509	743	227	7566	*****	*****

- Table XI. 10 The contingency table of the best 2 band pairs after 4-fill, 4 -shrink, and complete filling operations.

Figure XI. 19 The classification of the best 2 band pairs for alphabeta thresholds of . 3 and . 021 .

Figure XI. 20 The classified image of Figure XI. 19 after 4-fill, 4-shrink, and complete filling operations.

- Table XI. 11 The contingency table of the best 2 band pairs after 4-shrink and complete filling operations.

Figure XI. 21 The classified image of Figure XI. 19 after 4-shrink and complete filling operations

The spectral texture analysis of edit \#14 began just like that of the other edits except the feature selection did not choose a texture band as one of the best 2 or best 3 band pairs. We, nevertheless, did an experiment with 2 band pairs.

We chose bands . $40-.44$ and $.72-.76$ with bands $.72-.76$ and the texture transform image. The texture image was the result of a 3×3 convolution of the . $82-.88$ micrometer band as input into the texture transform and a 3×3 convolution after the texture transform. The alpha and beta thresholds were . 3 and . 021, respectively. Figure XII. 1 shows the .82 - . 88 micrometer band used for the texture transform. The texture transformed image that was used for processing is shown in Figure XII.2. Figure XII. 3 shows the texture transform result with no convolution before transforming and with a 3×3 convolution after. The feature selector did not choose this band and visually we can see that it has much less spatial information than the texture transform that was chosen.

The contingency table that resulted from the table look-up rule (Table XII. I) shows a 43% misidentification error rate and a 44% false identification error rate. This is not nearly as good as the spectral results. There were a large number of reserved decisions, 72,804 , due to too low thresholds.

The main reason for the larger error was increased confusion between all categories and category 7.2 , not site prepared. These errors were small on the spectral analysis.

Using the same spatial post processing that we used in the spectral analysis we reduced the error most of the time but not always. After a 4-fill; 8-fill, 4-shrink, 8-shrink, we eliminated almost all errors in the spectral analysis (Section VIII) but with this spectral-textural analysis (Table XII.2) we increase misidentification error on category 4.1 to 91%, and on category 2.3 it was about the same (59%) as before post processing.

The final filling of the image (Table XII.3) reduced the error rates to 35% and 31% but did not come close to the 85% classification accuracy of the 2-band spectral results. This might have been due to the texture function used or to the fact that there was little textural distribution between the categories in this image.

Figure XII. 1 The . 82 - . 88 micrometor band used for the texture transform.

Figure XII. 2 The texture transform of Figure XII. 1 with a 3×3 rectangular convolution before the texture transform and a 3×3 rectangular convolution after.

Figure XII. 3 The texture transform of Figure XII. 1 with no rectangular convolution before the texture transform and a 3×3 rectangular convolution after.

Table XII. 1 The contingency table of the best 2 band pairs for alpha beta thresholds of . 3 and . 021.

Table XII. 2 The contingency table of the best 2 band pairs after 4 -fill, 8-fill, 4-shrink, and 8-shrink operations.

CONTINGENEY TABLE FCR SAPH4ZGDT - 1 SMH4F5003-1 SCALE FACTOR 1OE*

Table XII. 3 The contingency table of the best 2 band pairs after 4-fill, 8 -fill, 4 -shrink, 8 -shrink and complete filling operations.

XIII
In addition to the six spectral bands, we provided the feature selector with two textural transform bands. The texture bands were created from the . $82-.88$ micrometer spectral bands as before. We used a 3×3 convolution before and after textural transform and no convolution before and 3×3 convolution after textural transform. The feature selector chose bands . 40-. 44 and . 588 - . 643 micrometers with . $40-.44$ micrometers and no convolution before and 3×3 convolution after texture bands for the best 2 band pairs. Figure XIII. 1 shows how the alpha and beta thresholds were chosen in an attempt to minimize the total number of reserved decisions and to equalize the number of reserved decisions due to no assignment and the number of reserved decisions due to multiple assignments.

For the best 2 band pairs the alpha threshold was set at .5 and the beta threshold at .035. Table XIII. 1 shows the resulting contingency table for the best 2 band pairs. There are 49,130 reserved decisions with 18,083 due to no assignment and 3i,047 due to mulfiple assignment. The misidentification error rate was 42% and the false identification error rate was 43%. The largest cause of error was the misidentification error rate (90\%) of category 1.3, shortleaf pine, mostly caused by assigning category 1.2 , another sublcass of shortleaf pine. Post processing with a 4-fill, 8-fill, 4-shrink, 8-shrink and a complete filling results in a misidentification error rate of 34% and a false identification error rate of 20% (Table XIII. 2).

The band pairs used for the best 2 along with the . $588-.643$ and . 65 - . 69 micrometer band pair were chosen by the feature selector as the best 3 band pairs. Figure XIII. 2 shows the graph of the threshold alpha against the number of reserved decisions. For the best 3 band pairs the alpha threshold was set at .6 and the beta threshold was set at .042. It is interesting to note, that the number of reserved decisions due to no assignment was 25,878 , and the number of reserved decisions due to more than one assignment was 26,566 which are very close indicating good thresholds.

Table XIII. 3 shows the resulting contingency table for the best 3 band pairs. The misidentification error rate was 38% and the false identification
error rate was 41%. The greatest cause of confusion is the misidentification of category 1.3 and the false identification of category 1.3, a subclass of shortleaf pine. As with the spectral analysis of edit \#3 (Chapter IX), the confusion is mosily within class types. Confusion between category 1.2 and category 1.3, subclasses of shortieaf pine, and confusion between category 2.4 and category 2.6 cause most of the error. Figure XIII. 3 shows the best 3 band pairs classification.

Post processing with a 4 -fill and an 8-fill (Table XIII. 4 and Figure XII.4) did not really change the error rates. The misidentification error rate is 40% and the false identification error rate is 44%. A 4-shrink (Table XIII. 5 and Figure XIII.5) and an 8 -shrink (Table XIII.6) eliminate almost all of the confusion between class types, but the error within class type 1 is still high. This confusion within class type 1 was also present in the spectral analysis (Chapter IX). The final post processing, a complete filling, resulted in a contingency table (Table XIII. 7 and Figure XIII.6) having a misidentification error rate of 25% and a false identification error rate of 29%.

Note that the results of 4-fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations for the best 3 band pairs (Table XIII. 7 and Figure XIII.6) and the results of 4 -fill, 8-fill, 4-shrink, 8-shrink and complete filling operations for best 3 band pairs using the spectral analysis (Chapter IX, Table IX. 7 and Figure IX.8) shows less error in the spectral results. Yet, comparison of Figure XIII. 6 and Figure IX. 8 show that the figure from the texture analysis is actually truer to the timber stand and compartment map for edit \#3 than the spectral figure. It seems this is due to the area covered by the ground truth overlay (Figure IX.2), so that more ground truth would have resulted in better classification accuracy for the texture analysis.

Figure XIII. 1 Number of reserved decisions as a function of probability threshold alpha for best 2 band pairs with texture for edit

	OnL．$=$ A，rirmrat				HO＇s＝	THiF	CAT		
P nfe	1.7	1.2	2.4	？ 6	$7 \cdot 1$	YOTAL	FRR	Fl＇R	50
	7ar 7	1\％45	10วロッ	7／671	RAEA	67599	ワ	0	0
1．7 6．2n＂	7 $4^{\text {a }} 1$	27）	－71	1：17	4147	1フnna	2217	40	n
？ 1177	4^{71}	6,7	17	177	\bigcirc	1PKの	619	31\％	1
$\because \cdot 4 \quad$ Ff．Fi	$5 \% 7$	$1=1$	750\％	772	267	のロプ	1707	4：）	0
？A 3711	55%	588	$4 r ?$	7047	82	G402	1151	36	0
？．1 ${ }^{\circ} \mathrm{F}$	1	5	157	50	3 5 \％ 7	$4 \times 7 r$	217	12	n
：「1A14713．	13617	1763	14．70	11476	19047	101896	60ก9	4.1	0
r：n	15%	45%	1．701	2inn	7？？	$66^{\prime \prime}$	＊${ }^{*} * *$	＊	＊＊＊
rna	31	97	73	5.1	18	42	＊＊＊＊＊	＊＊	＊＊

Table XIII． 1 The contingency table of the best 2 band pairs for alpha－ beta thresholds of .5 and .035 ．

CONTINGENCY TABLE FOR SAMH12GDT－ 1 SMHIF3BO3－ 1 SCALE FACTOR 10＊＊

	COL．－ASSIGN CAT					RON $=$	CAT			
	R DEC	1． 2	1． 3	2． 4	2． 6	7． 1	TOTAL	\＃ERR	\％ERR	x SD
UNKiWN	0	17749	0	19587	14981	15316	67833	0	0	0
1． 2	0	8152	0	1323	1692	836	12003	3851	32	0
1． 3	0	1418	0	0	445	0	1883	1863	100	0
2． 4	0	261	0	6553	2919	239	9972	3419	34	0
2． 6	0	281	0	0	6124	0	6405	281	4	0
7.1	0	0	0	0	0	4020	4020	0	0	0
TOTAL	0	27881	0	27463	26161	20411	． 101896	9414	34	0
\＃ERR	0	1980	0	1323	5056	1075	9414	＊＊＊＊＊	＊＊＊＊＊＊	
\％ERR	0	19	0	17	45	21	20	＊＊＊＊＊	＊＊＊＊＊＊	＊＊＊＊＊

Table XIII． 2 The contingency table of the best 2 band pairs after 4－fill， 8－fill，4－shrink，8－shrink and complete filling operations．

Figure XIII. 2 Number of reserved decisions as a function of probability threshold alpha for best 3 band pairs with texture for edit \#3

CNL＝A－EICAMT						$\mathrm{HCO}^{1}=$	TRuF	CAT		？
	F nre	107	$1 \cdot 3$	？ 04	$2 \cdot 6$	$7 \cdot 1$	TCTAL．	ERR	FPP	
$\cdots 10 \cdot 612$	「「が）	か？	9＇if．t．	73．7	¢140？	P471	67＊39	\bigcirc	0	0
－．${ }^{\text {－}}$	（．fas：	$\cdots \cdots$	何	c．f．！	47%	$4 \times ?$	12\％？	2476	46	0
1.7	1977	71.7	20t．	76	！17	U	1867	481	63	1
	$538 ?$	411	15.4			291	いいて，	1875	45	\square
？．1	\rightarrow プ¢	4.8 .9	c．r．	吅い	734	51	＋4，O＝	OR5	13	0
7．	74．	，	6	？ 97	71	2447	$4^{\text {n }}$ ，	？36	6	n
｜otal	5346	11.16	2721	ハハプ	1？クว1	1，965．7	101896	大าก7	29	\cdots
：ri		$1=7$	R7：	1107	$1 \cdots 3$	744	$\mathrm{A}^{\text {NO，}}$	＊筞＊＊＊	＊	＊
ra\％		\because	$7{ }^{1}$	27	4%	18	41	＋＋＊＊＊	＊长\＃＊＊	＊＊＊

Table XIII． 3 The contingency table of the best 3 band pairs for alpha－ beta thresholds of ． 6 and ． 042 ．

CONTINGENCY TABLE FOR SAMHI2GDT－ 1 SMHIF2BO4－1 SCALE FACTOR 10＊＊

COL．ASSIGN CAT RIJW＝TRUE CAT

R DEC 1.2 1． 3 2． $4 \quad 2.6 \quad 7.1$ TOTAL \＃ERR $\%$ ERR X SD

UNKWN	96	14781	5824	16474	19209	11.849	67633	0	0	0
1． 2	5	6241	1873	1326	1976	＇382	12003	5757	48	0
1． 3	2	907	666	68	220	0	1863	1195	64	1
2． 4	13	1420	340	5281	2453	185	9972	4678	47	0
2． 6	0	1075	117	808	4270	135	6405	2135	33	0
7． 1	0	0	8	324	44	31544	4020	376	9	0
TOTAL	116	24424	8628	24281	28172	16：275	101896	14141	40	0
\＃ERR	0	3402	2338	2526	4693	1182	14141	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊
\％ERR	0	35	78	32	52	24	44	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊

Table XIII． 4 The contingency table of the best 3 band pairs after 4－fill and 8 － $\mathrm{fi} l \mathrm{l}$ operations．

Figure XIII. 3 The classification of the three best band pairs for alpha beta thresholds of .6 and .042 .

Figure XIII. 4 The classified image of Figure XIII. 3 after 4-fill and 8-fill operations.
COL. ASSIGN CAT ROW = TRUE CAT

Table XIII. 5 The contingency table of the best 3 band pairs after 4-fill, 8-fill, and 4-shrink operations.

	COL.	= AS	IGN	at	ROW =	- true	CAT			
R DEC	1. 2	1. 3	2. 4	2. 6	7. 1	TOTAL	\#ERR	\% ERR	\%. SD	
UNKWNE 242.6	910	299	287	440	3271	67633	0	0	0	
1.2 10897	805	185	24	13	79	12003	301	27	0	
1. $3 \bigcirc 1732$	68	65	0	0	0	. 1883	66	50	0	
2.4 9622	5	0	341	3	1	9972	9	3	0	
2.6 6181	13	0	0	211	0	6405	13	6	0	
7. 1.1140	0	0	10	0	2870	4020	10	0	0	
TOTAL91998	1799	549	662	667	6221	101896	399	17	0	
HERR 0	84	185	34	16	80	399	*****	*****	*****	
\% ERR 0	9	74	9	7	3	20	*****	******	*****	

Table XIII. 6 The contingency table of the best 3 band pairs after 4-fill, 8 -fill, 4 -shrink and 8 -shrink operations.

```
CONTINGENCY TABLE FOR SAMHI2GDT - 1 SMHIFSBO4 - 1 SCALE:FACTOR 10#*
```

```
COL. = ASSIGN CAT ROW = TRUE CAT
```


UNKWN	0	15644	5385	13505	16484	16615	67633	0	0	0
1. 2	0	7887	1238	1274	697	9)7	12003	4116	34	0
1. 3	0	1282	512	0	69	0	1863	1351	73	1
2. 4	0	144	0	8704	821	3.33	9972	1268	13	0
2. 6	0	379	0	0	6026	0	6405	379	6	0
7. 1	0	0	0	109	0	3911	4020	109	3	0
total	0	25336	7135	23592	24097	21736	101896	7223	25	0
\#EFR	0	1805	1238	1383	1587	1210	7223	*****	*****	*****
\% ERR	0	19	71	14	21	24	29	*****	*****	*****

Table XIII. 7 The contingency table of the best 3 band pairs after 4 -fill, 8 -fill, 4 -shrink, 8 -shrink and complete filling operations.

Figure XIII. 5 The classified image of Figure XIII. 3 after 4-fill, 8-fill and 4-shrink operations.

Figure XIII. 6 The classified image of Figure XIII. 3 after 4 -fill, 8-fill, 4-shrink, 8-shrink, and complete filling operations.

Use of textural features and spatial post processing has been shown to cut the average classification error to less than half its initial value while tending to increase and equalize the equally weighted average misidentification error and equally weighted false identification error. The classified images resulting from spatial and textural processing have a more cartographic map-like quality than the typically salt and pepper classified images using no textural features or spatial post-processing.

The simultaneous decrease in average classification error and increase in both equally weighted average misidentification error and false identification error means that more pixels whose true category identification is of a frequently occurring category get reassigned correctly by the spatial post-processing than of an infrequently occurring category. This is a natural consequence of the fact that the spatial processing is more of a syntactic operation than a semantic one. Spatial processing operations which use category labels intead of just sameness or difference of category labels could be designed which do not favor the larger categories over the smaller categories.

Because of the strong interaction between average error, average misidentification error, average false identification error, and classifiec image appearance and complexity, it is clear that further work can bear much fruit by analysis of these interaction effects. In particular, we recommend that textural and spatial postprocessing concepts be developed using classified image's local neighborhood contexts as the independent variable and classification error as the dependent variable.

REFERENCES

Ashby, R. W., "Constraint Analysis of Many-Dimensional Relations," Yearbook for the Society of General System's Research, Vol. 9, 1964, pp. 99-105.

Brooner, W. G., R. M. Haralick, and I. Dinstein, "Spectral Parameters Affecting Automated Image Interpretation Using Bayesian Probability Techniques," Proceedings of the Seventh International Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, Michigan, May 17-21, 1971, pp. 1929-1949.

Eppler, W. G., "An Improved Version of the Table Look-up Algorithm for Pattern Recognition," Proceedings of the Ninth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, Ann Arbor, Michigan, April 1974, pp. 793-812.

Eppler, W. G., C. A. Hemke, and R. H. Evans, "Table Look-up Approach to Pattern Recognition," Proceedings of the Seventh International Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, Michigan, May 17-21, 1971, pp. 1415-1425.

Lewis, A. J., "Geomorphic Evaluation of Radar Imagery of Southeastern Panama and Northwestern Columbia, "CRES Technical Report No. 133-18, University of Kansas Center for Research, Inc., Lawrence, Kansas, February 1971.

Kaizer, H., "A Quantification of Textures on Aerial Photographs," Boston University Research Laboratories, Technical Note 121, 1955, AD69484.

Landaris, G. G. and G. L. Stanley, "Diffraction-Pattern Sampling for Automatic Pattern Recognition," Proceedings of the IEEE, Vol. 58, no. 2, February 1970, pp. 198-216.

Gramenopoulos, N., "Terrain Type Recognition Using ERTS-1 MSS Images," Symposium on Significant Results Obtained from the Earth Resources Technology Satellite, NASA SP-327, March 1973, pp. 1229-1241.

Hornung, R. J. and J. A. Smith, "Application of Fourier Analysis to Multispectral/ Spatial Recognition, "Management and Utilization of Remote Sensing Data ASP Symposium, Sioux Falls, South Dakota, October 1973.

Kirvida, L. and G. Johnson, "Automatic Interpretation of Earth Resources Technology Satellite Data for Forest Management," Symposium on Significant Results Obtained from the Earth Resources Technology Satellite, NASA SP-327, March 1973, pp. 1076-1082.

Rosenfeld, A. and M. Thurston, "Edge and Curve Detection for Visual Scene Analysis," IEEE Transactions on Computers, Vol. C-20, No. 5, May 1971, pp. 562-569.

Matheron, G., Elements Pour Une Theorie des Milieux Poreux, Masson, Paris, 1967.
Serra, J. and G. Verchery, "Mathematical Morphology Applied to Fibre Composite Materials," Film Science and Technology, Vol. 6, 1973, pp. 141-158.

Haralick, R. M., K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-3, No. 6, November 1973, pp. 610-621.

O'Neill, E., "Spatial Filtering in Optics," IRE Transactions on Information Theory, June 1956, pp. 56-65.

Cutrona, L. J., E. N. Leith, C. J. Palermo, and L. J. Porcello, "Optical Data Processing and Filtering Systems," IRE Transaction on Information Theory, Vol. 6 No. 3, June 1960, pp. 386-400.

Goodman, J. W., Introdiction to Fourier Optics, McGraw-Hill, New York, 1968.
Preston, K., Coherent Optical Computers, McGraw-Hill, New York, 1972.
Shulman, A. R., Optical Data Processing, John Wiley \& Sons, Inc., New York, 1970.

Jensen, N., "High-Speed Image Analysis Techn iques," Photogrammetric Engineering, Vol. XXXIX, No. 12, December 1973, pp. 1321-1328.

Swanlund, G., "Honeywell's Automatric Tree Species Classifier," Honeywell Systems and Research Division, Report 90-G-24, December 31, 1969.

TriendI, E. E., "Automatic Terrain Mapping by Texture Recognition," Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, Ann Arbor, Michigan, October 1972, pp. 771-776.

Sutton, R. and E. Hall, "Texture Measures for Automatic Classification of Pulmonary Disease," IEEE Transactions on Computers, Vol. C-21, No. 7, July 1972, pp. 667-676.

Maurer, H., "Texture Analysis with Fourier Series," Proceedings of the Ninth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, Ann Arbor, April 1974, pp. 1411-1 420.

Darling, E. M. and R. D. Joseph, "Pattern Recognition from Satellite Altitudes," IEEE Transactions on Systems, Man, and Cybernetics, Vol. SSC-4, March 1968, pp. 38-47.

Read, J. S. and S. N. Jayaramamurthy, "Automatic Generation of Texture Feature Detectors," IEEE Transactions on Computers, Vol. C-21, No. 7, July 1972, pp. 803-812.

Haralick, R. M., "A Texture-Context Feature Extraction Algorithm for Remotely Sensed Imagery," Proceedings 1971 IEEE Decision and Control Conference, Gainesville, Florida, December 15-17, 1971, pp. 650-657.

Haralick, R. M., K. Shanmugam, and I. Dinstein, "On Some Quickly Computable Features for Texture," Proceedings of the 1972 Symposium on Computer Image Processing and Recognition, University of Missouri, Vol. 2, August 1972, pp. 12-2-1, 12-2-10.

APPENDIX 1

Textural Transform Programs

PROGRAM DESCRIPTION

Table of Contents

I. User Interaction
11. Internal Program Description

Ill. Non-Standard Subroutines
IV. Subroutine Documentations
V. Listing

1. User Interaction

User parameters are input by the routine TXINPT which asks for parameters by name:

```
NFUNC = 1 use subroutine FUNC 1
NFUNC = 2 use subroutine FUNC 2
NFUNC = 3 use subroutine FUNC 3
NFUNC = 4 use subroutine FUNC 4
NFUNC = 5 use subroutine FUNC 5
NDIS = distance between spaces of neighboring cells
IBOUT = logical unit number to output error messages
PCLCT = percent of point to count in FPLXIT
FILNMP = input filename
FILNMQ = output filename
```


11. Internal Program Description

The texture programs are set up so that after the call to TXINPT at the beginning of execution the user does not interact anymore with the computer.

The user must know which function he wants to use. The user inputs $1,2,3,4$, or 5 corresponding to FUNC1, FUNC2, FUNC3, FUNC4, and FUNC5 respectively; where:

FUNCI - computes the sum probability feature of the image
FUNC2 - computes the gradient entropy feature of the image
FUNC3 - computes the entropy feature of the image
FUNC4 - computes the gradient feature of the image
FUNC5 - prepares normalized lex arrays which have been equal probability quantized according to their diagonal elements.
The parameter NDIS is the distance between spaces of neighboring cells. The texture transform works on the co-occurrence of grey levels on neighboring cells. Each cell has a 0° neighbor, a 90° neighbor, a 135° neighbor, and a 45° neighbor. This covers all the cells, since a cell's 180° neighbor has that cell as a 0° neighbor. Thus, for each grey level, there is a count of the co-occurrences of grey levels as one of the four specified neighbors. The parameter NDIS is the distance the algorithm gives to look for the neighboring cells. If the user wants to perform the texture transform using all co-occurrence counts, then the parameter PCLCT should be 1.00 . If the user only wants to count 80% of the cells, the PCLCT should be set to 0.80 , and so on.

The mainline TXJDM calls the ASCII $1 / 0$ routine TXINPT for input parameters. The TXJDM transfers control to TXTMN. This routine sets up the work area, allocating core to those arrays that need it. FPLXIT is then called to compute the lex arrays where:

$$
\begin{aligned}
& \text { LEX1 - array containing count over all grey levels of vertically } \\
& \quad \begin{array}{l}
\text { adjacent (} 90 \text {-degree) neighbor; }
\end{array} \\
& \text { LEX2 - array containing count over all grey levels of horizontally } \\
& \quad \text { adjacent (} 0 \text {-degree) neighbor; } \\
& \text { LEX } 3 \text { - array containing count over all grey levels of left diagonally } \\
& \quad \text { adjacent (} 135 \text {-degree) neighbor; } \\
& \text { LEX4 - array containing count over all grey levels of right diagonally } \\
& \quad \text { adjacent (} 45 \text {-degree neighbor. }
\end{aligned}
$$

When these counts have finished, control is returned to TXTMN, which transfers control to the appropriate function as specified by the user. The FUNC array which is passed as an argument to the FUNC routines is equivalanced to the lex arrays. For example:

```
FUNC (1,1) = LEXI (1)
FUNC (1,2) = LEX2 (1)
FUNC (1,3)= LEX3 (1)
FUNC (1,4) = LEX4 (1)
```

After the appropriate function has been applied, control is again returned to TXTMN. TXTMN then calls in PLXIT. PLXIT reads in the image data and determines the corresponding eight neighbors and applies the texture transform.

Let $Z_{r} \times Z_{c}$ be the set of resolution cells of an image 1 (by rowcolumn coordinates). Let G be the set of grey tones possible to appear on image i. Then $1: Z_{r} \times Z_{c} \rightarrow G$. Let R be a binary relation on $Z_{r} \times Z_{c}$ pairing together all those resolution cells in the desired spatial relation. The co-occurrence matrix $P, P: G \times G \rightarrow[0,1]$, for image 1 and binary relation R is defined by

$$
P(i, j)=\frac{\#\{((a, b),(c, d)) \in R \mid 1(a, b)=i \text { and } \mid(c, d)=j\}}{\# R}
$$

The textural transform $J, J: Z_{r} \times Z_{c}(-\infty, \infty)$, of image 1 relative to function f, is defined by

$$
J(y, x)=\frac{1}{\# R(y, x)} \sum_{(a, b) \varepsilon R(y, x)} f[p(1(y, x), \mid(a, b))]
$$

Assuming f to be the identity function, the meaning of $J(y, x)$ is as follows. The set $R(y, x)$ is the set of all those resolution cells in $Z_{r} \times Z_{c}$ in the desired spatial relation to resolution cell (y, x). For any resolution cell $(a, b) \varepsilon R(y, x), P(I(y, x), I(a, b))$ is the relative frequency by which the grey tone $1(y, x)$, appearing at resolution cell (y, x), and the grey tone $1(a, b)$, appearing at resolution cell (a,b), co-occur together in the desired spatial relation on the entire image. The sum

$$
\sum \quad P(1(y, x), 1(a, b))
$$

$$
(a, b): R(y, x)
$$

is just the sum of the relative frequencies of grey tone co-occurrence over
all resolution cells in the specified relation to resolution cell (y, x). The factor $\frac{1}{\# R(y, x)}$, the reciprocal of the number of resolution cells in the desired spatial relation to (y, x) is just a normalizing factor.

These data values are then written out in the corresponding place on the output texture transformed image. When PLXIT exits, the texture transform has been created. Control goes to TXTMN, which exits back to the mainline TXTDM. This program returns to the beginning and brings back the ASCII 1/0 routines to get the parameters for the next texture transform. If none are desired, a carriage return will terminate the processing.

All ASCII $1 / 0$ on our PDP-15 is $5 / 7$ ASCII in double integer words. The PDP-15 has 36 bits in one double integer word.

See Figure 1 for the program flow.
111. Non-Standard Subroutines

AD.JI
ADJ2 Dynamic core allocation routines
ADJ3
The program can allocate memory by performing what essentially amounts to a dynamic Fortran equivalence and dimension KDPUSH - ignore (delete)

Error stack processing used in KANDIDATES.
SDKINL - KANDIDATS sequential file opener
Opens files for KANDIDATS routines. Uses Seek and Enter (STANDARD Fortran routines) and can be modified to fit your file structure. SKPDSC - skip descriptor records

KANDIDATS creates descriptor records, containing processing history information, before the image date. Since the file is sequentid, these must be skipped. If the user has random access on images, this can be ignored. If not, be sure that image record numbers are advanced to first image data record.
IMTRXP - Matrix print-out routine
Any standard Matrix print routine will work.
SREAD - sequential read (uses Fortran reads)
SWRITE - sequential write (uses Fortran write)

Starting on the next page is an explanation of the "ADJ routines and several ideas on how to get around them.

The included program segment may be compared to the following example:

1. INTEGER ARRAY (500), $X(1)$
2. REAL $Y(1)$
3. INTEGER XSIZE, YSIZE, YSTART, TTLSZE
4. READ $(5,100) X S I Z E, Y S I Z E$
5. \quad TTLSZE $=$ XSIZE + YSIZE
6. If (TTLSZE .GT. 500) CALL ERROR
7. Y YSTART $=$ XSIZE +1
8. CALL ADJI (X, ARRAY (1))
9. CALL ADJI (Y, ARRAY (YSTART))
10. ... TASK CODE
11. STOP
12. END

Within the task code, X and Y may be referenced as vectors with respective types, integer and real. In addition references to X will access the first XSIZE elements of ARRAY and references to Y will access the last YSIZE elements of ARRAY.

If X and Y are used only in contexts that functions may be used in, then the program segment may be recoded using statement functions. (Check your particular implementation of FORTRAN for applicability.)

1. INTEGER ARRAY (500)
2. REAL RL
3. INTEGER XSIZE, YSIZE, TTLSZE
4. $X(I)=A R R A Y(I)$
5. $Y(I)=\operatorname{RL}($ ARRAY $(I+X S I Z E))$
6. READ $(5,100) X S I Z E, ~ Y S I Z E$
7. \quad TTLSZE $=X S I Z E+Y S I Z E$
8. IF (TTLSZE .GT. 500) CALL ERROR
9. . . . TASK CODE
10. STOP
11. END

Where the function RL is coded as follows.

1. REAL FUNCTION RL(ARG)
2. REAL ARG
3. $R L=A R G$
4. RETURN
5. END

Within the task code, X and Y will have respective types integer and real and will access those specified locations of ARRAY.

However, X and Y may only be used as functions.

In the context of subroutine calls, adjustable dimensions is a standard feature of FORTRAN as in the following example:

1. INTEGER ARRAY (500)
2. INTEGER XSIZE, YSIZE, YSTART, TTLSZE
3. READ $(5,100)$ XSIZE, YSIZE
4. TTLSZE $=X$ XIZE + YSIZE
5. IF (TTLSZE .GT. 500) CALL ERROR
6. \quad YSTART $=$ XSIZE +1
7. CALL SUB (ARRAY(1), ARRAY (YSTART), XSIZE, YSIZE)
8. STOP
9. END

Where SUB is coded as follows:

1. SUBROUTINE SUB ($X, Y, X S I Z E$, YSIZE)
2. INTEGER XSIZE, YSIZE
3. INTEGER X(XSIZE)
4. REAL Y(YSIZE)
5. ... TASK CODE
6. RETURN

This approach necessitates a division of storage allocation code and task code.

Alternatively X and Y may be dimensioned independently and given a reasonable but sufficient size.

1. INTEGER \times (250)
2. REAL $Y(250)$
3. READ $(5,100)$ XSIZE, YSIZE
4. IF (XSIZE .GT. 250). OR.
5. (YSIZE .GT. 250) CALL ERROR
6. . . . TASK CODE
7. STOP
8. END

Check the output of the FORTRAN compiler being used.
If the compiler generates and uses dope vectors it would be possible to produce user written ADJ routines.

Keep in mind that all recoding must preserve the size, shape, type and usage of the involved data elements.
IV. Subroutine Documentations

ORIGINAL PAGE IS OF POOR QUALIIY

GENERAL MATRIX PRINTOUT PROGRAM

PROGRAM TITLE:
DATE OF LISTING:
PROGRAMMER:
DOCUMENTED BY:
PROGRAM LANGUAGE:
COMPUTER REQUIRED:
PURPOSE:

SUBROUTINE IMTRXP
February 13, 1973
Dinesh Goel
Dinesh Goel
FORTRAN IV
PDP 15/20

This subroutine divides an integer matrix into sections suitable for printer output and prints the matrix with matrix title, column designation, row designation, and column and row labels.

CALLING SEQUENCE:
CALL IMTRXP (IA, NROW, NCOL, NRWDIM, TTL1, TTL2, TTL3, CLBL, RLBL, ISTR)

INPUT ARGUMENTS:
IA Input array of matrix to be printed out.
NROW Number of rows in the printed matrix.
NCOL Number of columns in the printed matrix.
NRWDIM Row dimension of the entire matrix which is stored by columns.
TTLI Matrix title of 13 words.
TTL2 Column title of 2 words.
TTL3 Row title of 2 words.
CLBL Array of column labels.
RLBL Array of row lables.
ISTR This is an option
if 1 , matrix will be printed as such.
if 2 , transposed matrix will be printed out.
if 3 , matrix is assumed to be symmetric having long to short storage in IA.
if 4 , matrix is assumed to be summetric having short to long storage in IA.

OUTPUT ARGUMENTS:
None.

OTHER PARAMETERS AND ARRAYS:
IROW Array for any one row of matrix as finally printed out.

COMMENTS:
If the printed matrix has large number of columns which can not fit on one page of printer output, it will be separated into blocks, each of which is small enough to fit on one page. The rows are printed in the blocks of 5. This program takes only the integer numbers, for real numbers RMTRXP can be used. File code 17 octal has been used for printing the matrix which must be assigned to teletype or IBM printer in the beginning as desired.

Sequential Read

PROGRAM TITLE:
VERSION:
DATE:
UPDATE:
AUTHOR:
DOCUMENTED BY:
PROGRAM LANGUAGE:
IMPLEMENTED ON:

SREAD
B
June 22, 1973
April 29, 1975
Robert M. Haralick
Robert M. Haralick
FORTRAN IV
PDP 15/20

PURPOSE:

This subroutine reads a set of lines on a file of single image data stored in standard bit compacted form. SREAD assumes that SDKINL has already been called to open the file on IDAT.

ENTRY POINT:

SPREAD (IDAT, IARRAY, IDY, IDENT, IEV, ERRRET).

ARGUMENT LIST:

IDAT
IARRAY

| the file code on which the image resides |
| :--- | :--- |
| 2-dimensional array (row \times column) which |
| subimage is retarned in |

IDY
number of records in subimage. The number
of rows and columns for a record will be taken
from IDENT (14) and IDENT (13), respectively
IENT

| identification array of 20 words. |
| :--- | :--- |
| integer event variable |

IEV $=1$ success
IEV $=-2001$ illegal file code
IEV $=-2006 / 10 /$ too small
IEV $=-2007$ EOF
IEV $=-2009$ READ ERROR
IEV $=2012$ illegal data mode

ERRRET alternate return taken if an error occur:

SUBROUTING REQURED:
ADJI
KDPOP
KDPUSH
UNPACK

COMMENTS:
IARRAY must be a two dimensional array IDENT (13)* IDENT (14) must not be greater than 256 unless the user has a block data program to allocate more memory to labeled common area $/ 1 \mathrm{O} /$.

Skip Descriptor Records

PROGRAM TITLE:
VERSION:
DATE:
UPDATE:
AUTHOR:
DOCUMENTED BY:
PROGRAM LANGUAGE:
IMPLEMENTED ON:

PURPOSE:

SKPDSC
A
July 10, 1973
October 15, 1974
Robert M. Haralick
Robert M. Haralick
FORTRAN IV
PDP 15/20

This program skips the descriptor records of images stored in standard bit compacted form. SKPDSC assumes that SDKINL has been called previously.

ENTRY POINT:
SKPDSC (IDATP, IDENT, IEV, ERRRET)

ARGUMENT LIST:

IDATP	
IDENT	file code on which the image resides.
IEV	$=1$ success
	$=-2001$ illegal file code
	$=-2007$ EOF
	$=-2009$ read error
ERRRET	Alternate return taken if error occurs

SUBROUTINES REQUIRED:
KDPOP
KDPUSH

Sequential Disc Initializer

PROGRAM TITLE:
VERSION:
DATE:
UPDATE:
AUTHOR:
DOCUMENTED BY:
PROGRAM LANGUAGE:
IMPLEMENTED ON:

SDKINL
B
June 30, 1973
October 15, 1974
Robert M. Haralick
Robert M. Haralick
FORTRAN IV
PDP 15/20

PURPOSE:
This subroutine initializes a PDP 15/20 sequential disc file for input or output. The file is used to store image data in standard bit compacted form. The number of data words will be written in a logical record of at least 20 and the number of bits per data word should not be more than 18.

ENTRY POINT:

ARGUMENT LIST:

IDAT	file code on which file resides.
FILNM	array containing the fil name.
IDENT	identification array of 20 words.
IRDWRT	read/write indicator.
	IRDWRT $=1$ initialize as input file.
	IRDWRT $=2$ initialize as output file
IEV	integer event variable.
	$=1$ Success
	$=-2001$ Illegal file code
	$=-2002$ Number of bits per point has a
	illegal value
	$=-2003$ Frame coordinate and image dimension
	information not specified in-Ident-array
	$=-2004$ Illegal request

$=-2005$ file does not exist
$=-2011$ illegal $\mathrm{min} / \mathrm{max} /$ NZL/nbits combination
$=-2012$ illegal data mode
ERRRET
alternate return taken if a error occurs

SUBROUTINES REQUIRED:
ENTER
FSTAT
ICEIL KDPOP KDPUSH
MAXø
SEEK

Sequential Write

PROGRAM TITLE:
VERSION:
DATE:
UPDATE:
AUTHOR:
DOCUMENTED BY:
IMPLEMENTED ON:

SWRITE
C
June 22, 1973
October 15, 1974
Robert M. Haralick
Robert M. Haralick
PDP 15/20

PURPOSE:
This program writes a set of lines or a file of single image data stored in standard bit compacted format. SWRITE assumes that SDKINL has also been called to initialize the file on IDAT.

ENTRY POINT:
SWRITE (IDAT, IARRAY, IDY, IDENT, IEV, ERRRET)

ARGUMENT LIST:

IDAT	file code on which 1 image resides.
IARRAY	2 -dimensional array (row \times column)
IDY	in which subimage is transferred to program.
	of rows and columns for a record will be taken
	from IDENT (13) and IDENT (14).
IDENT	identification array of 20 words.
IEV	integer event variable
	$\mathrm{IEV}=1$ success
	IEV $=-2001$ illegal file code
	IEV $=-2.006 / 1 \mathrm{O} /$ too small
	IEV $=-2007$ EOF
	IEV $=-2008$ WRITE ERROR
	IEV $=-2012$ illegal data mode
ERRRET	ATTENATE RETURN TAKEN IF ERROR OCCUR

SUBROUTINE REQUIRED:
ADJI
KDPUSH
KDPOP

PACK

COMMENTS:

IARRAY must be a two dimensional array. IDENT (13)* IDENT (14) must not be greater than 256 unless the user has a block data program to allocate more memory to labeled common area / $\mathrm{IO} /$.
V. Listing

ORIGINAT PAGE SS
OR POOR QUAJITX

CERFOR
C E E σ E E
E
-
E
$+E$
E
-
E
E
E
E-R-R-Q-F

ABCII EFRIDE I/G FDR TEXTUFE FROGRAM

EUEFOUTINE EFRIGR:IEFR, IEV, IOUT, IEOUT)
GUUELE INTEGEF: FLATE(G)

```
GIT TO (SO4,310), TERF
CALI ADATE(FLIATE)
WFITE(TOLT, 4OS) FGATE
FGFMAT(1%, EAS)
IF(IEOUT, NE IGUT)WFITE(IEOUT, 4OS) FLIATE
TOTO 200
WFITE(IDIT, SOS) IEU
IF(IOUTT. NE IEOUT) WRTTE(IEOUT, SOS) IEV
FDFMAT("LETID ERFOR",IE)
GOTO 400
WFITE(IEOUT, EJI) IEV
IF(IEOUT, NE TOUT) WFITE(IEOUT, S11) IEV
FOFIMAT(" TXTMN EFFOR IEV=*:TS)
GALL CLIEE(IEOUT)
FETIFN
ENT
```


ORIGINAL PAGE IS OF POOR QUALITY

SET I. L, I ANI K EQUAL TO THE (NORMALIEEEI) VALIUE DF GRAY TONES DF FEEOLITION EELLE IN FOEITIONE A, E, E ANI I AE IN THE [IIAGFAM --

A
E 1
WHERE A INITIALLY IE THE UPPEF: LEFT DOFNEF CELL. THE CElle afie a distance MM AFAFT.

$$
\begin{aligned}
I & =\text { IDATA } I F W, T E T)-L E A S T 1 \\
L & =I D A T A(I F W, L E T)-L E A E T 1 \\
E & =I D A T A(I F M, L E T)-L E A S T 1 \\
& =I D A T A(I F W, I E T)-L E A E T 1
\end{aligned}
$$

FUT THE TWO IIMEMEIONAL INFGFMATION INTO ONE IIMENEIDNAL FORM. THE FUNUTION NEEDED TG GINVEFT A DMELE BUEGURI-TED AFFAY, IMMI X, Y), INTG A SINGLE EUEECRIFTED AFRAY, IMM(Z), IS DF THE FOFiM $G(X)+F(Y)$, WHEFE $G(X)=(X-1) * X, Z$ ANI $F(Y)=Y$ THEREFORE
$Z=(X-1) * X / Z+Y$
THIS IS [ITNE IN THE FFWGRAM EY THE EXTEFNAL FUNDTION INDEX (X, Y).

EINEE THE DROER OF DUCUFFENDE DF THE GRAY TINES EELONGING TO A REEDLUTION CELL FAIF IS IMMTERTAL, THE AFRAYE ARE EYMVETFIE: WE LET THE LARIEE DF THE TWG have the fifet Ellegifift, i. e., the arfiay IS ETORED IN LOWEF TFIANGULAR FGRM. THE
ORDEF OF THE BUEECRIFTING IS AS FOLLDWS -
$\operatorname{IMM}(1,1)=\operatorname{IM}(1)$,
$\operatorname{IMM}(2,1)=\operatorname{IM} \operatorname{M}(2)$.
$I M M(z, z)=I M M(Z)$,
$\operatorname{INP}(5,1)=\operatorname{IMM}(4)$.
$\operatorname{IMM}($ NDEL, NOEL $)=\operatorname{IMM}(N E I E L)$.

THE SCANMING FRIGEDURE, THAT IE THE METHOU EY WHICH THE FAIFWISE COMFARIEONE ARE MADE, IE DEGCRIEEG EELDW FOR THE GENEFAL GABE.
CONSIDEF A FEGOLUTION GELL WITH EFATIAL COORIINATES (M, N), ANE EALL THIE EELL I. THE SCANNING IPEFATION EEGINE IN THE UFFEF LEFT HAND LOFINER DF THE IMAGE AND IT THEN FFDIEEEDS EY EDMFARING THE GRAY

TLNE GF ETB WITH AT MGGT FDIF BFAY TGNE OF TTE NEIEHEOUFTNG FESOLUTIDN EELLS． THAT 8 I\％NEVEF NEEDE TG EDNEIEEF MDFE THAN FGHF NEIGHEOUFO EAN EE EEEN FROM THE LIAGFIM EF THE SEAFIG FATTEFN BHOWN EELIOW－－

$$
M \mathrm{I}
$$

GN A GIVEN ITEFATION，\＆IE WILL LBUE FIFET
AT ITE VEFTIEAL NETBHEDLIF（\＆L\＆），NEXT
AT TTS HOFIZDNTAL NEIEHEDILR（\＆，18），THIFD
AT ITS LOWEF FIIGHT NEIGHEOLIF（BF゙\％）AND
FOILFTH AT ITE LOWEF LEET IIAGDNAL NEIGHEGLIF（GM\＆）\＆I\＆THEN NOVES INTE THE FUETTIGA OF THE FTEHT FESGLITIGN EELL GF THE FREVIGHSLY ELANNED FIF：ET FOW（THE FGEITIDN DLOLFIED EY \＆IE：． THE DFEFATIGM IS FEFEATED UNTIL ALL NETBHETUIFTNG FAIFE DF FESQLUTIUN EELLS HAVE EEEN EXAMTNED．THE FFUINE［HFE IS FIIFTHEF FEFEATED FIF GELLS SFIFFED GVEF IF THE SFATIAL IISTANEE IE EFEATEF THAN BAE，TILL ALL EELLS HAVE EEEN EXHAUSTED．

TIOTHEX：I， L ）

GIINT VEFTITALLY AEIACENT（GO－DEGFEE） REIGHEIUNF
$L E X A: I L)=L E X:(I L)+1$
$T_{1} E I M E E X: I: O$
 NETGHECUIF
$L E X Z(T, I)=1 \quad E X 2(J U)+1$

TKニTMDEX：I．ド！
TGUMT LEFT［IAGMNALLM ADUALENT （ISG－DEGFEE）NETGHEDUF

NOW ITEFATE EITW THE ROW
［II $1 \mathrm{BO} \mathrm{N}=\mathrm{IFM}, \mathrm{NDIFM} \mathrm{M}$ W
$\mathrm{N}|\mathrm{M}|=\mathrm{H}=\mathrm{W} \mid \mathrm{M}$
$I=1$

```
        M=1
        L=&:
```

$\operatorname{LEX4}(I M)=\operatorname{LEX} 4(I M)+1$
EONT INUE

$$
\begin{aligned}
& I=1 \\
& M=L \\
& L=K=
\end{aligned}
$$

$I L=I M D E X(I, L)$
$\operatorname{LEX} 1(I L)=\operatorname{LEX} 1(I L)+1$
$I M=I$ NDEX (I, M)
$\operatorname{LEXS}(\mathrm{IK})=\operatorname{LEXS}(\mathrm{IK})+1$
$I M=I N E E X(I, M)$

COLNT VEFTICALLY AD.JACENT (GO-LEGREE) NETGHEOUR

GOUNT HDFIZONTALLY ADIACENT (O-DE+REE) NETGHEDUR
gount left omagonally adolacent (135-GETGEE) NEIGHEOUF

GDUNT FIGHT KIAGONALLY ADIADENT (45-DEGREE) NEIGHETULK

GOMFITE THE LAET SET OF MM COLIMNE SEFAFATELY

COUNT VERTICALLY ADIAAENT (GO-DEGREE) NE IGHEOUF

EDUNT FiGHT LIAGDNALLY AEIABENT (45-LIEGREE) NEIGHEOUR

```
    1.S IFT(IE)=IFT(IE+1)
1.SE IFT (IE) =IFT(IE+1)
```

 IFT (AM1) =ITEMF
 \(I S T=I F T(1)\)
 LET=IFT(M4I)
 E
E
E
\square
105 CTNTINDE
GO TO 10 E
106 IEVE-5010
FETUFW IEFFI
Γ
0
E
$10 E \mathrm{DO} 140 \quad \mathrm{LF}=1, \mathrm{MM}$
$I E F=I F T(L F+1)$
E
E
[1] $142 \mathrm{TFW}=\mathrm{A}, \mathrm{MM}$
ε

ITEMF=IFT(1)
[an $185 \mathrm{TE}=1, \mathrm{Mm}$
IFT(MVI) =ITEMF
[iv $112 \perp Y=1$, NUIMFFL
\square
CINTTNAE
IEVE-5010
FETUFH IEFFI
[10 $142 \mathrm{TFW}=\mathrm{A}, \mathrm{MM}$

GHIFT THE FQINTERE FOR THE TWO ARFAYE. THIS TE DUNE EY A CYCLIE FOTATION. THE FQIMTEF AFFAY IFT IE EUIH THAT AT ANY TIME THE ITH LDCATIDN DF IFT DOMTAINE THE FGINTEF TG THE ITH PGEITTON OF THE LTNE TN IDATA DR JDATA ARFAY. FDR EXAMFLE, IF IFT $(2)=4$ THEN THE FOUFTH LINE DF THE FHYEICAL UIATA AFFAY IE ACTLALLY THE EECONL LINE, AT THAT MDMENT.

IF (LINT EG NUMLIM) GO TO 165
FOTATE in a cyclic mannef

EET UF THE FOINTERE TO THE FTRET AND LAET ROWE DF THE TWO IMAGE ARFAYE

FEAI IN A NEW LINE INTG THE ILATA AFFAY

$1 \pm$ TLATA(LY, LET)=IAFFAY(1, L,LY) IF (LEXI, ILS, BT. NOVFLD GO TG 106 IF(LEXZ(I, G). GT. NDVFLOI GO TO 106 TF(LEXS(IK), GT, NOVFI.D) GO TO 106 IF(LEX4 (IM) GT. NOYFLG) EIT TO 106
$I=I D A T A(T W, L E F)$-LEASTI
THE LAET MM FOWE ARE EIMFUTED EEFARATELY
DO LIOF TG GG THFOUSH THE MM FIOWS

GO LOMF TO GO THFOUGH EACH FOW MM TIMES
[II $144 \mathrm{~N}=\mathrm{IF} W, \mathrm{NDIMFM} M, \mathrm{MM}$ $N M M=N+W M$ $.1=I[I A T A(N W H, I B F)-L E A E T L$
Σ
E

$$
144 \quad I=, 1
$$

142 EONTINUE
$-L$
140 EINTINLE
E.
$-E$
E
Σ

I
MOEI = IMAX - IMIN+ 1
[III $1: I=1$, NOEL
$I T=I$ MLEX (I, I)
LEXI(IT)=LEXI(II)*Z
LEXE(II)=LEXZ(II)*Z
$L E X Z(I I)=L E X Z(I I) * 2$
$12 \operatorname{LEX} 4(\mathrm{II})=\mathrm{LEX4}(\mathrm{II}) * 2$
-5
EALI ELDEE (IDATI)
EALL FIEMF'
FIETUFW
\square
E
$-E$
59% EALL ELIEE (IDATI) FETIIFN IEFFI
$-\boxed{L}$
END
[IG LIMF TO WחFF: LIOWN A FUW, EIMFUTING THE O-DEGFEE NETGHEGUF DNLY

EIUNT HDFIZGNTALLY AD.IAEENT (O-LIEGFEE) NEIEHEGUF:
[MIUELE THE MIABMNAL TG MAFE EVEFYTHING EDME DUIT FIGHT

EFKIFi

TTTIE

 IIFTATEGIUUIVEM-
TATTMM

RTIFUTEF
FEGIIFEE
FFITISAGM
LAWGIAGE
FUFFFGE

NETHMO

GALING
EEQUENIE
AFTGIUENTE

FAFAMETEFS ANI AFRGYE
$F-1-1+1-1$

INFIT ANEI IUTFUT

EUEROUTIME FUNEI
A. EINGH GIGTEEEF 1972

FIDEET M HAFAL TEF FEEFUAFY 1.974
GE MTNATHAN AMIUST E, 1974
EHIN-HUANG EHEN FEEFLAFY $2 g$ 1975
A. EINGH

ANY

FGFTFAN IU

FLRM CDMFUTES THE EUM FFGEAEILITY FEATLFE DF THE IWMEE

FIWGI FIFST EOMFITES THE TGTAL NUHEE DF FAIFE FIF EAGH DTFELTIDN. THEN F (I, I) FDF THE KE LEX AFFAY IS $F(T, J)=L E X E(T, 1) /(T G T A L$ WUNEF DF FATFE FGF THE F゙ LEX AFFAY) $I U=I N D E X(I, I)$.

FALL FINEI (LEYA, LEXZ, LEXE, IEXA, FUBE, NEUEL)

LEXI, LEXZ. LEXE ANO LEXA AFE THE FGUIF TFIANGULAFI GFAY TONE WATFIEES.
FINE: THIE JE A TWI DIMENEIDWGL AFFRY WHEFE THE FEEUITE GF ELEFDUTINE FUNEI AFE STGFED. THESE AFE STOFEN IN TFTAHELLLAF FOFM LIFE THE LEX AFFAYE, THE SECOND SUESCFIFT
 TS $0, ~ 15$, DF $4 E$ DEGFEES FEEFEGTIVELY), WHTLE THE FTFST ELEEGFTFT, T.I=INCEX (I, , 1), J. THE LOYATIGN DF THE DGAY TGNE FAIF (I, , I) AS IN THE LEX AFFAYE.
WEIEI EIZE GF A LEY AFFAY

NDEL NUVEEF GF GFAY TONES FI. FIZ. FO, FA AFE THE FELIFFIGAL DF THE TITAL NIMEEF IF EFAY TONE FAIFS FGF EAGH OF THE FDUF: EIFEETIDNE.

FETURM \quad NU EFFUR FETUFHE

BUEFGUTTNE FIMIG1 (LEXI, LEXZ, LEX:, LEX4, FIMNE, NEUEL, NOEL) LUMELE INTEGEF FUIN:, LEX1, LEXZ, LEXZ, LEX4

```
    [IMENSIMN LEXI(1),LEX:(1),LEXS(1),LEX4(1),FING(1,4)
```

FIINE (NEUEL, 4)
NOW EGIFUTE FUNE:
TG DETEFMINE THE TOTAL NLMEEF DF FAIFE IN A GIVEN DIFECTTCN
Fil $=0$.
$\mathrm{F}:=0$.

$$
F B=0 .
$$

$$
F 4=0
$$

$$
[\square I=1, N G E L
$$

LIT $5,1=1$, NDEL
$I, I=I N D E X(I,, 1)$
$T E M F=L E X I(I .-1)$
$\mathrm{F} 1=\mathrm{Fi} 1+\mathrm{TENF}$
$T E M F=L E X Z(T, 1)$
F: $\mathbf{S}=\mathrm{F} \boldsymbol{2}+\mathrm{TEPF}$
TEMF: $=L E X Z(I, 1)$
$F=F E+T E M F$
$T E M F=L E \times 4(I, J)$
$\mathrm{Fi} 4=\mathrm{Fi} 4+\mathrm{TEMF}$
E GONTINUE
TH LOWFIITE AVEFAGE
$A V G 1=0$
$A \cup E=0$.
$A V B E=0$.
GVG4=0.
$\operatorname{IIT} G I=1$, NOEL
$\operatorname{LIT} 6, I=1, N B E L$
$I . I=I N D E X(I, I)$
$T E M F=L E \times 1(1,1)$
AVEI=AVG1+TEMF*TEMF
TEMF =LEXZ (I, I)
AVEI=AUGこ + TEMF*TEMF
TEMF=LEXS (I. $)$
AVIS=AVES+TEMF*TEMF

TEMF=1EXA(T.1)

\Leftrightarrow
GONTHNE
1.

E
E

1
E
:

AVML AVG1.FA
AVGz=AVGz R2
AVGO AVGE/RS
AVG4=AVG4. R4
[i] $7 x=1$, मीg
MO 7 IEI NOEL
I, I=TNDEX (I, , I)
TEMF=LEX1(T.1)
FIMN $(T, 1,1)=(T E M F-A V I S 1)+1000 . / \mathrm{Fi}$
TEMF=LEXZ $(T, 1)$
$F(M N(1, I, Z)=(T E M F-A V G Z) * 1000, T \mathrm{FQ}$
TEMF=LEXE(I, 1)

TEMF=LEXA(I, 1)
FUNE (I, 4 4) $=(T E M E-A V G 4) * 1000$. AR4 GTNTTAUE

FETIFN
EnIT

ORIGINAL PAGE IS OF POOR QUALHTY

$$
F-1-N-C-2
$$

FFIGIFAM TITLE

FFIGIGAMMEF I.JFLIATE
[HILIMENB TATION

CIMFIITER
FEDUIFED
FFUGFiAM
LANGIAGE
FUFFIEE

METHOL

EALING
EEDIENOE
AFGIMENTS

FARAMETEFS ANII AFRAYS

ELIEFOUTTNE FIINLE
A. SIngh actocer 1972

FOEERT M HARGLICE FEEFIARY 1974
GE MONAGHAN GETGEEF 1974 CHIN-HUANG EHEN FEERUARY 2Z, 1975
A. SINEH

ANY

FOFTFAN IV

FUNEZ GDVFUTEE THE GFALIENT ENTFGFY FEATUFE IF THE IMADE

FINEI FIFGT EIMFUTEE THE TQTAL NHMEEF EF FAIFE FGF EAEH [IIFEGTIM. THE GFADIENT ENTFDFY COMFONENT IS ALDG(1. +AEE(I-1))\&ALGG(F (I, I)), WHEFE THE FFGEAEILITY IE F (I, 1$)=$ LEXE (I, I) (TGTAL MIMEEF IF FAIFS FOF THE FLEX AFFAY). II $=\operatorname{INDEX}(I, \ldots)$.

EALL FIINEX(LEYI, LEXZ, LEXZ, LEXA, FLINE: NEIIEL)

LEXI, LEXZ, LEXS AND LEX4 AFE THE FDUF TFIANGULAR GFAY TENE MATFIEES.
FINE THIS IS A TWE EIWENEIGNAL AFFAY WHEFE THE FEELLTS GF BLEFIOUTINE FUNLZ AFE STOFEL, THESE AFE ETDFEN IN TFIANGULAFI FDFN LIEE THE LEX AFFAYE THE SEDIND ELBEGFIFT
 IS GO, 0, 1EE LF 4S [EGFEES FESFECTIVELY), WHILE THE FIFST BUEGEFIFT, I, $=I N L E X(I,-1)$, IE THE LOIGTIDN DF THE GFAY TUNE FAIR (I, J) AE IN THE LEX AFIFAYE.
NEMEL EIZE GF A LEX AFFAYY NELIEL =NOEL* (NGEL + 1) /Z

NDEL NIMEEF IF GFAY TUNES
$F 1, F I, F E, F 4$ AFE THE FESIFFILAL DF THE TETAL NIMEEF IF BFAY TINE FAIFE FGF EAGH DF THE FDUFi IIFEETIUNE.
FLL $1,2, \pm, 4$ AFE THE FRGEAEILITIEE F (I, I), FOF THE FOIF IIFEGTIDNE, FGF GFAY TONE I TO DELUR NEXT TG ERAY TGNE I IN A FAFTIELLAF DIFEETIIN.

GUTFUT
\therefore FETIFME BM FFFIFE FETUFWE

Fil:
CET.
$F B=0$
$\mathrm{F} 4=0$

E
i:

EUEFOUTTNE FUWWZ(LEX1, LEXZ, LEXE, LEXA, FINE, NEUEL, NOEL)
[HILELE INTEGEF FIMW: LEEXI, LEXZ, LEXZ, LEXA
[IMENEIDN LEX1(1), LEX2(1), LEXS(1), LEX4(1), FINI(1, 4)
FIWNE (NEIEL, 4)

NOW EOMFITE FINE:

TG DETEFMTME THE TGTAL NIHEEF DF FAIFE IN A GIVEN ITFFRTTON

MII $5 \quad I=1$, NOEL
пII G , $=1, \mathrm{MOEL}$
I, $1=1$ MDEX $(1, ~ I$:
TEMF=LEXI(T, I)
$F 1=F 1+T E M F$
$T E P F=L E X Z(X, I)$
$F Z=F Z+T E F F$
$T E N F=1, E X O(1)$
$F B=F B+T E N F$
TEMF=LEX4:T.
$\mathrm{F} 4=\mathrm{F} 4+\mathrm{TE} \mathrm{E} \mathrm{F}$
5 にTNTJNDE

TH GET FI, FZ, FO, FA TD SAVE GTUTETDWE
Fil $=1 . F_{1}$
$F Z=1, F R$
$\mathrm{F}=1 ; \mathrm{R}$
$F 4=1 \quad 14$
[II $2 I=1$, NOEL
[OI $2,-1=I$, NOEL
I. $I=I$ MDEX $(1, I)$

TEMF=LEX1(I, 1)
FLI $1=$ TEMF*Fi
TEMF=LEXZ(I, 1)
FLZ $=$ TEMF: F F 2
TEMF=LEXE(I. 1$)$
$\mathrm{FL} S=T E M F * F \mathrm{~F}$
TEMF=LEX4(I.1)

FLL $4=$ TEMF:Fi4

FINL $(I G, 2)=A L D G(1 .+A E S(F L D A T(I-1))) * A L D E(1 . E-9+F L Z) * 20^{\circ}$.

FINC $(1,1,4)=A L G G(1 .+A E S(F L G A T(I-1))) * A L O G(1, E-9+F L 4) * 200$.
2 GONTINUE
E
FETUFN
END

NOW COMFITE FUNI

TG DETEFMINE THE TOTAL NUMEEF DF FAIFE IN A GIVEN DIFEETION
$\mathrm{F} 1=0$.
$\mathrm{F}:=0$.
$\mathrm{F}=0$.
F4 $4=0$.
[IIG $5 \mathrm{I}=1$, NOEL
[10 5 , $=1$ NOEL
$I . J=I$ NIEX (I, U)
TEMF=LEX1(I, (1)
$\mathrm{Fi}=\mathrm{Fit}+\mathrm{TEMF}$
TEMF=LEXZ(I, 1)
$\mathrm{FQ}=\mathrm{Fi} \mathrm{Z}+$ TEMF
TEMF: $=$ LEXE(I, 1)
$\mathrm{F}:=\mathrm{FB}$ +TEMF
$T E M F=L E X 4(I, 1)$
$\mathrm{F} 4=\mathrm{F} 4+$ TEMF

```
            TEMF=LEXI(I,I)
            FIL = TEMF*EL
```



```
            FI. % = TE|F*F%
                TEMF=[EXG! (T,N
            FLO=TEMF&FO
            TFWF=LEX4:1,晾
            FL4=TEMFEF:4
E
TF (FLL LTV O. OOOOOL) EIGTE1
```



```
31. TF(FLZ LT. O. OOOOO1) G10 TO 32
```



```
3 IF (FIL L. LT. O. OOOOOL) EIGT口 2
```



``` \(\therefore\) GONTINUE:
FETIFR
ENO
```

PROGFAM TITLE	SUEFDUITINE FING: 4
FFOGRAMtIEF:	FIGEEFT M HAFALITS MAY 1975
IFPATE	FUEEFT M HARAL ICE FEEFUAFY 1974
	GE MONATHAN GUTOEER 1974
	CHIN-HUANG GHEN FEERUARY 22, 1975
GOWUMEN- TATION	FDEEET M HAFial ice
COMFUTEF	AnY
FROMRAM	FORTEAN IU
Furfuee	FUNC: 4 GUFIUTEE THE GRACIENT FEATLFE GF THE
	TMAGE.
METHOL	FINCA FIFST COMFUTES THE TUTAL NUMEER OF FATFS FOR
	EAEH DIRECTION. THE ERALIENT GOMFONENT IS
	$F(I, d)=$ LEXE(1,1$) /\{T O T A L$ NIMEEF DF FAIFS FOF THE
CALLING	WALL FINNE4 (LEX1, LEX2, LEXE, LEX4, FUNE, NEUEL)
ARTIIMENTE	LEXi, LEX2, LEXE AND LEX4 ARE THE FDUF TFIANGILAR GRAY TINE MATRTCEE.
	FINC THIE IS A TWO DIMENSIONAL ARFAY WHERE THE
	FEELILE OF GUEROUTINE FINGG ARE ETORED. THEEE ARE ETOREG IN TRIANGULAF FIRM LIEE
	THE LEX AFFAYS THE EECONL SUESCRIFT
	COREEEFGNDE TO THE LIFEUTION $\langle K=1,2,3$ GF 4 IS 90.18 OR 45 LIEGREE RESFETTVELY),
	WHILE THE FIFET EUEECRIFT, I, I=INDEX $(I, 1)$, IS THE LOGATION OF THE GFAY TONE FAIF (I, I
	AS IN THE LEX AFFifs.
	NEUEL EIZE OF A LEX AFFAY
FAFAMETEFS ANC AFRAYE	WOEL NUMEEF DF BRAY TONES
	Fi. Fi, FG, F4 AFE THE FELIFRICAL DF THE TOTAL NUMEER
	OF GRAY TONE FAIFE FDF EACH OF THE FDUIF OIFECTIONE
	Fl $1,2,3,4$ AFE THE FFIUEAEILITIES $F(I, 1)$, FOR THE
	FOUF [IFEETIGNS, FOR GRAY TOME I TG DCEUR
	NEXT TG EFAG TONE -1 IN A FAFTICLLAR
	DIFEETIOM.

\because IMFUT AMIT NONE
DIITFIIT
I

$$
F 1=0 .
$$

$$
F \mathrm{~F}=\mathrm{O}
$$

$$
\mathrm{FB}=\mathrm{O} .
$$

$$
F 4=0 .
$$

[IO $5 \mathrm{I}=1$, NOEL
MO E $=1$, NOEL
I. $=$ I WDEX $(1, \ldots)$
TEMF=LEX1(1.U)
$\mathrm{F} 1=\mathrm{F} 1+\mathrm{TEPF}$
TEMF=LEX2(I, 1$)$
$\mathrm{F} Z=\mathrm{Fi}$ +TEMF
TEMF=AEXS (I.1)
$\mathrm{FS}=\mathrm{FA}+\mathrm{TEMF}$
TEMF=LEX4 5
$\mathrm{F} 4=\mathrm{F} 4+\mathrm{TE} \mathrm{PIF}$
CONTINUE

 -
 TG GET FI, RZ, FO, FA TI SAVE LIVIEIONE

 TG BET FI, RZ, FQ, FA TG SAVE LIVISIONE
 $\mathrm{F} 1=1$ Fil
$\mathrm{RZ}=1 . \mathrm{FZ}$
$\mathrm{FZ}=1 \mathrm{FE}$$\mathrm{F} 4=1$ F 4
NOW GOMFUTE FLND:
GOUELE INTEGEF FUNG: LEX1, LEXZ, LEXE, LEX4
$A F=1$. FFLGAT (NEUEL)
TO DETEFMTAE THE TOTAL NLMEEF DF FAIFG IN A GIVEN DIFECTIGN

```
    GTMENETINN LEX1(1), LEXZ(1), LEXE(1),LEX4(1), FONE(1,4)
```

 FUNU: (NELUEL, 4)
    ```
        TEMF=LEX1(I_1)
        TEMF=LEXZ(I,J)
        FINNT: (I, , 1)=(AES(FLDAT (I-1))/(AF+TEMF*FF1))*2OO.
        TEMF=LEXS(I,N)
        F|NE(I,\, Z)=(AES(FLDAT (I-,1));(AF+TEMF*F:Z))*200.
        TEMF=LEX4(I,1)
        FUNE(I,1,3)={AES(FLOAT (I-,1)). ( (AF+TENF*FS))*200.
    C
        FING(I,I, 4)=(AES(FLOAT (I-U))/(AF+TEMF+FF4))*2OO.
        Z OONTINLE
    C
        FETIFN
        END
```

```
    FFLINS
    E
    E
L
E
E
E
L
    L
    L
    E
    E
    E
    E
    E
    C
    E
    F
    E
    I
    L
F
    L
    E
    E
E
E
E
C
L
L
L
E

\section*{FLEXGG DUAMTIZENG FINGTIUN}

FFODFAM TITLE:
VEFGITIN:
CIATE:
AUTHOF:
UFIATE DOLIMENTEL EY: IMFLENENTEL EN: LABGIGAGE: FUFFOEE:

FINTS
A
NGVEMEEF \(2 \sigma, 1572\)
FDEEFT M HAFALIEK EHIN-HIANG EHEN Z/Z2TE
FOEEFT M HAFALIEK
FWF 15
FOFTFAN
```

THIE ELEFUITTNE FFEFAFEE NDFMALTZED LEX
AFFAYG WHIEH HAUE EEEN EOUAL FFGEAETLITY BIANTIZEL AGODFLING TU THEJF IIAGUNAL ELEMENTE AND FUTG THE FEGLLTS IN FINU AFFAY.
ENTFY FGTNT: FHMESULEX1, LEXZ, LEXZ, LEX4, FLINE, NEIEL,
AFMINENT LIET:
LEX1 \quad IS VEFTIEAL EQ-MUCIIEENEE MATFIX
LEXZ IS HOFIZDNTAL EG-DLILIENCE MATFIX
LEXS TE 1 SS LEDFEE EOMGILIFENLE MATFIX
LEX4 IS 45 LEGREE GI-DIGLFENEE MATFTX
FURE: TS THE NOFIWALIZEL AND GUANTTZED
ELGOUUFENIE WATFIEEE
FINE (NOEL, 4)
NELIEL \quad IS THE $\Xi I Z E$ EF THE LEX AFFGYE
EUEFIUTTNE FUNES (LEX1,LEXZ, LEXZ, LEXA, FUNG, NEUEL, NDEL) [IDIELE INTEGEF FIDN, LEXI, LEXZ, LEXB, LEX4,F

```
```

GTMENETMN LEXI(1), LEXZ(1), LEXE(1),LEX4(1),FUNG(1, 4),F(1)

```
GTMENETMN LEXI(1), LEXZ(1), LEXE(1),LEX4(1),FUNG(1, 4),F(1)
LATA TNTVE }P\mathrm{ E%
EALL ADII (F, FLUL (1, J))
EALI LEXEDF (LEXA, NDEL, TUTVL,F)
DII \(1 \% \mathrm{~T}=1\), NEUEL
FINT: ( \(\mathrm{C}, 4)=\mathrm{F}(\mathrm{T})\)
FALL LEXEDF (LEXS, NOEL, INTUN, F)
[II \(1: T=1\), NEUEL
FIWE: \(T, E)=F(T)\)
GALL LEXEGF(LEX2, NOEL, INTVI,F)
[III \(1.4 \mathrm{I}=\mathrm{L}, \mathrm{NELIEL}\)
\(F U N(1, z)=F(I)\)
CALL LEXEDF (LEXI, NDEL, THTUT,F)
FETITHN
DU \(15 T=1\), NEUEL
```

$$
L-E-X-E-G-F
$$

IF (INTVI, GT, 1 6) INTVII $=16$
NEIZE=1024
NELUEL=NOEL* $(N O E L+1) / 2$
$5=0$
ED $1 \quad I=1$, NOEL
$I I=I$ NIE (I, I)
TEMP-LEX (II)
$S=S+$ TEMF
$\theta=1.7 E$
$T E M F=L E X(1)$
$F(1)=$ TEMF सS
$\mathrm{CII} \geq \mathrm{I}=2$, NOEL
$I=I N D E X(I, I)$
TEMF $=L E \times(1)$
$F(I)=F(I-I)+T E M F W E$

FOEL =FLIAT (NOEL)
EALL EOFGNT (WIEL, INTVE, F, FLO, FOEL, O, O1)

$$
.11=1
$$

[in $4,1=1$. INTVD
IF(UEG. 1) BOTO 12

$$
11=F L Q(1-1)+1
$$

12 CONTINUE
12=FLO(.1)
$\mathrm{k} 1=1$
[iv $7 \ll=1,0$
IF(KEG. EO TG 13
$K 1=F L Q(k-1)+1$.
3 DONTINUE
K $\begin{gathered}\text { FLQ (E゙) }\end{gathered}$
$M M=I N D E X(1,6)$
MEX (MIM) $=0$

$$
\begin{aligned}
& \text { [00 } 10 \text {, } 10=11,12 \\
& \text { [in } 10 \mathrm{KK}=\mathrm{K} 1, \mathrm{~K} 2 \\
& L L=I N E E X(1,1, K K) \\
& \text { MEX }(M M)=M E X(M M)+L E X(L L) \\
& \text { IONT INUE } \\
& \text { CONT INIEE } \\
& \text { CONT INIIE }
\end{aligned}
$$

LEFINE THE DUANTIZING FUNGTIIN

$J=1$
$\mathrm{DO}=\mathrm{I}=1$, MOEL
IF (FLOAT(I). LE FLQ(,)) BOT TO 5
GREY TONE I EELONGS TO THE NEXT DUANTIZING INTEFVAL.

$$
1=1+1
$$

GREY TONE I EELDNGE TQ THE JTH DUANTIZING INTERVAL.
$5 \quad 1 T(I)=1$
3 EONTINUE

```
[NI 11 I=1,NOEL
II=IT(I)
[O1 11, =1, NOEL
.1. =IT (0)
N=INDEX (I, 1)
MM=INLEX(II, ,IO)
TEMF=MEX (MN)
```

FUNE: (N) =TEMF\&E\& 1000 .
FETIIRN
ENH


```
NHMPFFL=IDENT (G)
NUHILIN=I DENT(7)
IMIN=TLIENT(15)
IMAX=IIIENT (1G)
LEAETI=IMTM-1.
NBEL=SMAX-LEAETI
NEOLEL=NMEL*(NGEL+1)/2
```

$I S T=I F T(1)$
LST=IFT (MMI)

$$
N E X T=M M 1+1
$$

DO 105 LENT $=1$, NUMLIN
[in 120 TFW=1, MM
$I F M=I F W+|N| M$

SET DF MV COLUMIU AFE HANDLEE EEFARATELY

EET I, L, A AND \& EDUAL TD THE (NOFMALIEED VALIEE DF GRAY TONES DF FEEOLUTION EELLE IN FOEITIONE A, E, E ANL I AS IN THE IIAGRAM --
$A E$
E II
WHEFE A INITIALLY IS THE UFFEF LEFT cufiner cell. the celle are a mistanice MM AFAFT.

FUT THE TWO DIMENEIINAL INFORMATION INTI ONE DIMENEIDNAL FOFM. THE FINGTION NEEDED TG GONVEFT A DUHELE EUEGORIFTED ARFAY, IMM (X,Y), INTO A EINGLE EUEGCFIFTED AFRAY, IMM(Z), IE OF THE FGFM $B(X)+F(Y)$, WHERE $G(X)=(X-1) * X / 2$ AND $F(Y)=Y$. THEFEFDFE
$Z=(X-1) * X / Z.$.
THIE IS GONE IN THE FROURAM EY THE EXTEFINAL FINCTION INEEX(X,Y).

EINGE THE DRCIER OF DUCILFRENDE DF THE GRAY TONES EELONGING TG A FEGOLITION CELL FAIF IS IMMATEFIAL, THE ARRAYS AFE EYMNETFIE WE LET THE LAFIGEF OF THE TWO HAVE THE FIFET GUEECRIFT, I. E, THE ARFAY IE ETGREL IN LOWER TFIANGULAF FGRM. THE GRDEF DF THE EUESGRIFTING IE AS FOLLOWE $\operatorname{IMM}(1,1)=\operatorname{IMM}(1)$, $\operatorname{IM} \operatorname{IN}(2,1)=\operatorname{IMN}(2)$, $\operatorname{IMM}(2, z)=\operatorname{IMM}(3)$, $\operatorname{IMM}(3,1)=\operatorname{IMM}(4)$,

IMM(NGEL, NGEL) $=$ IMM(NEUEL).
THE GLANNING FROEEDURE, THAT IE THE METHGL EY WHICH THE FAIFWIEE EOMFAFIEONE ARE MADE, IS LEECRTEEL EELOW FOR THE GENEFAL CABE.
DOWEIDEF A FEEOLUTION GELL WITH EFATIAL

```
MLATA(IFW, IST) = .ILATA(IFW, IET) + FUNL(IN, S)
JCATA(IFM,LST) = IDATA(IFM,LET) + FINL(IK,S)
```

$M I=I F W$

$I M=I W D E X(I, M)$

$$
\begin{aligned}
& \text { ILATA(N, IET) = ILATA(, N,TET) + FURN(TM, 4) } \\
& \text { ILATA (HNW, LET) = MLATA (RNM, LST) + FLNE (TM, 4) }
\end{aligned}
$$

$N|N|=N+N \mid$
$\mathrm{N} N \mathrm{~N}=\mathrm{N}=\mathrm{N}-\mathrm{H} \mid \mathrm{H}$
$M I=N$
$I=.1$
$\mathrm{V}=1$
$\mathrm{L}=\mathrm{F}$.

I=IMATA(NMM, TET)-LEAST1

$I L=T N D E X(T, L)$ GO-LEDFEE NE IGHEDUF:

MATA \quad M, IET $=$ MLATA(W, IET) + FINC(TL, 1)
MATA($N, \angle E T)=$ MATA(N, HET (FINE (IL, 1)
$I=T$ TLIE $X_{2}(I, \ldots)$

UDATA (WMM,TET) $=$ IDATA (NMW, IST) $+F(W W(I, Z)$
$I K=I N D E X(I, F ゙)$ 1.E-DEGFEE NETBHEDIF AS-DEGFEE NE IGHELULF

150 CITHT TRUE SEFAFATELY

GLI FUNE (IL, 1) TU EENTEF GELL ANE

ADL FUNE (IK゙, G) TG EENTEF GELL ANE

ADIT FUNO (IM, 4) TO EENTEF EELL ANL

IDFFITE THE LAET EET DF MM TOLIMNE
$\mathrm{A} / \mathrm{F}_{1}=\mathrm{N} T+\mathrm{m} \mid \mathrm{A}$
$I=1$
$M=1$

L $=$ K

C

RONT INUE

$$
\text { LINE }=\text { LENT-MM1 }
$$

CALL FWFITE (IGAT, I, IAFRAY, 1, LIAE, 1, ,IDENT, IEV, EFF1)
[ID $700 \mathrm{IXM}=1$, WHIFMM
IF (,IMATA(IXM, IET). LT. NXMIN) NXMIN=,ILATA (IXM, IST)
IF (ILATA (IXM, IET). ITT. NXMAX) NXMAX=, IDATA (IXM, IET)
CONT INUE
C
O
EONTTNUE
[iil $797,1=1$, NIMFFL
$\operatorname{IAFFAY}(1,1,1)=\operatorname{IDATA}(1, \operatorname{IET})$
GONTINUE
LINE =LENT-MII
EGNTINEE

TO WFITE DUIT THE EOMFLETED LINE OF THE -IDATA IMABE
LII $695,1=1, \mathrm{MM}$
IXM=NUMFFL-. $1+1$
$\operatorname{ILATA}(, 1, I S T)=($ MATA $(.1, T S T) * E) / 5$
,IDATA (IXM, IST $)=($ ILATA $(I X M, I S T)$ WE) $/ 5$
CONT INUE
IF (LLNT NE 1) GO TO 695
[10 $694 \quad J=1$ NIMFFL
IARFAY $(1,1,1)=($, ILATA $(1, I S T) * 5) / 3$
EONTINUE
Qia TG 796
E
$I L=I N D E X(I, L)$
AII FUNE (IL, 1) TG CENTEF CELL AND
GO-DEGREE NE TGHEOUR
MATA $N I M, I S T)=$ MATA $(N I M, I S T)+F I N C(I L, 1)$
MATA (NIM, LST) $=$ JLATA (NIM,LET) $+\operatorname{FUNE}(I L, 1)$
$I M=\operatorname{INDEX}(I, M)$
ALIC FIJNE (IM, 4) TIU CENTEF EELL AND
45-DEGREE NEIGHEOUR
IDATA $(N I M, I E T)=$ IDATA $(N I M, I E T)+F U N E(I M, 4)$
JIATA (NI,LET) $=$ JDATA (NI,LET) + FUNE (IM, 4)
120 EINTINUE
SHIFT THE FOINTEFE FQF THE TWO AFFAYE.
THIE IS LONE EY A EYCLIC ROTATION.
THE FOINTER AFFAY IFT IS EIIEH THAT AT ANY
TIME THE ITH LOLATION DF IFT CONTAINS
THE FOINTEF TO THE ITH FUSITION GF THE
Γ
IFT(MW1)=ITEMF

> ILTNE I INE
[II $140 \angle F=1, \mid+1 B$ TEF=TFT!LF+1F.
[10 142 TFW=1, MW
$I=I L A T A(T F W, I S F)-\angle E A G T 1$
DII LDOF TG WORE DOWN A FOW, COMFUTINE: THE O-DEGREE NE IGHEGIIF DNLY

TII $144 \quad N=T F W$, NLIWFWM, MH
$|N| H|=|1+|x|$
$U=T D A T A(N M M, I S F)-L E A E T 1$
I, $=$ TNDEX $(I, 0)$

ILIATA(N, ISF) $=$ ILATA($N, I S F)+F I N E(I, Z)$ IDATA (MMM, ISR $)=$ IDATA (NMM, IER $)+$ FLNE(I., 2$)$
$-\mathrm{C}$
$144 \quad \mathrm{I}=1$
142 GONT INUE
©
C
E
6%
\square
Σ
C
I

$$
696
$$

E
670
0
E
I
L
E\%6 EOMTINUE
C

■
140 EONTINUE
CALL CLIBE (IDAT, I)
EALL GLDEE (TIATI)
CALL REAPOF
FETUFN
Σ
L
C
[10 69 $\quad 1=1, \mathrm{MM}$
$I \times M=N U M F F L-1+1$

,IDATA (IXM, ISF) $=($ ULATA $(I X M, I S F) * E) / 5$
EMNTINLE

IF (LFR. NE. MM) TOTO TO 60
[IO $6 \% 6=1$, NUMFFL
IARFAY $(1,1,1)=($ IDATA $(.1, I S F) * 5) / \Omega$
CONTINUE
00 TO 696
CONT INUE

DOE $897=1$, NUIVFFL
IAFFAY($1,1,1)=$ JLATA $(1, I S F)$
EONT INUE

I

RETMR

EFROR FETLIFN

ADL FINE (T,,Z) TII CENTEF CELL AND O-DEGREE NETGHEGUR

WFITE DUT THE GOMFLETEI JLIATA LINE

990 CONT IDUE
CALL DLDEE (IUATI)
CALL CLUSE (ICATA)

FETUFN TEFEI

ENLI

IF (IEMUIT. NE. IGIT) WFITE (IEMIT, 40S) FDATE

ETX.JLM
E

FROIGRAM TITLE:
VEREION:
AUTHIR:
DATE IFIIATE

FFGURAM LANGUAGE:
IMFLEMENTED ON:
FURFGEE:

TX, IDIN
A
EOEEFT M HAFALICK
NOVEMEEF 1974
FEEFIUAFY 1975
EHIN-HUANG CHEN
FORTRAN IV
FDF 15

THIE FIOUTINE IE THE MAIN LINE FOR THE JDATA GENEFATION IISFLAY INFUT FAFAMETEFG ARE FUNETION TYFE, EFATIAL IIIETANDE FELATIDNEHIF, EFFOR MESEAGE DUTFUIT . DAT SLIT, FEFIGENT OF LINES GOUNTEG IN GENEFATING THE FOUF NEIGHEOF GRAY TONE MATFIEEE, INFITT FILE NAME, AND DUTTFUT FILE NAME.

EUEFTUTINES EALLED: TXINF'T
EFRIOR: TXTMN EDKINL EKFIEC FFLXIT EREAD INDIEX Flinc 1 FUNIE FINES FINIC4 FUNE: EQFONT LEXEDF FLXIT INDEX EREAD

DOUELE INTEGEF NFFCAL, NTGTAL, FILNMF, F ILNMD
CIMENSION FILNMD(Z),FILNMF (Z)
EUMFION IWOFK(EOOO), IWFF (7000)
EOMMON/LFAT NG, F (50)
DUMMON/LFE/AMEAN, VAR, NFFLAL, NTOTAL, START, ENLI, NEALL, NNTERE, DANIE COMMON TIO/ NEIZE, IDUM (2O4E)
EDMMON ITXT/ ITXT (10)
DATA IDUT, IDATK, IDATE, NDIM $\leqslant, 2,1,15000 \%$
NEIZE $=1024$
c

WFITE THE INFIIT IMAGE IDENTIFICATION ELDCE

EALL LSTID (ILATK, FILHMF, IEOUT, I, IEV, E304)

QOMFITE THE INTEGER TEXTURE IMAGE

GALI TXTMN(TWDFE, NGTM, FILNMF, FILNME, NEIS, NFINE, ZNXMIN, NXMAX, FCLCT, IEV, ©ETO

WRITE THE GUTFUT IMAIE IUENTIFICATION ELOCK

EALL LETID(TLATE, FILRMW, IEDUT, I, IEV, E304)

```
        CALL ELOEE(IEDIT)
        1010 200
            TEFR-1
        BU TO 500
            IEFF=2
            GALL EFFOR(IEFF, IEV, IOUT, IEOUT)
        GO TO 200
        ENID
```

ETXTMN

FFGIGFAM

TITLE
FFIDIGFAIMEF:

IFCIATE
LUILIMENTATIDN

EIMFUTEF
FFF-15
FEEGIIFEL

FFIDIFAPM LANGILABE

FIUFFIEE TXTMN IE THE MATNLINE EUEFIUITINE FQF THE TEXTUFE FILIT INE FAEFEAGE TE EIMFUTE THE JLATA IMABE.

TXTMN DIIES THE FDLLDWING -
TAFEE IN LAEELS AND FARAMETEFS FFIDM AFIIIMENT LIST, FEADIE IN THE IMAGE FFUIM FILE (OZ), EETE THE MAXIMIIM AND MINIMIM BFIAY LEVELS, EETS UF LYMAMIL ALLILATIEN IF FAFAMETEFS ANLI EALLE THE FEST IF THE ELIERDIITINES.

ENTFY FIINT EALL TXTMN, IWDFY, NLIM, E, T, NLIE, IFLNE, MXMIN, NXMAX, FELIT, IEV, EFF' 1)

AFILIMENTE IWILFE BLFATEH AFFAAY WHEFE THE IMALEE IS FEALI IN AND THEN LATEF IT IS LIEEE FIF EIYNAMIC ALLIILATILN.
NLIM SIZE IF ELFATCH AFFAY. NDIM EHIULL EE EITHEF NUMFFLkNUML IN EF さ* $(M *(A+1)+1)+4 * E *(E+1)$, WHILH EVEF DNE ISLAFIGEF.
A IS THE NIMEEF DF FGINTE/LINE IN THE IMALE, E IS THE MAXIMLIM NLIMEEF IF GRAY LEUELS FIGEIELE ANLI M IS THE LAFIEEST FELIIIT ILN LISTANEE THE FFIIGFIM WILL FINN WITH.
E NAME DF FILE THE IMALEE IS DN T NAME DF FILE WHEFE THE ILATA IMADE IS LFEATEL NLIS SFAEING EETWEEN NEIGHECFLY RESOLITION EELLS IFIJNC FAFAMETEF LSEL TO IETEFMINE WHIEH FINIGTIDN EIMFIJTES THE ILATA IMAIE. IFINNE: 1 FDF SUM FFIDEAEILITY IFIINE $=2$ FIGF ANILLLAF MLMENTIIM FEATUFE

```
    IFUNG=S FOF ENTFOFY FEATURE
    IFINI=4 FOR GRADIENT FEATUFE OF THE IMAGE
    IFUNG FG FOF NORMALTZED LEX ARRAY WHTIGH HAE EEEN
                                    EgMAL FROEAEILITY guANTIzED
    IS THE MINIMIM ON THE IDATA IMADE
    IE THE MAXIMIMM IN THE JLIATA IMAGE
IS THE FEFIEENT GF LINES GOUNTED
    INTEGEF EVENT VAFIAELE
    ALTEFWATE ERFIGR FETURN
```

 NXMIN
 WXPA:
 FCLET
 IEV
EFFII

FAFAMETEFE
AND AREAYE

| Numilita | NUMEEF OF LINES IN THE INFUT | AISE |
| :---: | :---: | :---: |
| NUMFFFL | HUMEER OF FUINTE FEF LINE IN | THE INFUT IMAGE |
| IMAX | MAXIMUM ERAY LEVEL | |
| IMIN | MINIMUM SRAY LEEVEL | |
| LEAET1 | =IMIN-1 | |
| NOEL | NUMEEF OF GRAY LEVELS | |
| NEIEL | $=\mathrm{NOEL}$ (NOEL+1)/2 IE THE EIZE | DF A LEX ARFAY |
| midata, | ILATA, NLEX1, $2,3,4$, NFINNL AND NT | TOT ARE FOINTER: |
| | FOF DYNAMIL ALLOLCATION IN IW | WOFt\% |

INFIT ANE DUTFIIT
FEAE IN FFIOM FILE (OZ)
ERFOR FOR INGOFRECT SIZE DF IWORK, EFRIDE IF FARAMETEF IFINU HAS EEEN INITIALIZED INGOFEEGTLY. INFUT IMAGE DN FILE EODE IDATI. WFITES ILATA IMABE IN FILE CODE IDAT,
 EEEK SYETEM LIERAFY CLISE EYETEM LIEFAFY
FEDUIFED
FETUFIE NOFMAL ANE ALTEFAATE
FROGRAM TERMINATEI FOR INLORFELT SIZE OF IWIRK, ERFOR IF IFUNT: INTTIALIEED INGORFECTLY.

GALLEDEY MAIN LINE FFDGFAM TXUMM

[^2]TNTEGER EFFI
DOUELE INTEGER FUVE


```
MTMENGIGN ILENT(ZO),S(2), ILENT(ZO),FLIATE(S)
LIMENEIIN .JDATA(1, 1), IFT(1), FIINE(1,1)
IIMENEIBNEL1(E),FFI(E),LEX(1Z),G1(Z),F1(2)
```

```
MNI=NLIIS+1
```

NIEIATA $=1$
N.ILATA=NILIATA+NUMFFLKMM1
NLEXI=N.ILATA +NLMFFL KMM1
NLEXZ=MLEX1+NELIEL
NLEX $Z=$ NLE $X Z+$ NELIEL
NLEX, $4=$ NLEEXS +NEIIEL
NFIINC=NLEX1
NIFT $=($ NLE $X 4+$ NELIEL $) * 2$
NTIT $=$ NIFT+MM1

DHECKING IF THE SIZE OF IWORK IS ENOUGH

IF (NTOT, ET, NIIM)GO TO 78
NEIG=NLIM-NTOT

EAK A[1.11(LEX1, TWOFK゙ (NLEX1))
FALL ALI.I1(LEXZ, IWDFK (NLEXZ))
EALL ALHI1 (LEXS, IWCFF (NLEXE))

EALL ALIJ (IFT, SWIFF (HIFT))

ZEFO DUT THE ECFATCH AFEA

EII $30, \operatorname{LK}=1$, NUTM
$=0$ IWGFK $(.11 F)=0$

EFTF THE LESERIFTOF FEGOFIE
GALL EFFDEL (IMATI, IDENT, IEV, EFFI)

ZIMFIITE THE FDIAF LEX AFFAYS

EALL FFLXIT,IEATI: IEIATA, LEXI,LEXZ, LEXZ, LEXA, IFT, IEENT, MM1, QFDLIT, IEU,ERFI)

WFITE DIJT THE LEX AFFAYS

FALL IMTFXF (LEXI, E, E, E,LEX, E1,F1, EG1,FF1, 4)
TA, LMTFXF(LEXZ, E, E, E, LEX,E1,FI, EL1, FF1, 4)
GGLL JMTFXF\{LEXE, E, E, E,LEX,E1,F1, EE1, FFI, 4)
EALL IMTFXF(LEXA, E, E, E, LEX, EI,FI,EL1, FFI, 4)

EAL FFUTFEF FUNLT ION EUEFFIDLAAM
$T E U=-5 O 11$
JF(IFUHU EO 1) EALL FUNLI (LEXI, LEXZ, LEXE, LEXA, FIML, NEUEL)
TF (IFLME, EQ 2) EALL FUNI $2(L E X L, L E X Z, L E X S, L E Y 4, F U N G, N E U E L$)

IF (IFINI: EO. 4) EALL FIMUA (LEX1, LEXZ, LEXS, LEX4, FLING, NEUEL.)
IF (IFINL ED G) GALL FINLE (LEXI, LEXZ, LEXS, LEXA, FLNL, NEUEL)
IF (IFINT. LE O GF IFUNE BE G) FETUFN EFR1
[1] $79 I=1,20$
. IUENT $(T)=I$ IENT (I)
ELNTINUE

ILENT $(S)=10$
, ILENT $(16)=1$

```
            ,ILIENT (10)=3
            |LENT (11)=51Z
            -ILENT (15)=-2!6
            MLENT (1G)=255
            GALL EFY[IEIG(ILIATI, \Xi, ILIAT,I, T, ,ILIENT, IEV, EFF'1)
            GALL ALATE(FLIATE)
            NW=,IDENT(1Z)*Z
            WFITE(ILIAT,I) A,E,F[IATE,E, (IZ,I=15,NW)
            WFITE(I[IAT,|) IONE, (IZ, I=\Sigma,NW)
            WFITE(I[IAT,I) ITWO, IFINNL,NLIS, (IZ,I=S,NW)
E
            E:ALL FLXIT\I[IATI, IDAT,I, IIAATA, ILIATA, ILENT, FINNE, IFT, NEIGBL,MMI,
        ZNXMIN,NXMAX, ILENT,IEV,EFF'1)
        4 EINNTINLIE
            EALL KDFGF
            FETLIFN
            7E IEV=-5010
            FETUFNN EFFI
E
```


END

[^0]: Table VIII. 11 The contingency table of the best 3 band pairs after 4-fill, 8 -fill, 4 -shrink, 8 -shrink and complete filling operations.

[^1]: $P_{\text {Receding }}$

[^2]: EUEFGUTIGE TXTHN IWORK, NDIM, $\mathrm{E}, \mathrm{T}, \mathrm{NLIS}$, IFUNE, NXMIN, ZNXMAX, FCLIT, IEU, ERFI)

