593 research outputs found

    Hierarchical Chain Model of Spider Capture Silk Elasticity

    Full text link
    Spider capture silk is a biomaterial with both high strength and high elasticity, but the structural design principle underlying these remarkable properties is still unknown. It was revealed recently by atomic force microscopy that, an exponential force--extension relationship holds both for capture silk mesostructures and for intact capture silk fibers [N. Becker et al., Nature Materials 2, 278 (2003)]. In this Letter a simple hierarchical chain model was proposed to understand and reproduce this striking observation. In the hierarchical chain model, a polymer is composed of many structural motifs which organize into structural modules and supra-modules in a hierarchical manner. Each module in this hierarchy has its own characteristic force. The repetitive patterns in the amino acid sequence of the major flagelliform protein of spider capture silk is in support of this model.Comment: 4 pages, 3 figures. Will be formally published in PR

    Microscopic formulation of the Zimm-Bragg model for the helix-coil transition

    Get PDF
    A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent literature.Comment: 11 pages, 2 figure

    Public perceptions of expert disagreement: Bias and incompetence or a complex and random world?

    Get PDF
    30 page PDFExpert disputes can present laypeople with several challenges including trying to understand why such disputes occur. In an online survey of the U.S. public, we used a psychometric approach to elicit perceptions of expert disputes for 56 forecasts sampled from seven domains (climate change, crime, economics, environment, health, politics, terrorism). People with low education, or with low self-reported knowledge of the topic, were most likely to attribute expert disputes to expert incompetence. People with higher self-reported knowledge tended to attribute disputes to expert bias due to financial or ideological reasons. The more highly educated and cognitively able were most likely to attribute disputes to natural factors, such as the irreducible complexity and randomness of the phenomenon. We highlight several important implications of these results for scientists and risk managers and argue for further research on how people perceive and grapple with expert disputes.We would like to acknowledge the generous support of the National Science Foundation: This material is based upon work supported by NSF under Grant Nos. #1231231 (Robin Gregory, PI; Nathan Dieckmann co-PI) and #0925008 (Nathan Dieckmann, PI) to Decision Research. All views expressed in this paper are those of the authors alone

    Glassy transition in a disordered model for the RNA secondary structure

    Full text link
    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function.Comment: 4 pages, 3 figure

    Radiative lifetime measurements of rubidium Rydberg states

    Full text link
    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 < n < 45. To enable long-lived states to be measured, our experiment uses slow-moving Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a less sensitive method, and are also in excellent agreement with theory.Comment: 27 pages,6 figure

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Carbon Nanotubes and Graphene as Additives in 3D Printing

    Get PDF
    3D printing is a revolutionary technology for the consumer and industrial markets. As the technology for 3D printing has expanded, the need for multi-materials that support fused deposition modeling and other forms of additive manufacturing is increasing. 3D printing filaments infused with carbon nanotubes and graphene are now commercially available, with the promise of producing conductive composites. This chapter explores some of the research, products, and challenges involved in bringing the next generation of functional printing materials to the consumer market

    Statistical Mechanics of Membrane Protein Conformation: A Homopolymer Model

    Full text link
    The conformation and the phase diagram of a membrane protein are investigated via grand canonical ensemble approach using a homopolymer model. We discuss the nature and pathway of α\alpha-helix integration into the membrane that results depending upon membrane permeability and polymer adsorptivity. For a membrane with the permeability larger than a critical value, the integration becomes the second order transition that occurs at the same temperature as that of the adsorption transition. For a nonadsorbing membrane, the integration is of the first order due to the aggregation of α\alpha-helices.Comment: RevTeX with 5 postscript figure
    corecore