674 research outputs found

    Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt

    Get PDF
    During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea

    Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    Get PDF
    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF

    Cellulose Ether-Based Liquid Crystal Materials: Review Article

    Get PDF
    The development of liquid crystal materials via nanotechnology has become an interesting subject of research in optical material chemistry. One of the significant nanomaterials is cellulose-based nanoparticles. In this review article, we highlighted the classification of liquid crystal materials (LCs), and types of cellulose-NPs and their characterization as LCs materials. Finally, we present our promising data on the synergistic effect of cellulose-NPs on liquid crystal behavior of ethyl cellulose- and hydroxypropyl cellulose- nanocomposites

    Detector requirements for single mask edge illumination x-ray phase contrast imaging applications

    Full text link
    Edge illumination (EI) is a non-interferometric X-ray phase contrast imaging (XPCI) method that has been successfully implemented with conventional polychromatic sources, thanks to its relaxed coherence requirements. Like other XPCI methods, EI enables the retrieval of absorption, refraction and ultra-small angle X-ray scattering (USAXS) signals. However, current retrieval algorithms require three input frames, which have so far been acquired under as many different illumination conditions, in separate exposures. These illumination conditions can be achieved by deliberately misaligning the set-up in different ways. Each one of these misaligned configurations can then be used to record frames containing a mixture of the absorption, refraction and scattering signals. However, this acquisition scheme involves lengthy exposure times, which can also introduce errors to the retrieved signals. Such errors have, so far, been mitigated by careful image acquisition and analysis. However, further reduction to image acquisition time and errors due to sample mask/sample movement can increase the advantages offered by the EI technique, and enable targeting more challenging applications. In this paper, we describe two simplified set-ups that exploit state-of-the-art detector technologies to achieve single-shot multi-modal imaging.Comment: 10 pages, 5 figures, Position Sensitive Detectors 11 conferenc

    A comparison of lysosomal enzymes expression levels in peripheral blood of mild- and severe-Alzheimer’s disease and MCI patients: implications for regenerative medicine approaches

    Get PDF
    The association of lysosomal dysfunction and neurodegeneration has been documented in several neurodegenerative diseases, including Alzheimer’s Disease (AD). Herein, we investigate the association of lysosomal enzymes with AD at different stages of progression of the disease (mild and severe) or with mild cognitive impairment (MCI). We conducted a screening of two classes of lysosomal enzymes: glycohydrolases (β-Hexosaminidase, β-Galctosidase, β-Galactosylcerebrosidase, β-Glucuronidase) and proteases (Cathepsins S, D, B, L) in peripheral blood samples (blood plasma and PBMCs) from mild AD, severe AD, MCI and healthy control subjects. We confirmed the lysosomal dysfunction in severe AD patients and added new findings enhancing the association of abnormal levels of specific lysosomal enzymes with the mild AD or severe AD, and highlighting the difference of AD from MCI. Herein, we showed for the first time the specific alteration of β-Galctosidase (Gal), β-Galactosylcerebrosidase (GALC) in MCI patients. It is notable that in above peripheral biological samples the lysosomes are more sensitive to AD cellular metabolic alteration when compared to levels of Aβ-peptide or Tau proteins, similar in both AD groups analyzed. Collectively, our findings support the role of lysosomal enzymes as potential peripheral molecules that vary with the progression of AD, and make them useful for monitoring regenerative medicine approaches for AD

    Genetic variation in Transaldolase 1 and risk of squamous cell carcinoma of the head and neck

    Get PDF
    The Pentose Phosphate Pathway (PPP) is involved in the body’s protection against oxidative stress and resistance/susceptibility to apoptosis and thus has been implicated in tumor development and progression. Here we present data examining the association of genetic variation in one of the key enzymes of the PPP, Transaldolase 1 (TALDO1) with squamous cell carcinoma of the head and neck (SCCHN)

    A family-based study of gene variants and maternal folate and choline in neuroblastoma: a report from the Children’s Oncology Group

    Get PDF
    Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline and folic acid
    • …
    corecore