121 research outputs found

    Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln

    Get PDF
    In this study energy recovery of digestate from a biogas plant was investigated via air gasification. Gasification tests were executed in a pilot scale rotary kiln plant having a nominal biomass feeding rate of about 20 kg/h. The equivalence ratio was varied from 0.22 to 0.39 with the goal to approach the autothermal condition. Tests were carried out for 5 h in steady state condition. Syngas composition, char and gas yields were measured. To improve the cold gas efficiency of the process, a mixture of digestate and almond shells (60:40 wt%) was gasified. Autothermal condition was reached with the mixture using equivalence ratio of 0.30 where the corresponding cold gas efficiency achieved the maximum value of 55%. The raw gas had a lower heating value of 4–5 MJ/Nm3. To evaluate possible improvements in the produced gas properties, in this work the effect of steam injection was also investigated

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710

    A Reference High-Pressure CO2\u3c/sub\u3e Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study

    Get PDF
    © 2018, The Author(s). This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation nex=d(1+exp[(-ln(P)+a)/b])c, [nex-surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = −6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (Uk = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used

    Estoques de carbono e fluxo de gases do efeito estufa em agrossistemas no Brasil.

    Get PDF
    O trabalho objetivou apresentar dados atuais sobre os acĂșmulos de C no solo e potenciais reduçÔes de emissĂŁo de GEE para a atmosfera nos principais agrossistemas no Brasil, incluindo os envolvidos na produção de biodiesel, cana-de-açĂșcar, mudanças do uso da terra na AmazĂŽnia e pastagens

    A reference high-pressure CH<sub>4</sub> adsorption isotherm for zeolite Y: results of an interlaboratory study

    Get PDF
    This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess methane adsorption isotherms on NIST Reference Material RM 8850 (Zeolite Y), at 25 °C up to 7.5 MPa. Twenty laboratories participated in the study and contributed over one-hundred adsorption isotherms of methane on Zeolite Y. From these data, an empirical reference equation was determined, along with a 95% uncertainty interval (Uk=2). By requiring participants to replicate a high-pressure reference isotherm for carbon dioxide adsorption on NIST Reference Material RM 8852 (ZSM-5), this interlaboratory study also demonstrated the usefulness of reference isotherms in evaluating the performance of high-pressure adsorption experiments

    Microwave Swing Regeneration of Aqueous Monoethanolamine for Post-Combustion CO2 Capture

    Get PDF
    The authors gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) under grants EP/N024672/1, EP/J019720/1 and EP/J019704/1. Andrew MacDonald (University of Edinburgh) is thanked for contributions to some of the experimental work.Peer reviewedPublisher PD
    • 

    corecore