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MONTE CARLO ANALYSIS OF INACCURACIES IN ESTIMATED

AIRCRAFT PARAMETERS CAUSED BY UNMODELED

FLIGHT INSTRUMENTATION ERRORS

By Ward F. Hodge and Wayne H. Bryant

Langley Research Center

SUMMARY

An output error estimation algorithm was used to evaluate the effects of both static

and dynamic instrumentation errors on the estimation of aircraft stability and control

parameters. A Monte Carlo analysis, using simulated cruise flight data, was performed

for a high-performance military aircraft, a large commercial transport, and a small

general aviation aircraft. The effects of variations in the information content of the

flight data, resulting from two different choices of control input maneuvers, were also

determined.

The results indicate that unmodeled instrumentation errors can cause inaccuracies

in the estimated parameters which are comparable to their nominal values. However,

the corresponding perturbations to the estimated output response trajectories and

characteristic equation pole locations appear to be relatively small. The magnitudes of

these perturbations, for both longitudinal and lateral response modes, can vary appre-

ciably with different classes of aircraft and with the information content of the flight data

used. The most significant of the instrumentation errors evaluated were found to be the

white noise and lag in the elevator position, the bias and lag in the aileron position, and

the lags in the pitch and roll acceleration measurements. The perturbations they produce

are much larger than those arising from the combined effects of static errors and white

noise in the output response measurements.

INTRODUCTION

One of the important tasks associated with current efforts to improve the accuracy

of estimating stability and control derivatives from flight data is to evaluate the effects

of unmodeled errors in the measurements. Largely because less stringent accuracy

.requirements and marginal computational facilities formerly existed, suitable error-

analysis algorithms for this purpose have appeared only recently. Two such algorithms,

based on the minimization of output response errors, are described in reference 1. The



first approach furnishes statistics of the resulting parameter inaccuracies through the

use of sensitivity coefficients in an ensemble technique, and the second provides this

information by means of a Monte Carlo analysis of simulated flight data.

Reference 1 also reports an initial application of the ensemble algorithm where the

effects of static errors (such as biases, scale factors, misalinements, center of gravity

uncertainty, and vane corrections) were analyzed, assuming typical instrumentation and

cruise flight conditions. The results, together with those presented in reference 2, indi-

cated that these error sources can cause much larger parameter inaccuracies than those

attributed to white noise in the output response measurements alone.

The results contained in reference 3 and this report extend the overall investigation

in several respects. A principal objective of these studies was to evaluate the effects

of additional error sources such as those arising from instrumentation dynamics and

measurements of control inputs. The simulated data algorithm was used for this purpose,
since these errors cannot be handled by the ensemble algorithm without introducing

approximations which have not yet been evaluated. As stability and control derivatives are

often estimated from flight data obtained for other purposes that may not require full

excitation of the aircraft response modes, results were generated to examine the effects

of varying the information content of the measurements. Similar data were obtained to

determine further how much the results change with different classes of aircraft. In

order to provide a more complete evaluation, the effects of parameter inaccuracies

(caused by unmodeled instrumentation errors) on the output response trajectories and

characteristic equation pole locations were also determined. Lastly, a sensitivity anal-

ysis was performed to identify the dominant error sources.

SYMBOLS

B measurements bias vector

F,G aircraft dynamics system matrices (eq. (4))

g acceleration due to gravity, m/s 2

H,D response measurements system matrices (eq. (3))

J estimation algorithm performance function (eq. (1))

M number of Monte Carlo runs
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N number of data samples

n number of rows or columns

nxnyn z  body-axis components of aircraft linear acceleration, g units

O null vector or matrix (eqs. (4) and (10))

P parameter vector

p,q,r roll, pitch, and yaw rates about body axes, respectively, rad/s or deg/s

p, 1,i- roll, pitch, and yaw acceleration about body axes, respectively, rad/s 2 or

deg/s 2

R covariance matrix of white measurement noise (eq. (17))

s characteristic equation root (eq. (23))

T matrix of scale factor, crosscoupling, and misalinement errors

t time, s

U control input vector

u,w body-axis components of aircraft linear velocity, m/s

V unperturbed nominal airspeed, m/s (table II)

W white measurement noise vector

X aircraft state vector

Y output response vector

a angle of attack, rad or deg

p angle of sideslip, rad or deg
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r diagonal matrix of instrumentation time constants (eqs. (15) and (19))

6 e,6a,6 r elevator, aileron, and rudder deflections, respectively, deg

E,y elements of T matrices (eqs. (12), (13), (14), and (17))

damping factor

o standard deviation

T time constant, s (table I)

0,0 roll and pitch attitude angles about body axes, respectively, rad or deg

w natural frequency

Subscripts:

ax,ay,az body-axis components of accelerometer position relative to center of gravity

c control input

D Dutch roll

f final value

I indicated value

i,j,k discrete time sample indices, or matrix or vector elements

L lagged value

m measured value

nx,ny,nz linear accelerometers

o initial or unperturbed value

r roll subsidence
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s spiral divergence

sp short period

vx vane location along X-axis

xcg,ycg,zcg components of center of gravity location

y output response

Notations:

E( ) statistical expectation

matrix inversion

( )T matrix transposition

(^) estimated value

A( ) increment or perturbation value

(-) mean value

(') time derivative

METHOD OF ANALYSIS

The Monte Carlo error analysis employed in the study is described in three steps

which, respectively, outline the formulation of the simulated data algorithm, the mod-

eling of the various instrumentation errors, and the pertinent statistical computations.

Simulated Data Algorithm

The essential feature of the simulated data concept is that the parameter inaccura-

cies caused by unmodeled instrumentation errors are obtained simply as the differences

between the assumed true values of the parameters and those estimated from simulated

flight data which contain the unmodeled errors. The estimation algorithm used for this

purpose is that of reference 4, which minimizes the output response error in the least

squares sense by using a performance function of the form
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t(P = m(t) - Y(P,t Y it .m(t) - (PF,t dt

where Ym(t) and Y(P,t) are, respectively, the measured and estimated output response
m -1

vectors over a data-gathering period [t ,tf , and R is a weighting matrix defined

later in equation (17). Since the algorithm is implemented in discrete form for computa-

tional reasons, J(P) is approximated

N

J(P) Itmi - .f(P) R-1[ymi - (p) (1)
i=l 1

which represents N samples of the output error during [to,tf]. The corresponding

least squares normal equations aJ/ P = 0 are then solved for P by means of the

differential correction procedure

P j = P 1 + 1

= P +I ) R-1-2)I RI1(Ymi - Yi (2)
\aI apLLJ\ aPi

which is also called a quasilinearization or modified Newton-Raphson minimization tech-

nique. (See ref. 4.) The convergence criteria used for the present study was

dAPj I - 10.01Pj simultaneously for each parameter.

The estimated output Yi required in evaluating equation (2) is modeled as

A1
Yi = H(P)Xi + D(P)Umi (3)

where the state vector Xi is obtained by numerical integration of the aircraft dynamical
equations

Xi = F(P)Xi + G(P)U mi X 0 = (4)
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The particular forms of these equations used for the three aircraft response modes are

defined as follows: For the longitudinal motions, the forms of equations (3) and (4) are

given, respectively, as

Aq 0 1 0 0 0

AO

a 0 0 cos a o  -sin co 0
V V

Aq

Au =0 0 0 1 + 0 [A6e] (5)
Aw

An x  0 0 Xw Xu 0
x g g'

Au

Anz 0 0 Zw Zu Z 6e
g g g

Aq 0 Mq Mw  Mu  M6e

and

A4 0 1 0 0 AO 0

0Aq Mq M Mu  Aq M 6 e
+ [A e] (6)

AW -g sin 0o  V cos o Zw  Zu Aw Ze

u I -g cos 0o  -V sin ao X Xu Au I 0

where the parameter vector P to be estimated is

P= wMMw Z MOeZe u uZXX]

and the short period approximations of equations (5) and (6) are obtained by deleting Au

and An x along with all their factors and the last four elements of the P vector. The

corresponding expressions for the lateral-directional motions are given by
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AjP 1 o o 0 o o

Ap 0 1 0 0 0 0

Ar 0 0 1 0 0 0

A = 0 0 1 + 0 0 (7)
Ar Afi

V Y6a Y6r ''

An Y 0 0 0 Ya Yr
y g p g g

S * L* * 0 L *
Ap r 0 6a 6r

Ai' N* N* N* 0 N* N*
p p r 6a 6r

and

g
A(P Y sin ac -cos a o  os Y6a Yr

Ap L* Lp Lr 0 Ap La Lr a

+ L (8)
ar N* N* 0 Ar N* N* Afr

p p r ba r

Ag 0 1 tan 0o 0 AP 0 0

where

P NLNp r r 6 a a6 rLrN d

and is modified with respect to the derivatives bearing an asterisk to account for cross

products of inertia. (See ref. 1 and table I.) The reference trajectories for both the

longitudinal and lateral response modes are given by V, ao, and 0 . Equations (5)

to (8) also serve to indicate the individual elements of the Y, X, U, and P vectors,
as well as those of the H, D, F, and G matrices.

8



The remaining quantities to be determined in evaluating equation (2) are the

partial derivatives a Yi/a P generated by the matrix equations

aY. aX.
a i a( aH(P) aD(P)- H(P) - + X. + - U (9)

P aP P 1 p mi

and

d i F(P) G(P) a 0- F(P) + a XF + Um = O; (10)
it- 1 aP ap i ap mi 0 ap

which are, respectively, obtained by differentiating equations (3) and (4). The elements
of the aYi/aP and aXi/aP matrices are formed according to the rule for Jacobians,

whereas those for the matrices resulting from the product terms H(P) D(P)U
aF(P) G(P) ap i' aP mi'

0P Xi, and aP Ui are defined by

N

a ac N .(11)aik = aPX = x a
j=1

Instrumentation Error Models

The instrumentation models described by the following two sets of equations define
the manner in which the error sources to be analyzed are introduced in the respective
simulations of the output response and the control input measurements.

Output response measurements.- The true outputs Yi, as would be obtained in the
absence of any measurement errors, are generated by evaluating equations (3) and (4)
with the assumed true values of the parameters, initial states, and control inputs. Except
for initial state errors, which are readily simulated by choosing X 0  XO, the first group
of error sources to be modeled are those associated with the indicated instrument outputs

YIi" These errors are all of a static nature and are related to Yi by

YIi = TYi + Bi (12)

where T is a matrix of scale factors (diagonal elements), crosscoupling, and misaline-
ments, and B i represents biases for each component of Yi. For the longitudinal

motions, T is defined as
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1+e 0 0 0 0 0 0

0 (1+ q) 0 0 0 0 0

o _(vx (1 + EU) 0 0 9 vx +Excg) 0

T= 0 0 0 (1 + E ) 0 0 0

o 0 0 0 (1 + nx) Y(Ea+ EZCg (13)

o 0 0 0 Ynz 1 + cn z)  g

o 0 0 0 0 0 (+ e.)

where the short period approximation is obtained by deleting the fourth and fifth rows and

columns (which involve Au and Anx) so as to conform with the short period version of

equation (5). Similarly, for the lateral-directional motions,

( + e) 0 -(vx + Excg 0 0 0 0

o (1+EP) -YV 0 0 o o

0 Yr (1 + r) 0 0 0 0

T = 0 0 0 1 + E 0 0 0 (14)

o 0 0 0 (1+ Eny)(Eaz + Ezcg) Eax + EXC)

o 0 0 0 0 1+ E. -y

o 0 0 0 0 . 1+e.)

The elements of T are defined in more detail in reference 1.

The next group of error sources to be simulated are those arising from the dynamic

characteristics of the output measurements, which are assumed to be adequately approxi-

mated by first-order lags. The lagged outputs YLi are given by

o(YLi r -1 I - Li) (L() Y (15)
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where: r is a diagonal matrix of measurement time constants. The complete output-
y

measurements model then is obtained by adding a sequence of white noise vectors W i

to get

Ymi = YLi + Wi (16)

in which YLi is replaced by YIi when lags are to be ignored, and the weighting matrix

R appearing in equations (1) and (2) now is defined by

R ij = E iwijT i =  (17)

where E [wi = 0 at every sample point.

Control input measurements.- The measurements of the input control surface posi-

tions Umi used in evaluating equations (3) and (4) are modeled in essentially the same

manner as Ymi* By starting with the assumed true inputs Ui, the indicated instrument

readings UIi are represented as

UIi = TcU + B . (18)

which is of the same form as equation (12), except that the matrix Tc is diagonal and

contains only scale factor errors. As with YLi in equation (15), the dynamic charac-

teristics of the control input measurements are also approximated by first-order lags

d Li) - (ui - ULi) (UL(O) = U1(0)) (19)

where ULi represents the lagged inputs and rc is a diagonal matrix of measurement

time constants analogous to r . The addition of a sequence of white noise vectors Wci
similar to W i yields

Um i = ULi + W (20)
Li ci

which completes the simulation of the control input measurements.

Monte Carlo Computations

The values used for the measurement errors appearing in equations (16) and (20)

are listed in table I. These quantities are the zero-mean lc values employed in ref-

erences 1 and 5 and are utilized in conjunction with a pseudo-random number generator

to simulate sets of Ymi and Umi time histories for a number of Monte Carlo runs.
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By following the simulation procedure employed in references 1 and 2, the sensor location

errors (E axEaz vx) and the elements of Fy and rc are treated as constants which

remain fixed at their tabulated la values for all sets of Ymi and Umi generated.

The elements of Wi and Wci are given new random values at each t i of every set of

Ymi and U mi whereas the values for all of the remaining error sources are regener-

ated once for each such set so as to simulate random biases. A corresponding set of

parameter estimates P are computed by means of equation (2), and the resulting estima-

tion errors AP = P - P are formed by subtracting the assumed true parameter values.

The means and variances of the AP from M Monte Carlo runs then are calculated from

M

AP = E(AP) = AP (21)

j=1
and

M

E(PAP) - ( - aP P - (22)
M (

j=1
Further computations of a similar nature are made to permit evaluating the effects

of the AP on the estimates of the output response trajectories and the system open-loop

characteristic equation pole locations. Statistics of the former, for each value of ti, are

readily calculated from equations (21) and (22) by replacing AP. with their corresponding

Yi' as generated by evaluating equations (3) and (4) with the Pj. The real and complex
characteristic equation roots have the respective forms

1
s=-

(23)

s = -- w : iw ( 1- 2

where the appropriate values for T, , and are calculated by means of the following

equations from reference 6. The natural frequency w and damping C for the longitu-

dinal short period mode are given, respectively, by

w = IMqZ- VM
sp qw w

(24)1()
Csp 2 10sp Z w + M q ) I
sp 2p Zw M

Similarly, for the lateral-directional motions,

L*Y + N* ++N L (

rs 12Y ) (25)
= N *r-L r)

12



and

N _0 (26)
L*(YN N* + + L*
p /3r I v 0

give the spiral divergence and roll subsidence time constants, respectively, and

D

S+L + Nr+ T

CD 2w D

for the Dutch roll mode. As the short period roots of the longitudinal characteristic

equation become real for some of the M solutions for AP, equations (21) and (22) are

not applied to the values of 2; and scatter diagrams are used to indicate the distribution

of these quantities.

RESULTS AND ANALYSIS

The Monte Carlo analysis of the effects of unmodeled instrumentation errors out-

lined in the introduction was based on simulated flight data, generated from the aircraft

parameters and cruise flight conditions listed in table II and the two sets of control

input maneuvers plotted in figure 1. These choices permit examining the effects of

varying the information content of the simulated response measurements and the type of

aircraft and facilitate comparisons with similar results presented in references 1 and 2.

The effects of the unmodeled error sources were evaluated in three groups or categories,

designated as error cases, which, respectively, correspond to progressively adding

white measurement noise (case 0), static measurement errors (case 1), and dynamic lags

and control input errors (case 2) to the simulated data. The analysis presented includes

results for both the longitudinal short period and lateral-directional response modes.

Lastly, sensitivity computations were performed to identify the dominant error sources.

Error Analysis

In order to extend and make possible direct comparisons with the results for the

ensemble algorithm given in references 1 and 2, those for the present study also were

generated mainly for a high-performance military aircraft designated herein as aircraft F

(see table II) by using the ihput maneuvers designated as sequence 1 in figures 1(a) and

1(b). The Monte Carlo computations described previously were generally based on 50 sets

13



of simulated flight data; however, satisfactory statistical results were achieved in some

cases with as few as 25 sets. The effects of the unmodeled instrumentation errors on

the estimated aircraft parameters are analyzed; then, the corresponding perturbations to

the output response trajectories and characteristic equation pole locations are discussed.

Stability and control derivatives.- The statistics of the errors in the estimated air-

craft parameters, for both the short period and lateral response modes, are presented in

figure 2 for each of the three error cases. This information is expressed in terms of

percentage deviation from the assumed true value of each such derivative presented and

includes the mean and standard deviation for every element of the resulting AP as

determined from equations (21) and (22). For figure 2, and for all subsequent plots of a

similar nature, the mean and standard deviation of each plotted quantity are, respectively,
denoted by crosshatched and solid bars as indicated.

In generating the data plotted in figure 2, the estimation errors were found to be

very large for the longitudinal derivatives Mu, Xu, Zu, and Xw, associated with the

phugoid, and for the lateral derivatives Ya and Y6r. Further analysis indicated that

these errors, which ranged up to 20 times the assumed true values of their respective

derivatives for case 2, tend to be greatly exaggerated with respect to those derivatives

for which the response data contain insufficient information. Since the phugoid period

for aircraft F is roughly 22 times the 15-second [o,tfJ data-sampling interval used, the

results for Mu Xu' ZU' and Xw were judged to be inaccurately determined because

of insufficient information, and only those for the derivatives retained in the short period

approximation are presented. The values for Y and Y6r were omitted for the same

reason, but these two derivatives were allowed to vary in the estimation process.

Reference to figure 2 shows that the static errors added by case 1 cause much

larger parameter inaccuracies than those due to white measurement noise alone (case 0)

and produce biases in most of the elements of AP for both response modes which are

comparable to their respective standard deviations. These biases proved to be caused

mainly by the constant errors Eax, Eaz' and Evx (see table I) and not by any statistical

inaccuracy that could be attributed to the number of data sets used. Repeating the case 1

computations with these three error sources set to zero showed the biases to decrease by

a factor of- 10 or more in nearly all of the derivatives for both response modes, which

essentially reduces them to a negligible level. Comparisons of the Monte Carlo results

presented in figure 2 with those obtained by using the ensemble algorithm generally indi-

cated good agreement but were limited to cases 0 and 1 since case 2 was not evaluated in

references 1 and 2. With the exception of some of the weaker derivatives, the differences

amounted to only a few percent in both the mean and random components of AP. The

results for case 2 show that dynamic lags and control input errors can cause much larger

inaccuracies in the estimated derivatives than the combined effects of white noise and

static errors in the response measurements.
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The effects of initial state errors were also evaluated; however, the resulting

changes in AP proved to be very small (about equal to those for case 0) so that the

utility of estimating X0 would seem questionable for either case 1 or case 2. Since

the results for case 1 imply that the contributions to AP from the biases in the response

measurements are small compared to those from the dynamic lags and control input

errors, the value of estimating the elements of B also appears doubtful. Estimating

case 2 error sources (assuming they are present in the flight data) would, therefore, seem

to offer better prospects for reducing inaccuracies in the estimated derivatives. One

8Yi T aYid
further aspect of the computations that should be mentioned is that - R-1(

remained almost unchanged for all three error cases, so that the inverse of this matrix

is not indicative of the error covariance matrix EAPAP except for case 0.

Output response trajectories.- The effects of AP on the resulting output response

trajectories are illustrated by the time-history curves presented in figure 3. Plotted for

each element of the short period and lateral output vectors are the assumed true response

(based on the parameter values in table II taken from refs. 7, 8, and 9) and also the means

and standard deviations of both the measured and estimated response as calculated from

equations (21) and (22). Only the curves for case 2 are plotted since those for cases 0

and 1 exhibit almost no deviation from the true trajectories. These results show that

the perturbations to the response trajectories are not very severe; however, their

importance depends on the particular application.

Reference to figure 3 indicates that the largest perturbations for both response

modes occur for the attitude angles and increase to fairly large values over the 15-second

interval plotted. The reason for this propagation was traced to the effects of the AP on

the integration of the aircraft equations of motion. Inspection of equation (6) for the

short period mode shows that the errors in Mq, Mw, and M6e directly affect the

integration of Aq. The resulting inaccuracy in Aq is, in turn, propagated by the inte-

gration of AO, so that the effect on the pitch attitude error A0 is twofold. Equation (8)

for the lateral mode indicates that the roll attitude error A0 results from a similar

double propagation of the errors in L, L, Lr, L6a , and L6r by the integration of

AP and AP. The perturbations to the attitude angles AO and A6 thus depend on

the errors in these eight derivatives, which all increase appreciably between cases 1

and 2. (See fig. 2.)

The relative positions of the Yi and Ymi time histories plotted in figure 3,fur-

ther indicate the effects of the unmodeled instrumentation errors on the fit between the

estimated and measured.response curves, which appears to be generally good except for

the attitude angles AO and A0. The estimated response curves (except that for Aq)

exhibit negligible biases, but their standard deviations are larger than those for the

15



corresponding measured curves. This behavior of the standard deviation curves is

opposite to that observed for cases 0 and 1 (where some compensation of the measure-

ment errors by the algorithm is evident), and it may be due to process noise introduced

in equations (3) and (4) by control input errors (case 2) which degrades parameter esti-

mates obtained with the modified Newton-Raphson algorithm. (See ref. 10.)

Characteristic equation pole locations.- The s-plane representation is employed

for the scatter diagrams presented in figure 4 to illustrate the effects of AP on the

resulting characteristic equation pole locations. The plotted pole locations for both

response modes were calculated from equations (24) to (27) and include data points for

each of the M sets of P used in generating figures 2 and 3. The results for the dif-

ferent poles are denoted by plotting symbols as shown, and their assumed true locations

(based on the parameter values in table II) are indicated by arrows. As was the case

with figure 3, only the results for case 2 are presented since those for cases 0 and 1 also

showed very little departure from the true values. Although the perturbations to the

characteristic equation pole locations do not appear to be much more severe than those

for the response trajectories, their importance again should be judged by the application.

In addition to scatter, each group of estimated pole locations plotted in figure 4

exhibited biases which were largest for the short period and roll subsidence poles.

Evaluation of equations (24), with only the mean components of the errors in M , Mw,q' w'
and Zw included, yielded a surprisingly accurate value for the bias in the estimated

short period pole locations. Further computations showed that the mean error in Mq

alone accounted for roughly 95 percent of the total bias. Similar evaluations of equa-

tion (26) indicated that the mean error in L dominated the bias in the estimated roll-

subsidence pole location to nearly the same extent. Reference to figure 2 again showed

that the errors in those derivatives which dominated the resulting perturbations increased

appreciably between cases 1 and 2.

Effect of Control Input Manuever

In order to determine how the results presented in figures 2, 3, and 4 might vary

for an alternate choice of control inputs, which also change the information content of

the aircraft response, corresponding data were generated by using the input maneuvers
designated as sequence 2 in figures 1(c) and 1(d). The sequence 2 inputs for both

response modes are comprised of ordinary short doublet pulses and were chosen to pro-
vide a comparison with results for maneuvers of the type often used in actual flight tests.
As evident from figure 1, these inputs differ both in form and duration from those for

sequence 1 which consist of doublets augmented with trailing step pulses.

In order to facilitate comparisons of the parameter estimation errors for the two
sets of input maneuvers, the ratio of AP for sequence 2 to that for sequence 1,
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AP AP', is plotted in figure 5 for each of the short period and lateral derivatives. The

actual AP 2 percentage values can easily be obtained by multiplying AP 1 by AP2 P1

if desired. For example, the values of P1and AP 2  P1 for the mean error in Lp

(from figs. 2 and 5) are, respectively, about 20 percent and 0.5, which give 10 percent as

the value of the mean error in Lp for sequence 2.

Except for the ratios of the mean errors in some of the lateral derivatives for

case 0 (which are inaccurately formed because of round-off errors arising from the

smallness of the numbers involved), the fact that the values for most of the Ai 2 /Ai
ratios plotted in figure 5 are nearly unity indicates essentially the same magnitude AP

errors for both sets of inputs. Even though the aircraft response differs substantially,

as evident from the corresponding state variable time histories also plotted in figure 1,

the increase in information content afforded by the use of sequence 1 did not result in any

appreciable decrease in AP. Thus, the information content of the response data does

not appear to be deficient for either set of input maneuvers. Although the assumed true

response trajectories for the two sets of inputs also exhibit the differences just noted,

the magnitudes and overall characteristics of the resulting perturbations are essentially

the same for each corresponding element of Yi. The two sets of characteristic

equation pole locations showed even smaller differences, which is consistent with the

fact that the parameter estimation accuracy remained almost unchanged. Because of

the limited additional information they contribute, the response trajectories and pole

location plots for sequence 2 are not presented for either response mode.

Comparisons With Results for Different Classes of Aircraft

In order to further determine how the effects of the unmodeled instrumentation

errors might vary for different aircraft, the previous computations were repeated by

using the parameters and nominal flight conditions for the large commercial transport

aircraft designated herein as aircraft T and for the light general aviation aircraft desig-

nated herein as aircraft G also listed in table II. These data include results for both the

short period and lateral response modes, and they were generated by using the sequence 1

input maneuvers. The ratio of AP for aircraft T and aircraft G to that for aircraft F,
APT A F  AGA A

that is, APT/PF and APG/F, was formed in the same manner as AP 2  1 to

facilitate comparisons of the results for the three types of aircraft. The values of

APT/APF are presented in figures 6(a) and 6(b), and those for AP G /PF in fig-

ures 6(c) and 6(d). Although AZbe was estimated, no results for AZ6e are included

in figure 6(c) since the assumed true value for this derivative was zero for aircraft G.

(See table II.) As with figure 5 some of the case 0 ratios are inaccurate; however, these

results are of minor importance as the elements of AP for each of the three aircraft

are all very small for case 0 anyway. The APT/APF ratios plotted in figures 6(a)
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and 6(b) indicate that the elements of AP for aircraft T and F are about the same for

the short period mode but are generally larger for most of the aircraft T lateral deriva-

tives (particularly the case 2 values for strong derivatives such as L* and N'* as

previously discussed in conjunction with fig. 3). The corresponding values of APG PF

presented in figures 6(c) and 6(d) exhibit even larger differences between the two sets of

parameter estimation errors for each response mode. These results indicate that the

effects of unmodeled instrumentation errors on P can vary appreciably for different

classes of aircraft.

The perturbations to the output response trajectories for aircraft T and G also

exhibited much the same overall characteristics as those for aircraft F; and the plots

for these curves were, therefore, omitted for the same reason as those for sequence 2.

The corresponding plots for characteristic equation pole location for case 2, however,

are presented in figure 7. Comparisons of figures 4 and 7 indicate that the pole location

errors for aircraft T and G are very similar to those for aircraft F, except those for the

aircraft G short period poles which exhibit a much larger scatter pattern. Evaluations

of equations (24), similar to those performed in conjunction with figure 4, showed the

increased scatter to be caused mainly by AM w  and AZw which are much larger for

aircraft G than for either aircraft T or F. The effects of the errors in these derivatives

are further manifested by the fact that the short period roots of the longitudinal charac-

teristic equation become real and unequal for 5 of the 50 sets of pole locations plotted in

figure 7(c).

Identification of Dominant Error Sources

The remaining objective of the present study was to identify which of the error

sources modeled in equations (16) and (20) dominate the resulting perturbations plotted

in figures 2, 3, and 4. The initial phase of this process showed that, although AP for

error case 1 is much larger than that for case 0, neither white noise nor static errors

in Ymi proved to have much effect on either the estimated response trajectories or

characteristic equation pole locations. These error sources thus appeared to be rela-

tively unimportant, indicating that the perturbations to Yi and ' evident in figures 3

and 4 were produced mainly by the effects of the dynamic lags and control-input errors.

The addition of only dynamic lags, as given by equations (15) and (19), to case 1

was found to produce negligible changes in the random components of AP for both the

short period and lateral derivatives, but the magnitudes of the mean or bias components

generally increased. Results generated by including the individual elements of y and
y

Fc one at a time indicated that these changes are produced principally by the 1 and

67e lags for the short period mode and by -r and 76a for the lateral mode. Fur-

ther analysis showed that the biases in the pole locations evident in figure 4 are noticeably

18



affected by these lags, whereas the corresponding Y trajectories remain essentially

unchanged. Except for the effects of static bias errors in the lateral control input meas-

urements, as discussed in the following paragraph, the resultant biases in AP (fig. 2)

and s .(fig. 4) for case 2 proved to be caused mainly by the two dominant lags for each

response mode. Although the effects of dynamic lags do not appear to be very large for

the cutoff frequencies represented by the time constants listed in table I, these values

are near a threshold such that the biases they produce may increase rapidly if onboard

filtering below these frequencies is employed.

The random components of AP and AYi, and the scatter in s for case 2, thus

were traced to the static control input errors. By adding these error sources to case 1

one at a time, as was done with the lags, the elevator white noise (W'be)i and the aile-

ron bias B 6 a were found to be the dominant static control measurement errors for the

short period and lateral modes, respectively. This procedure further indicated that the

random parts of the perturbations evident in figures 2, 3, and 4 are caused mainly by

these error sources. As mentioned previously, Bba also contributes to the resultant

biases in AP, AYi, and s for the lateral mode. These biases are most noticeable in

the roll attitude trajectory (fig. 3(b)) and in the root location for the roll subsidence time

constant (fig. 4(b)). Although only results for aircraft F are discussed, the dominant

error sources were determined to be the same for all three aircraft.

CONCLUSIONS

The results from a Monte Carlo analysis of the effects of unmodeled flight

instrumentation errors on the estimation of aircraft stability and control derivatives indi-

cate the following conclusions:

1. Aircraft derivatives estimated from flight data, obtained with existing instru-

mentation, may be in error by amounts which are comparable to their respective nominal

values. The effects of these errors on the corresponding estimates of the output

response trajectories and characteristic equation pole locations do not appear to be very

severe; however, their importance depends on the particular application.

2. The perturbations to the estimated parameters, response trajectories, and pole

locations contributed by dynamic lags and control input errors are much larger than

those arising from white noise and static errors in the response data combined.

3. The effects of initial state errors and output measurement biases also are

comparatively small; hence, the utility of estimating them would seein questionable par-

ticularly if the flight data contain dynamic lags oi control input.errors.
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4. The effects of the unmodeled instrumentation errors can be greatly exaggerated

if response data having low information content are used. The exaggeration is least for

strong or dominant derivatives and is greatest for weak or ill-conditioned ones.

5. Although some exceptions may be noted, the magnitudes of the resulting param-

eter estimation errors for the same choice of input maneuvers can vary appreciably

for different classes of aircraft with some tendency to be largest for light aircraft and

smallest for heavy transports.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., August 13, 1974.
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ND TABLE I.- STANDARD DEVIATIONS OF NOMINAL INSTRUMENTATION ERRORS

[Data taken from reference 1, except as noted]

Instrument ubscript Bias, B, and Scale factor Sensor location c.g. location Misalinement Time constant, a

Instrument Subscript noise, W E E, m E, m y, deg 7, s

Gyros

Pitch attitude 0 0.1500 0.005 --- ---- --- 0.333

Roll attitude P .5000 .005 ---- ---- --- .333

Pitch rate q .100 deg/s .005 ---- ---- --- .333

Roll rate p .100 deg/s .005 ---- ---- 0.60 .333

Yaw rate r .100 deg/s .005 ---- .60.333

F nAccelerometers

Forward nx, axb 0.005 g 0.005 0.305 ---- 0.60 0.100

Normal nz, az b  .005 g .005 .305 ---- .60 .100

Lateral ny, ayb .0005 g .005 0 ---- --- .100

Pitch t .100 deg/s 2  .005 ---- ---- --- .333

Roll p .100 deg/s 2  .005 ---- ---- .60 .333

Yaw i .100 deg/s 2  .005 -------- .60 .333

Airflow

a-vane a, vxb 0.1000 0.005 0.305 ---- --- 0.333

p-vane p .0500 .005 ---- ---- --- .333

Pitot tube u .305 m .005 ---- ---- --- 1.000

Control surface position potentiometers

Elevator 6e 0.1000 0.005 ---- ---- --- 0.500

Aileron 6a .1000 .005 ---- ---- --- .500

Rudder 6r .1000 .005 ---- ---- -- .500

Airframe center of gravity

Forward xcg ------- ---- ---- 0.152 ---

Lateral ycg ---------- ---- 0 --- ----

Normal zcg ---------- ---- ---- .152 ---

aData from reference 5.
b Subscript applies to sensor location only.



TABLE II.- REFERENCE TRAJECTORIES AND STABILITY AND

CONTROL DERIVATIVES FOR AIRCRAFT TESTED

Quantity Aircraft F a Aircraft T b Aircraft G c

Reference trajectory:

V, m/s ......... . 252.2 251.2 54.5

o, deg ......... . 2.6 0 -0.7

0 o,deg . . . . . . . . . 2.6 0 -0.6

Altitude, rnm ....... . 6096.0 10 058.4 1524.0

Longitudinal:

Mq, - 1  . . . . . . . . . -0.7192 -0.9240 -6.7346

Mw, 1/s-m ...... . -0.0338 -0.0364 -0.1664

Zw, s-1 . . . . . . .. . .- 0.7624 -0.8060 -2.0702

Mu, 1/s-mrn ....... . . -0.0015 -0.0026 -0.0020

Zu, s-1 . . . . . . . . .  -0.0617 -0.0735 -0.3844

Xu, s - 1 ......... . -0.0070 -0.0140 -0.0427

Xw, s - 1  . . . . . . . . . 0.0273 0.0043 0.0702

M6e, 1/s2 -rad . . . . . -16.2100 -4.5900 -24.3809

Z6e, m/s 2 -rad . . . . . -21.7514 -10.5461 0

Lateral:

Y , ,-1 . . . . . . . . . -0.1569 -0.0868 -0.1630

L ,s-2 . . . . . . -15.9779 -4.4103 -23.2641

N* s-2 ......... .6.5630 2.1405 5.5036

L* s - 1  . . . . . . . . -1.6084 -1.1812 -11.5311

N s-1  . . . . . . . . -0.0997 -0.0204 -1.3632

L s- 1  . . . ... . . . . 0.3840 0.3343 2.6918

Nr, s - 1  . . . . . . . . -0.3432 -0.2281 -1.2138

Y6a' 1/s-rad ...... -0.0034 0 0

L6a, 1/s 2 -rad ...... 10.8972 2.1102 53.7865

N*a, 1/s 2 -rad ...... 0.7063 -0.0652 0.2103

Y6r, 1/s-rad . ..... 0.0246 0.0222 0

Lr , 1/s 2 -rad. . .2.5431 0.5490 0.9974

N *r, 1/s 2 -rad. . .... . -3.9028 -1.1644 -6.1719

a Data from reference 8.

bData from reference 7.

C Data from reference 9.
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Figure 1.- Control input maneuvers and resulting state-

variable response trajectories for aircraft F.
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Figure I.- Concluded.
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Figure 2.- Errors in estimated parameters for aircraft F.
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Figure 3.- Concluded.
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Figure 4.- Estimated characteristic equation pole locations for aircraft F.
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Figure 5.- Effect of control input maneuver for aircraft F.
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Figure 6.- Comparison of parameter estimation errors for

aircraft T and aircraft G with those for aircraft F.
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Figure 7.- Estimated characteristic equation pole
locations for aircraft T and aircraft G.
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