31 research outputs found

    MARK4 controls ischaemic heart failure through microtubule detyrosination.

    Get PDF
    Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.BHF fellowship grant (FS/14/28/30713), Issac Newton Trust Grant (18.40u), and Cambridge BHF Centre of Research Excellence grants (RE/13/6/30180 and RE/18/1/34212)

    4-trifluoromethyl-substituted coumarins with large Stokes shifts: Synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy.

    No full text
    Bright and photostable fluorescent dyes with large Stokes shifts are widely used as sensors, molecular probes, and light-emitting markers in chemistry, life sciences, and optical microscopy. In this study, new 7-dialkylamino-4-trifluoromethylcoumarins have been designed for use in bioconjugation reactions and optical microscopy. Their synthesis was based on the Stille reaction of 3-chloro-4-trifluoromethylcoumarins and available (hetero)aryl- or (hetero)arylethenyltin derivatives. Alternatively, the acylation of 2-trifluoroacetyl-5-dialkylaminophenols with available (hetero)aryl- or (hetero)arylethenylacetic acids followed by intramolecular condensation afforded coumarins with 3-(hetero)aryl or 3-[2-(hetero)aryl]ethenyl groups. Hydrophilic properties were provided by the introduction of a sulfonic acid residue or by phosphorylation of a primary hydroxy group attached at C-4 of the 2,2,4-trimethyl-1,2-dihydroquinoline fragment fused to the coumarin fluorophore. For use in immunolabeling procedures, the dyes were decorated with an (activated) carboxy group. The positions of the absorption and emission maxima vary in the ranges 413–480 and 527–668 nm, respectively. The phosphorylated dye, 9,CH[DOUBLE BOND]CH-2-py,H, with the 1-(3-carboxypropyl)-4-hydroxymethyl-2,2-dimethyl-1,2-dihydroquinoline fragment fused to the coumarin fluorophore bearing the 3-[2-(2-pyridyl)ethenyl] residue (absorption and emission maxima at 472 and 623 nm, respectively) was used in super-resolution light microscopy with stimulated emission depletion and provided an optical resolution better than 70 nm with a low background signal. As a result of their large Stokes shifts, good fluorescence quantum yields, and adequate photostabilities, phosphorylated coumarins enable two-color imaging (using several excitation sources and a single depletion laser) to be combined with subdiffractional optical resolution

    Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides

    No full text
    Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner

    Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco.

    No full text
    The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXX-mediated receptor trafficking. Protein-protein interaction studies show that the VSR tail interacts with the ÎĽ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed
    corecore