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Abstract 

Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a 

sample. However, analytical separation of the two signals often requires acquiring two frames with inverted 

differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a 

different illumination condition. This can lead to potential errors which adversely affect the data collected. In this 

paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential 

phase and attenuation images, without the need for a high resolution detector or high magnification. As well as 

simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the 

total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the 

statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity 

images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of 

the single mask set-up can be well approximated from its illumination curve, which has been modelled as a 

convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point 

spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked 

against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a 

function of detector PSF.  
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1. Introduction 

X-ray phase contrast imaging (XPCI) techniques can detect both the phase and attenuation signals from 

an object. Phase contrast signals arise thanks to x-ray refraction, which tends to occur most strongly at 

object boundaries. Hence, even weakly attenuating objects, which are invisible to conventional x-ray 

imaging set-ups, can potentially be detected by XPCI set-ups. The additional contrast provided by XPCI 

set-ups has been used to target numerous applications, ranging from security, biomedical imaging and 

material science (Arfelli et al. 1998; Momose 2005; Bravin et al. 2013; Olivo & Robinson 2014; Wilkins 

et al. 2014). However, these investigations often rely on delicate and sophisticated set-ups that can only 

be correctly implemented at dedicated research facilities, such as at synchrotrons. Many of these set-ups 

also use increasingly complex image acquisition procedures to separate differential phase, absorption and 

ultra-small angle scattering (USAXS) / dark field signals. Such procedures can involve retrieving two or 

three of these signals from as many exposures acquired under different illumination conditions. For 

applications with time or dose constraints, this may prove to be impractical since the set-up is subjected to 

less-than-ideal conditions, such as vibrations and the use of polychromatic x-ray sources with flux 

limitations. Hence, any prospective XPCI method aiming to target such applications must adequately 

address the problems mentioned above. 

In the last decade, a considerable amount of effort and research interest has been dedicated to developing, 

and simplifying a number of viable XPCI methods at synchrotrons and in laboratories (Bravin et al. 2013; 

Olivo & Castelli 2014; Munro 2017).  Among the various XPCI implementations, this paper focuses on 

recent developments to the lab-based edge illumination (EI) XPCI method (Olivo & Speller 2006; Olivo 

et al. 2011; Ignatyev et al. 2011).  

EI is a non-interferometric technique that was first demonstrated with synchrotron sources in the late 90s 

(Olivo et al. 2001). It was later adapted to commercially available x-ray sources that possess larger focal 

spot sizes without the need for source collimation. A standard, double mask EI (DM-EI) set-up consists of 
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two periodic absorbing structures, often referred to as masks, which are placed before the sample and 

detector respectively. The sample mask,    , shapes the incoming x-ray beam into a series of individual 

beamlets that are separated by the mask period,   , whilst the absorbing edges of the detector mask,   , 

are aligned to partially intercept these beamlets. A schematic of the DM-EI set-up is shown in Figure 1. 

The pre-sample and detector masks are designed to ensure that their magnified periods match the detector 

pixel pitch.  

 

Figure 1 A schematic of a standard, double-mask edge illumination (DM-EI) set-up. 

In general, EI set-ups can be characterised by an illumination curve (IC), which is obtained by scanning 

the pre-sample mask over the span of one period with respect to the detector mask. An intensity variation 

is recorded for each pixel as a function of sample mask displacement. For the DM-EI set-up, the IC,     , 

measured at the detector mask can be modelled by considering the source and mask parameters of the 

system: 

    ( )     (
 

   
)    (

 

 
)    ( ); 

(1) 

   
       

   
, (2) 
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where    (
 

   
) represents the source spatial intensity distribution,   represents the co-ordinates at the 

detector plane and   is the magnification;    and    are the transmission functions of the sample and detector 

mask, respectively, and   denotes a convolution, which takes place between the source, and the two masks 

(Endrizzi et al. 2014). 

In the presence of a sample, the beams created by    can be attenuated and refracted. To first 

approximation, attenuation reduces the intensity of the beams falling upon the detector pixels and 

refraction causes them to be shifted such that the proportion of the beams falling on the detector mask 

septa is either increased or decreased. These two effects can be individually retrieved by evaluating the 

changes suffered by the IC, since attenuation can be modelled as a reduction in the area beneath the IC 

curve, and refraction as a rigid, lateral shift of its centre. Ultimately, both signals lead to changes in the 

intensity recorded by the pixel with respect to the reference case, i.e. the system without the sample. In 

fact, since the measured intensity contains mixed contributions from both the refraction and attenuation 

channels, they can be analytically separated by acquiring two images with the pre-sample mask placed at 

two different positions: one on either side of the IC maximum. This creates images with inverted 

differential phase contrast signals but identical attenuation components, which enables phase and 

absorption separation (Munro et al. 2012).  

DM-EI possesses several advantages, e.g. achromaticity (Endrizzi et al. 2015a), relative insensitivity to 

misalignments (Millard et al. 2013; Endrizzi et al. 2015b), and an ability to work with fairly large, 

incoherent x-ray sources (Diemoz & Olivo 2014). It has also been repeatedly demonstrated that EI set-ups 

are largely immune to the effects of vibrations on the order of a few microns. However, the need to 

acquire two images for differential phase and absorption retrieval can increase the likelihood of errors 

occurring while positioning the sample or the masks in between the two acquisitions. Furthermore, for 

some applications, e.g. small animal imaging, shorter acquisition times would be more desirable to reduce 

the possibility of sample motion, since large positional errors diminish the image quality. While these 
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additional sources of error can be mitigated by careful data collection and analysis procedures, the ability 

to perform phase and absorption retrieval by using two frames acquired in a single shot would both speed 

up and simplify the acquisition procedure. Moreover, it provides opportunities to develop and explore 

more dose efficient acquisition methods. 

For this reason, numerous adaptations have recently been made to the EI system that better exploit its 

advantages (Endrizzi et al. 2015b; Basta et al. 2015; Vittoria et al. 2015a). Thus far, two such 

developments have explored the possibility of acquiring sufficient phase-based information with a single 

exposure. The first approach allows for the retrieval of the projected electron density or thickness of an 

homogenous sample from a single mixed intensity projection (Diemoz et al. 2015). This single image 

phase retrieval method uses the free-space propagation and transmission signals in the direction 

orthogonal to EI sensitivity to enforce consistency between the image columns, thereby eliminating some 

artefacts that are commonly encountered in 1D phase integration. However, this method assumes a 

constant     ratio within the sample, where   is the unit difference of the real part of the refractive index 

of the sample and    is the imaginary part. For inhomogeneous materials, where the ratio between   and   

is not constant, the approximation breaks down, and ad-hoc tuning of the     parameter is required to 

achieve the best image quality for selected features only. Another approach, termed “beam-tracking" 

(Vittoria et al. 2015a; Vittoria et al. 2015b), employs a number of sufficiently small pixels to resolve the 

individual beamlets and track the changes they experience as a result of their interaction with the sample. 

By comparing it to the reference case i.e. the beam without the sample, attenuation, refraction and 

USAXS can be retrieved. However, this method requires a high resolution detector or a high 

magnification set-up to be effective. These conditions may not always be practical or even achievable. 

Similar developments have also been made to other existing XPCI methods, which make use of a 

combination of fine gratings/high resolution cameras, and apply different forms of analysis to retrieve 

phase contrast information (Wen et al. 2010; Bennett et al. 2010; Morgan et al. 2011; Morgan et al. 2013; 

Rizzi et al. 2013; Kagias et al. 2016; Zdora et al. 2017).  
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In the first part of this paper, we implement a simplified approach to single-shot EI XPCI, which 

addresses some of the limitations of the methods mentioned above, i.e. it does not require any assumption 

on    , or a high resolution detector. The proposed set-up is a laboratory translation of the edge-

illumination set-up, which was first developed by Olivo et al at the synchrotron (Olivo et al. 2001; Olivo et al. 

2002), and was later implemented by Krejci et al (Krejci et al. 2010). Data acquired with the proposed set-up is 

then compared against those acquired with the DM-EI system shown in Figure 1. A number of wire 

samples (in air) are examined with both EI configurations; the contrast, signal-to-noise ratio (SNR) and 

refraction sensitivity are also evaluated. This study aims to model and characterise the single mask EI 

(SM-EI) set-up, to compare it against the DM-EI set-up, and finally, to simulate the signals measured 

experimentally with both set-ups. In order to achieve this last goal, modifications were introduced to an 

existing wave optics simulation to enable modelling the various experimental set-ups and conditions. 

Lastly, the models are validated and are then used to study how the signal and refraction sensitivities of 

the two EI set-ups vary as a function of detector performance. 

2. Methods 

The SM-EI set-up uses a sample mask, which defines a set of beamlets that are incident on the detector. 

Figure 2(a) shows a schematic depiction of the SM-EI set-up; note that the set-up is similar to the one 

shown in Figure 1 but lacks the detector mask. Instead, the beamlets are aligned so as to fall at the 

boundary between two pixels. Hence, the edges of individual detector pixels are used to directly “sense” 

the refraction induced beam displacements (Olivo et al. 2002). For example, Figure 2(b) shows how 

downward refraction redirects the beam onto pixel 2, thereby increasing its detected counts while 

simultaneously reducing the beam intensity incident on pixel 1. The opposite would occur for refraction 

pushing the beam upwards. This alternating illumination condition allows the simultaneous acquisition of 

two “reversed” refraction images in a single shot (Figure 2(c)), which, as we have previously mentioned, 

can then be used to perform differential phase and absorption separation.  
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Figure 2 (a) a top-down view schematic of the single-mask EI set-up; the mask apertures define 

beamlets which are aligned with the edge between two pixels. (b) shows a section of the set-up in (a); 

however, the addition of a refracting sample causes a displacement of the beamlet. Ultimately, this 

demonstrates how inverted refraction signals can be simultaneously acquired by separately considering 

odd and even pixels (i.e. pixels 1 and 2 respectively). (c) shows the mixed intensity image obtained 

when combining every pixel, as well as the images obtained by separating the odd and even pixels, 

respectively.  

The extraction of the USAXS signal, in a single shot, is not possible with this set-up, as it is with the 

beam-tracking set-up—where three or more pixels are simultaneously illuminated. In fact, the presence of 

weak USAXS does not negatively affect the retrieval of the differential phase signal; hence the extraction 

of USAXS was ignored in this article. The assumption of weak USAXS remains valid as long as the 

USAXS signal does not cause the beamlets to become wider than a pixel, i.e. the validity of phase 

retrieval condition breaks down when the beamlets start to overlap. However, the SM-EI set-up uses line-

skipped masks (shown by Figure 2(a)) and has so far only been applied direct conversion detectors, which 

typically have pixel sizes       . These large periods and detector pixel dimension make the limiting 
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condition difficult to encounter. It is important to note that, in general, line-skipped masks are not 

required for the DM-EI set-up, but they were used here for the sake of comparing the two set-ups under 

equivalent conditions.  

2.1 Building the experimental set-ups 

The set-ups consisted of the Rigaku 007 HF tube source with a rotating molybdenum anode operated 

at                with a focal spot full width half maximum  (    )       , and the Anrad SMAM 

A-Se detector with       pixels. The sample and detector masks had periods of           and 

           and aperture sizes of          and           respectively.  

The sample mask was placed at a distance of       from the source, and aligned with the detector pixel 

columns according to the alignment procedure described by Millard et al 2013 (Millard et al. 2013). A 

misalignment of the mask with respect to the pixel columns would cause non-uniform illumination across 

the detector. However, this type of misalignment can be corrected by applying local phase retrieval 

algorithms, which treat sub-sections of the detector independently (Endrizzi et al. 2015b).  

Flat field images (images without the sample) can be used to eliminate mask defects and non-uniformities 

in the detector response/radiation field in the sample image. However, a problem also arises if there is a 

large drift in the system alignment between the acquisition of a flat field and sample images. In such 

cases, regions in the sample image that are not occupied by the sample could also be used to devise a 

partial correction. However, the alignment of the systems used in this study remained constant (within 

     over a         field of view), between the acquisition of the flat and sample images, thanks to the 

high tolerance of the set-up (Millard et al. 2013). 

The same sample mask was used for both set-ups but the detector mask was added or removed, as 

required, to switch between the DM and SM-EI set-ups. Masks had a nominal septa thickness of        

of gold electroplated on        of graphite. However, it has been shown that the septa thickness can be 

less than the nominal value if difficulties are encountered during the electroplating process. This leads to 
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increased unwanted transmission through the mask, which can reduce the sensitivity of the systems by 

introducing a higher offset to the ICs. Hence, the mask septa thickness had to be independently verified in 

this study by using the simulation. The SM-EI set-up is particularly sensitive to this effect, since only one 

mask is used, and therefore, x-rays traverse only one gold layer.  

In both SM-EI and DM-EI set-ups, a dithering procedure can be implemented, which increases the spatial 

resolution of the acquired images by scanning the sample with a number of sub-pixel steps. Indeed, for 

applications that require a high spatial resolution, the single-mask set-up would require twice as many 

dithering steps (and therefore twice the exposure time) as a non-skipped DM-EI system in order to match 

its resolution. However, many biomedical applications do not require a high spatial resolution (Olivo et 

al. 2013), in which case, the single mask set-up would maintain its higher dose efficiency, as well as its 

other previously mentioned advantages. For this study, the same skipped sample mask was used to ensure 

that both set-ups have an equivalent initial spatial resolution. Finally, to ensure that the refraction peaks 

were sufficiently sampled by both set-ups, 32 dithering steps were used with an exposure time of 30s per 

step. It is also important to note that the dithering procedure only improves the spatial resolution of an 

image, but not the statistics acquired within each pixel.  

2.2 Adapting the wave optics simulation model for a polychromatic EI set-up  

The two experimental set-ups were modelled by modifying an existing wave optics simulation package 

(Vittoria et al. 2013), with the primary aim of simulating the experimentally measured mixed intensity 

profiles. This required introducing several new components and features to the wave optics model. A 

schematic of these modifications is presented in Figure 3. The final model incorporates the source 

spectrum, and the energy response and point-spread-function (PSF) of the detector. In addition, the 

absorption from the graphite substrates in the masks, and the cover of the detector were also included 

(Millard et al. 2014).  
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The source spectrum data, provided by the manufacturers, were sampled in 0.5     steps and the detector 

energy response was estimated to be linear, to first approximation. This combination of source spectral 

data and linear assumption for the detector energy response was also used in a previous Monte Carlo 

model of the EI set-up, which was shown to produce accurate results (Millard et al. 2014). Polychromatic 

images were obtained by performing multiple monochromatic simulations at given energy steps and 

taking the weighted average over the spectrum (Olivo & Speller 2006). 

 

Figure 3 A schematic list of the components that were integrated into the wave optics simulation in 

order to model both EI and SM-EI set-ups. 

2.3 Validating the analytical models of the illumination curve 

The first step in validating the simulation involved modelling the SM-EI IC and benchmarking it against 

the one measured by the real SM-EI system. Since this set-up lacks a detector mask, it requires the 

addition of the detector PSF into the simulation. An analytical model of the SM-EI IC      can be 

expressed as follows: 

    ( )     (
 

   
)    (

 

 
)     ( ), (3) 

with: 
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   ( )      (  

 

 
)     ( 

  

    
 )  

(4) 

where    (
 

   
) represents the projected source size,   ( ) represents the first mask, and    ( ) is the 

measured/simulated detector PSF. The latter has been modelled by smoothing an ideal pixel response 

(top-hat function) via a convolution with a Gaussian function parameterised by     , its standard deviation. 

Note that the Gaussian function only represents the effect of charge sharing (CS) in a given pixel and does 

not necessarily depend on the pixel size. In Eqn. (4),       (  
 

 
) represents a rectangular function of 

width   , where    is equal to the pixel size, and centred in  ; thus, it is defined as 1 in the 

range ( 
 

 
 
 

 
) and 0 elsewhere.  

It is worth noting that the PSF does not appear in the expression for the DM-EI IC in Eqn. (1) because the 

edges of the detector mask apertures redefine the pixel response by introducing a sharp cut-off before the 

physical edge of the detector pixel. Hence, for DM-EI, the detector mask creates an ideal edge response, 

while the PSF is generally considered to be a smooth edge. Therefore, for the SM-EI set-up, the 

sensitivity with which the transition of the beam can be detected, as it shifts between two pixels, depends 

on the slopes of the detector PSF, and therefore on pixel cross-talk. This charge sharing effect leads to a 

broader SM-EI IC compared to the DM-EI IC, which is important since the refraction sensitivity in EI is a 

function of its IC slopes (Diemoz et al. 2013). Consequently, the sensitivity of the SM-EI set-up directly 

depends on the detector PSF. Greater amounts of pixel cross-talk can be modelled by broadening the 

Gaussian with which the ideal pixel response is convolved, which leads to a smoother PSF, a gentler IC 

slope, and ultimately a less sensitive SM-EI set-up.  

Since the IC can be used to characterise EI set-ups, it is important for Eqns. (1) and (3) to accurately 

model the experimentally measured IC. Therefore, the simulation was first benchmarked against a 

previous, experimentally measured IC acquired at        with a DM-EI set-up, which employed an older 

and well-characterised set of masks. The septa thickness of the masks used in this measurement are 
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known to be       ; however, they were also independently determined here by matching the offset of 

the experimental and simulated IC curves.  The result of this comparison is displayed in Figure 4, which 

also shows a good agreement between the simulation and the real system.  

 

Figure 4  Benchmarking the simulated IC against an experimental IC acquired with a well-known set 

of masks at       . 

2.4 Modelling DM-EI and SM-EI signals  

To fully characterise the SM-EI set-up, the detector PSF was measured using a standard edge response 

method (Konstantinidis 2011). The experimentally measured PSF was then fitted with the analytic 

expression shown in Eqn. (4), which resulted in the extraction of           (Figure 5). Note that, as is 

made clear by Eqn. (4),     does not refer to the width of the measured/simulated PSF, but only to the 

width of the Gaussian curve used to smooth its first order “ideal” approximation (a box function with   

     ).  

 

Sample mask displacement (m) 
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Figure 5 The experimentally measured PSF of the Anrad detector and the analytically fitted function. 

The PSF obtained by convolving an ideal box function (i.e. the ideal pixel response function) with a 

Gaussian function with           was then incorporated into the simulations to verify the predictions 

made by Eqns. (1) and (3), i.e. it can significantly affect the shape of the SM-EI IC but not the DM-EI IC. 

To demonstrate this, the ICs of both set-ups were simulated using two different PSFs: the experimentally 

measured value, which was obtained for the Anrad detector,              and an ideal pixel response, i.e. 

      . The results are displayed in Figure 6. 

Figure 6(a) shows the simulated DM-EI IC, which is obtained by plotting the intensity variation recorded 

by one set of skipped pixels (odd pixels), while Figure 6(b) shows the SM-EI IC, where one of its “arms” 

corresponds to signal obtained from one set of skipped pixels (e.g. odd pixels, like pixel 1 in Figure 2 (b)), 

while the other corresponds to the adjacent ones (e.g. even pixels, like pixel 2 in Figure 2 (b)). 

It is apparent from Figure 6(a) that the DM-EI IC remains unchanged, while the SM-EI IC in Figure 6(b) 

has steeper slopes for an ideal PSF compared to the experimentally measured Anrad case; therefore, the 

simulated profile of a sapphire wire for the DM-EI set-up remains unaffected by changes in the PSF. 

Figure 6(c) also demonstrates that the use of a detector with an ideal PSF is equivalent to using a detector 

mask. Conversely, Figure 6(d) shows that the contrast recorded by the SM-EI set-up for the sapphire wire 
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decreases for an increased      , which is consistent with the reduced IC slope steepness that is visible in 

Figure 6(b).  

 

Figure 6 The simulated IC for (a) the DM-EI set-up and (b) the SM-EI set-up using two different 

PSFs. Simulation of a sapphire wire profile obtained with (c) an ideal detector and (d) a detector with 

         , for both set-ups. 

These results highlight one advantage of using the detector mask in DM-EI: it mitigates possible negative 

effects of non-ideal detectors and allows for greater flexibility in constructing the set-up. This also means 

that for a value of      sufficiently smaller than the pixel size, the mixed-intensity signal recorded with the 

DM-EI set-up is independent of the detector PSF, while this is not true for the SM-EI set-up.  
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2.5 Determining the thickness of the mask septa 

At this point, the thicknesses of the new mask septa were the only parameters left to be determined, which 

was done through the model. A two-step process was used, based on comparing the simulated ICs against 

experimental data. In the first step, the offset of the experimental and simulated ICs for the SM-EI set-up 

were matched, which allowed the thickness of the sample mask septa to be determined to be       

(Figure 7(a)). This value of the sample mask septa thickness, determined by matching the IC offsets in the 

SM case, was then used in the second step, where the same procedure was repeated with the DM-EI set-

up to determine the thickness of the detector mask septa. Figure 7(b) shows a comparison between the 

experimental and simulated DM-EI ICs. The detector mask septa thickness was determined to be      , 

which approximately matches the nominal value  (     ), while the sample mask septa are evidently 

much thinner than this nominal value.  

The good agreement between the experimental and simulated ICs shown in Figure 7(a) and (b) 

demonstrates that the characteristics of the source, sample mask, detector mask and the detector have been 

modelled satisfactorily. This also means that the model can be used to predict the mixed intensity signal 

recorded by each system for a known sample in the experimental case.  
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Figure 7(a) The simulated and experimental IC for the single mask EI set-up (a); the two curves are 

obtained by combining all the “odd” and “even” pixels, respectively. (b) shows the DM-EI ICs also 

from simulation and experiment. 

As previously mentioned, two mixed intensity images are necessary to separate the absorption and 

differential phase contrast signals. However, for SM-EI, these two images can be acquired simultaneously 

at the sample mask position where the two “arms” of the IC intersect. At this position both sets of pixels 

share an equal amount of the incident beam and the two sets of pixels, corresponding to “odd” and “even” 

columns, are subjected to the previously mentioned “inverted illumination condition”, i.e. photons gained 

by pixel 1 due to refraction are instantaneously lost by pixel 2. This corresponds to the simultaneous 

detection of positive/negative refraction signals in neighbouring pixels, producing two images with 

inverted refraction-induced contrasts. Conversely, for the DM-EI set-up, the two images must be acquired 

with two separate exposures on either side of the IC, with the sample mask displaced in two different 

positions. This can potentially lead to errors during the acquisition procedure, which would negatively 

affect the quality of the images.  

The capability to acquire two images with inverted refraction contrasts in a single shot makes the SM-EI 

set-up more dose efficient than its DM-EI counterpart. There are two main ways in which this advantage 

could be exploited. In the first condition, referred to as     , the statistics collected by the two set-ups is 
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kept constant, meaning that the total acquisition time and dose delivered to the sample are halved for SM-

EI compared to DM-EI, (            
 

 
   ). In the second approach, referred to as     , the total 

acquisition time is kept the same in the two cases (          ). Hence, the dose received by the sample is 

the same, but higher (double) statistics are collected for the SM-EI set-up. While intermediate conditions 

are possible, these two modes are useful to study two limiting cases. For example     could prove 

particularly useful in applications where the exposure time or dose to the sample should be minimised, 

while     might be beneficial when the flux is limited. Since this latter approach more closely 

corresponds to the current experimental conditions, the     mode was selected for this comparison. 

Moreover, the mode was studied to determine whether the increased statistics would sufficiently 

compensate for the reduction in refraction sensitivity caused by the broadening of the IC, which is 

predicted by Eqn. (3) for non-ideal detectors. 

3. Results 

Images of a wire phantom in air were acquired with both set-ups according to image acquisition 

parameters specified in section 2.1, and details of the wire phantom are provided in the caption of Figure 

8. All experimental images were first normalised by a flat field image.  

3.1 Evaluating the contrast and SNR in the mixed intensity images 

Contrast and SNR were evaluated for each wire in one mixed intensity projection, for the DM and SM-EI 

systems as follows: 

 
         

         
           

    
(5) 

 
    

         

 √ (           )
 
    

(6) 
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where      and      are the maximum and minimum signals in each wire profile, respectively, and 

 (           ) is the standard deviation of the image in an adjacent background region. The mixed 

intensity images are displayed in Figure 8 and were acquired using the second approach (   ).  

 

Figure 8 (a) DM-EI and SM-EI experimental mixed intensity projections of a sample consisting of five 

wires (in air): 1) Sapphire (               ), 2) Boron w/ tungsten core (              

       ,                       ), 3) PEEK (              ), 4) Nylon (              ) and 

5) MAXIMA (               ); (b) shows the contrast for each wire in both set ups, (c) shows the 

noise in the adjacent background regions and (d) shows the signal-to-noise ratio extracted. 

Figure 8 shows images of the wire samples acquired with the DM (a) and SM-EI (b) set-ups. These wires 

were selected because they cover a reasonably wide range of refraction and absorption properties and 

produce relatively weak USAXS signals. Figure 8(b) shows the peak-to-peak contrast from the five wires, 

Figure 8(c) shows the average noise in the background regions, and Figure 8(d) is the SNR calculated 

using the values from the two previous figures. In the DM-EI set-up, each wire possesses a higher contrast 

than when acquired with the SM-EI set-up. On the other hand, the SNR appears to be higher for the SM-

EI set-up, thanks to the aforementioned increase in photon statistics resulting from the use of the 
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    approach. In other words, the reduction in noise observed in the single mask case when the same 

exposure time is used overcompensates for the loss of phase sensitivity, which is made evident by the 

contrast reduction in the SM-EI case. 

3.2 Comparing the experimental results against simulations  

From the samples used, the PEEK and sapphire wires were selected for the purposes of comparing 

simulated and experimental data. These wires were selected as they represent the most extreme examples 

of weakly/strongly absorbing/refracting objects.  

Figure 9(a) and (b) show the experimentally obtained mixed intensity images of the PEEK wire for the 

DM-EI and SM-EI cases, respectively. Figure 9(c) and (d) show a comparison between the simulated 

profiles and the experimental ones of the PEEK wire, which are extracted from the red lines shown in the 

images in Figure 9(a) and (b). Similarly, Figure 9(e)-(h) show the same data for the sapphire wire. There 

is generally a good agreement between the experimental and simulated profiles. However, for both set-

ups, the simulation slightly overestimates the absorption of the sapphire wire through its thickest part. 

This minor discrepancy can be attributed to imperfect knowledge of the source spectrum and detector 

energy response function. Furthermore, it is consistent with previous results obtained with a Monte Carlo 

model of the system, which used the same material data, spectrum, and a linear detector energy response 

as inputs (Millard et al. 2014). Despite this, it is worth noting that the general shape of the profiles and the 

reduction in contrast suffered by the wires for the SM-EI set-up are well modelled by the simulation.  
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Figure 9 (a) and (b) are mixed intensity images of the PEEK wires acquired with the DM and SM-EI 

set-ups, and (c) and (d) are their simulated profiles compared against the experimental ones. (e) and (f) 

show mixed intensity images of the sapphire wire and (g) and (h) show their simulated profiles 

compared against the experimental ones. All experimental profiles were extracted along the red lines 

indicated in the images of panels (a), (b), (e) and (f).  
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Finally, differential phase retrieval was performed on the two sets of images, using the method developed 

by Diemoz et al (2013). To test the quantitative accuracy of the two EI set-ups, the experimentally 

retrieved differential phase profiles were compared against their theoretical counterparts  ̃. The latter 

have been calculated numerically at each energy bin, then weighted by taking into account the 

approximate x-ray spectrum and detector linear energy response,     ( ), and the transmission through 

the wire and other optical elements in the set-up  ( ) (Munro & Olivo 2013; F.A. Vittoria et al. 2015a), 

as follows: 

 
 ̃  

∑  ( )      ( )   ( )

∑     ( )   ( )
   

(7) 

The differential phase images obtained from experimental data collected with the two set-ups are 

displayed in Figure 10(a) and (b) for PEEK, and Figure 10(e) and (f) for sapphire, while their profiles are 

displayed in Figure 10 (c) and (d) (PEEK) and Figure 10(g) and (h) (sapphire).  

There is a good agreement between the experimentally measured differential phase profiles and their 

theoretical counterparts (Figure 10).  
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Figure 10 (a) and (b) are differential phase retrieved images of the PEEK wires with DM and SM-EI 

set-ups and (c) and (d) are the corresponding experimental profiles compared against the theoretical 

ones. (e) and (f) show differential phase retrieved images of the sapphire wire and (g) and (h) show 

their experimental profiles compared against the theoretical ones. All experimental profiles were 

extracted along the blue/red lines indicated in the images of panels (a), (b), (e) and (f); values for the 

sensitivity for the DM and SM-EI set-ups were measured in background regions 1 & 2 shown in (e) 

and (f), respectively. 

The profiles acquired with the two set-ups are slightly different from one another. The main reason for 

this is that the theoretical profiles were calculated by taking into account the resultant spectrum for each 
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set-up. These are different, since for SM-EI the beam only passes through a total of      of carbon 

(including the detector cover), while there is an added        thick layer of carbon in the DM-EI set-up 

due to the substrate of the additional mask. However, the most likely explanation for the discrepancy 

between the retrieved profiles relates to the increase in the unwanted transmission through the septa 

encountered when a thinner mask is used. This means that the sample is simultaneously irradiated by two 

spectra, one hardened and one not, passing through the mask septa and through the apertures, 

respectively, as shown in Figure 11(a). 

 

Figure 11 (a) is a schematic depiction of transmission through the mask for SM-EI, (b) shows the 

phase retrieved profiles of the sapphire wire obtained with DM and SM-EI set-ups compared against 

each other. In (c) the simulated profiles are compared for the same       thick mask septa as used in 

the experiment, while in (d) much thicker mask septa were simulated, equivalent to the total thickness 

encountered in the DM-EI case (     ). 
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This has an adverse effect on the refraction signal, particularly at the edges of a highly absorbing wire, 

which is evident in Figure 11(b) for SM-EI, where slight discrepancies can be observed at the edges of the 

sapphire wire profile. Since similar discrepancies were not observed for PEEK, this confirms that 

sapphire, being more absorbing, introduces different degrees of additional hardening to parts of the beam 

going through the septa compared to those parts going only through the apertures. The effect can also be 

observed in the simulated sapphire wire profiles in Figure 11(c). However, Figure 11(d) demonstrates that 

the edge discrepancy can be eliminated through the use of thicker masks, in which case the profiles 

obtained with both DM-EI and SM-EI become identical.  

It is important to note that the DM-EI system does not suffer from such effects probably because the 

combined thickness of the mask septa is sufficient to make effects arising from unwanted transmission 

negligible. This is somewhat supported by its IC (Figure 7(a)), which has a lower offset (    ) than the 

SM-EI IC (    ). 

3.3 Analysing the refraction sensitivity of the DM and SM-EI set-ups 

The experimental sensitivity of the two set-ups was then measured by calculating the standard deviation 

within ROIs in the respective phase retrieved images shown in Figure 10. For the DM-EI set-up, the 

angular sensitivity was determined to be             , while for SM-EI it was            . It should 

be noted that, as well as reduced steepness of the IC slopes in the SM-EI case, the reduction in the total 

mask septa thickness also contributes to this sensitivity reduction. The thin pre-sample mask allows 

increased levels of unwanted transmission through the mask septa, which increases the contributions to 

the background.  

In order to extract an equivalent estimation of the sensitivity from the simulated data, a level of noise 

comparable to that of the experimental images was added to the simulated mixed intensity profiles, and 

the sensitivity was extracted from them following the same retrieval procedures outlined above. However, 

since the noise was added to the simulated profiles after the PSF blurring was applied to the image, the 
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noise for adjacent detector pixels is totally uncorrelated, which is not necessarily true in the experimental 

case. Indeed, in the latter case, for large values of     , the noise correlation between adjacent pixels is 

expected to increase, leading to an apparent increase in sensitivity. However, in the simulated case, the 

uncorrelated noise is assumed to be a good approximation of the experimental condition since      is small 

compared to the overall pixel size. The validity of this assumption is further underlined by the good 

agreement between the sensitivity measured in the simulated and experimental cases for both set-ups. The 

values extracted for the sensitivity from the background of the simulated DM-EI and SM-EI profiles 

matched the experimental values:             and             , respectively. While this should be 

expected given the agreement in the simulated profile and the inclusion of the appropriate level of noise, 

it further confirms the accuracy of the proposed model. It also means that in these experimental 

conditions, the DM-EI set-up remains more sensitive than its single-mask counterpart, despite the increase 

in photon statistics. 

3.4 Predicting the refraction sensitivity of EI set-ups for different detector PSFs 

The good agreement between experimental and simulated profiles observed in a variety of different 

conditions indicates that this model can be reliably used to study how the sensitivity varies as a function 

of the detector PSF.  

From Figure 6 and the related discussion, we had concluded that using the detector mask is equivalent to 

the use of an ideal detector PSF. Therefore, if the total exposure time is kept constant (condition     ), it 

is possible for the sensitivity of the SM-EI set-up to overtake that of the DM-EI set-up at smaller values 

of    . As      decreases, the sensitivity is expected to increase because the slopes of the PSF, and 

therefore of the IC, become steeper. Hence, the sensitivity of the SM-EI set-up as a function of     was 

studied, while keeping the other parameters the same as in the previously described experimental set-up.  

Figure 12 shows that, for the SM-EI set-up, there is a gradual increase in the sensitivity as      decreases, 

as expected. In this configuration, the SM-EI set-up becomes more sensitive to refraction than the DM-EI 
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set-up when          . Note that when the ideal pixel response is not smoothed by charge sharing 

effects (     ), the sensitivity of the SM-EI set-up becomes better than the DM-EI set-up by a factor 

of √ , which is thanks to the increase of a factor of 2 in the detected statistics. The sensitivity of the DM-

EI set-up, on the other hand, remains constant over the range of simulated      values, which is consistent 

with the previous observations that the detector mask reproduces the effect of an “ideal” pixel. This 

analysis was carried out for      only, for which the exposure time is kept constant across both set-ups; if 

the same comparison was carried out in the       configuration, then one would expect the sensitivity of 

SM-EI to converge to that of DM-EI at      0.  

 

Figure 12 The refraction sensitivity is plotted against different values of     , which are convolved with 

an ideal pixel function, for both DM-EI and SM-EI set-ups.  

4. Discussion and Conclusion 

A single-shot EI phase contrast imaging technique was implemented to a commercially available, 

polychromatic x-ray source with a            . The set-up was realised by eliminating the detector 

mask of the DM-EI system, and using the edges of the detector pixels to directly sense refraction-induced 

beam displacements. The SM-EI set-up, being very similar to the skipped, DM-EI set-up, could provide 
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an alternative use of the same system for some applications, especially in biomedical imaging where 

dithering is not always necessary, and the advantages of the SM-EI set-up can be maximally exploited.    

In this study, both set-ups were used to acquire images of wire samples. The mixed-intensity profiles of 

both strongly and weakly refracting/absorbing samples were selected and compared against those 

generated with the wave optics simulation for both set-ups. The simulation was designed to accurately 

model the experimental conditions so that it could also be used to determine parameters of the system, 

such as mask thickness. As such, the pre-sample mask septa was determined to be thinner than its nominal 

value, which led to a higher offset in the SM-EI IC, and which was subsequently noted to be responsible 

for inaccuracies in the phase retrieval algorithm.  

The inaccuracies introduced by the high SM-EI IC offset to the measured profiles were attributed to 

increased x-ray transmission and beam hardening effects, which occur when the beam spectrum passing 

through the mask septa and apertures undergo additional hardening by a sample with non-negligible 

absorption. This leads to differences in the retrieved differential phase profiles of the same wire acquired 

with the two systems. To demonstrate that these were entirely due to insufficient mask thickness, an SM-

EI set-up with thick pre-sample mask septa was simulated. In this case, both EI configurations produced 

identical profiles matching the theoretically calculated ones. 

 The refraction sensitivity of the two systems was measured experimentally and estimated via simulation, 

and the values were found to be in agreement. The SM-EI set-up was shown to suffer a slight reduction in 

its angular sensitivity and contrast. This is well explained by the analytical model for EI refraction 

sensitivity, proposed by Diemoz et al (2013), which shows that the sensitivity depends on the noise in the 

image and on the slope of the IC. This notwithstanding, the potential advantages of this modified set-up 

should not be ignored, especially considering that the sensitivity of the SM-EI set-up can be increased by 

using a detector with a sharper PSF, such as Pixirad (Delogu et al. 2016). This would make the 
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advantages of the SM-EI set-up such as simplified alignment, halving the dose, or increased SNR etc. 

more prominent.  

Thus far, the new set-up has only been applied to direct conversion detectors, which typically have pixel 

sizes       . For smaller (indirect conversion detector) pixels, the beam-tracking set-up can be 

implemented instead. Although this leads to smaller fields of view and lower detection efficiencies, the 

use of a high resolution detector in the beam-tracking set-up allows for the single shot extraction of the 

USAXS signal (in addition to attenuation and refraction), which cannot be done with the proposed set-up.   

A simulation model was used to predict the sensitivity of the SM-EI set-up as a function of detector PSF. 

This showed that the SM-EI set-up becomes more sensitive than the DM-EI one as the detector tends 

toward ideal behaviour, thanks to the increased number of photons impinging on the detector combined 

with an increasingly steeper PSF slope.  

A system realised using detectors with sufficiently small values of       and employing thicker masks 

would be more sensitive to refraction than its double mask counterparts, although such a claim warrants 

further investigation. The clear benefits from such a set-up lie in its simplicity and increased tolerance to 

misalignments, since only one mask would have to be aligned. However, it imposes the use of a skipped 

mask, which results either in a resolution decreased by a factor of 2, or requires twice as many dithering 

steps to achieve the same resolution as the non-skipped, DM-EI set-up. It would also be possible to extend 

the single mask approach to the 2D-EI system (Kallon et al. 2015), following the method proposed by 

Krejci et al and defining beamlets that hit the region among four pixels instead of between two (Krejci et 

al. 2010; Krejci et al. 2011). As well as yielding differential phase signals in 2D in a single-shot, this 

would also allow for easy, artefact free phase integration with large polychromatic sources. 
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