423 research outputs found

    A cryogenic scan mechanism for use in Fourier transform spectrometers

    Get PDF
    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described

    Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    Get PDF
    Water vapour is one of the most important greenhouse gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a greenhouse gas but also because of its role in amplifying other feedbacks such as clouds and albedo. In recent decades, monitoring of water vapour on a regular and continuous basis has become possible as a result of the steady increase in the number of deployed global positioning satellite (GPS) ground-based receivers. However, the Horn of Africa remained a data-void region in this regard until recently, when some GPS ground-receiver stations were deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of a Fourier transform infrared spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of precipitable water vapour (PWV) from GPS, FTIR, radiosonde and interim ECMWF Re-Analysis (ERA-Interim) over Ethiopia. The PWV from the three instruments and the reanalysis show good correlation, with correlation coefficients in the range from 0.83 to 0.92. On average, GPS shows the highest PWV followed by FTIR and radiosonde observations. ERA-Interim is higher than all measurements with a bias of 4.6 mm compared to GPS. The intercomparison between GPS and ERA-Interim was extended to seven other GPS stations in the country. Only four out of eight GPS stations included simultaneous surface pressure observations. Uncertainty in the model surface pressure of 1 hPa can cause up to 0.35 mm error in GPS PWV. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. The comparison between GPS and ERA-Interim PWV over the seven other GPS stations shows differences in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This feature is also prevalent in diurnal and seasonal variabilities. The spatial variation in the relationship between the two data sets is partly linked to variation in the skill of the European Centre for Medium-Range Weather Forecasts (ECMWF) model over different regions and seasons. This weakness in the model is related to poor observational constraints from this part of the globe and sensitivity of its convection scheme to orography and land surface features. This is consistent with observed wet bias over some highland stations and dry bias over few lowland stations. The skill of ECMWF in reproducing realistic PWV varies with time of the day and season, showing large positive bias during warm and wet summer at most of the GPS site

    The ground-based FTIR network's potential for investigating the atmospheric water cycle

    Get PDF
    We present tropospheric H<sub>2</sub><sup>16</sup>O and HD<sup>16</sup>O/H<sub>2</sub><sup>16</sup>O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared) spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively). We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM). If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails

    Quality assessment of O3 profiles measured by a state-of-the-art ground-based FTIR observing system

    Get PDF
    Ground-based Fourier Transform Infra-Red (FTIR) measurements are an important component of the global atmospheric monitoring system. Their essential role in validating satellite measurements requires a precise documentation of their quality. Here we present an extensive quality documentation of ground-based FTIR O3 profiles. This is done in the form of theoretical and empirical error estimations. The latter is achieved by an intercomparison with ECC-sonde O3 profiles. The FTIR O3 amounts are obtained by applying the most advanced instrumentation and retrieval strategies and consequently represent the current potential of this remote sensing technique.The FTIR activities are supported by the European Commission and the Deutsche Forschungsgemeinschaft by funding via the projects SCOUT-O3 and GEOMON (contract SCOUT-O3-505390 and GEOMON-036677) and RISOTO (Geschäftszeichen SCHN 1126/1-1), respectively

    Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/01

    Get PDF
    International audienceDuring the Arctic winter of 2000/01, ground-based FTIR and millimetre-wave measurements revealed significant amounts of ClO over Kiruna after the final warming in February 2001. In fact, column amounts of ClO were still increased in March 2001 when temperatures were about 20K above the PSC (Polar Stratospheric Clouds) threshold. At these temperatures, chlorine activation due to heterogeneous processes on PSCs is not possible even in the presence of strong lee wave effects. In order to discuss possible reasons of this feature, time series of other chemical species will be presented and discussed, too. Measurements of HF and COF2 indicated that vortex air was still observed in mid-March 2001. Since the time series of HNO3 column amounts do not give any evidence of a denitrification later than 11 February, chlorine activation persisting for several weeks after the presence of PSCs due to denitrification is rather unlikely. The photolysis of ClONO2-rich air which had been formed at the end of February and beginning of March 2001 as well as chlorine activation due to the presence of an unusual aerosol layer are discussed as possible causes of the increased ClO column amounts after the final warming

    Trends of HCl, ClONOâ‚‚, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations

    Get PDF
    Trends of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) total column abundances above Kiruna (Northern Sweden, 67.84∘N^\circ\text{N}, 20.41∘E^\circ\text{E}) derived from nearly 14 years (1996–2009) of measurement and model data are presented. The measurements have been performed with a Bruker 120HR (later Bruker 125 HR) Fourier transform infrared (FTIR) spectrometer and the chemistry-transport model (CTM) used was KASIMA (KArlsruhe SImulation model of the Middle Atmosphere). The total column abundances of ClONO2 and HF calculated by KASIMA agree quite well with the FTIR measurements while KASIMA tends to underestimate the HCl columns. To calculate the long-term trends, a linear function combined with an annual cycle was fitted to the data using a least squares method. The precision of the resulting trends was estimated with the bootstrap resampling method. For HF, both model and measurements show a positive trend that seems to decrease in the last few years. This suggests a stabilisation of the HF total column abundance. Between 1996 and 2009, KASIMA simulates an increase of (+1.51±0.07) %/yr which exceeds the FTIR result of (+0.65±0.25) %/yr. The trends determined for HCl and ClONO2 are significantly negative over the time period considered here. This is expected because the emission of their precursors (chlorofluorocarbons and hydrochlorofluorocarbons) has been restricted in the Montreal Protocol in 1987 and its amendments and adjustments. The trend for ClONO2 from the FTIR measurements amounts to (−3.28±0.56)%/yr and the one for HCl to (−0.81±0.23)%/yr. KASIMA simulates a weaker decrease: For ClONO2, the result is (−0.90±0.10) %/yr and for HCl (−0.17±0.06) %/yr. Part of the difference between measurement and model data can be explained by sampling and the stronger annual cycle indicated by the measurements. There is a factor of about four between the trends of HCl and ClONO2 above Kiruna for both measurement and model data

    In vivo imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model

    Get PDF
    Pathological alterations of tau protein play a significant role in the emergence and progression of neurodegenerative disorders. Tauopathies are characterized by detachment of the tau protein from neuronal microtubules, and its subsequent aberrant hyperphosphorylation, aggregation and cellular distribution. The exact nature of tau protein species causing neuronal malfunction and degeneration is still unknown. In the present study, we used mice transgenic for human tau with the frontotemporal dementia with parkinsonism-associated P301S mutation. These mice are prone to develop fibrillar tau inclusions, especially in the spinal cord and brainstem. At the same time, cortical neurons are not as strongly affected by fibrillar tau forms, but rather by soluble tau forms. We took advantage of the possibility to induce formation of neurofibrillary tangles in a subset of these cortical neurons by local injection of preformed synthetic tau fibrils. By using chronic in vivo two-photon calcium imaging in awake mice, we were able for the first time to follow the activity of individual tangle-bearing neurons and compare it to the activity of tangle-free neurons over the disease course. Our results revealed strong reduction of calcium transient frequency in layer 2/3 cortical neurons of P301S mice, independent of neurofibrillary tangle presence. These results clearly point to the impairing role of soluble, mutated tau protein species present in the majority of the neurons investigated in this study
    • …
    corecore