35 research outputs found

    A Computational Approach to Analyze the Mechanism of Action of the Kinase Inhibitor Bafetinib

    Get PDF
    Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis

    Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene (<it>TSLP</it>) in the pathogenesis of AR has not been studied.</p> <p>Objective</p> <p>To test for associations between variants in <it>TSLP</it>, <it>TSLP</it>-related genes, and AR in children with asthma.</p> <p>Methods</p> <p>We genotyped 15 single nucleotide polymorphisms (SNPs) in <it>TSLP, OX40L, IL7R</it>, and <it>RXRα </it>in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for <it>TSLP</it>, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions.</p> <p>Results</p> <p>Across the three cohorts, the T allele of <it>TSLP </it>SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10<sup>-4</sup>). Our findings were significant after accounting for multiple comparisons. SNPs in <it>OX40L, IL7R</it>, and <it>RXRα </it>were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs.</p> <p>Conclusions</p> <p><it>TSLP </it>SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for <it>TSLP </it>in the pathogenesis of AR in children with asthma.</p

    Occupational Noise, Smoking, and a High Body Mass Index are Risk Factors for Age-related Hearing Impairment and Moderate Alcohol Consumption is Protective: A European Population-based Multicenter Study

    Get PDF
    A multicenter study was set up to elucidate the environmental and medical risk factors contributing to age-related hearing impairment (ARHI). Nine subsamples, collected by nine audiological centers across Europe, added up to a total of 4,083 subjects between 53 and 67 years. Audiometric data (pure-tone average [PTA]) were collected and the participants filled out a questionnaire on environmental risk factors and medical history. People with a history of disease that could affect hearing were excluded. PTAs were adjusted for age and sex and tested for association with exposure to risk factors. Noise exposure was associated with a significant loss of hearing at high sound frequencies (>1 kHz). Smoking significantly increased high-frequency hearing loss, and the effect was dose-dependent. The effect of smoking remained significant when accounting for cardiovascular disease events. Taller people had better hearing on average with a more pronounced effect at low sound frequencies (<2 kHz). A high body mass index (BMI) correlated with hearing loss across the frequency range tested. Moderate alcohol consumption was inversely correlated with hearing loss. Significant associations were found in the high as well as in the low frequencies. The results suggest that a healthy lifestyle can protect against age-related hearing impairment

    A haplotype in the inducible T-cell tyrosine kinase is a risk factor for seasonal allergic rhinitis

    No full text
    Background: Identification of disease-associated single nucleotide polymorphisms (SNPs) in seasonal allergic rhinitis (SAR) may be facilitated by focusing on genes in a disease-associated pathway. Objective: To search for SNPs in genes that belong to the T-cell receptor (TCR) pathway and that change in expression in allergen-challenged CD4+ cells from patients with SAR. Methods: CD4+ cells from patients with SAR were analysed with gene expression microarrays. Allele, genotype and haplotype frequencies were compared in 251 patients and 386 healthy controls. Results: Gene expression microarray analysis of allergen-challenged CD4+ cells from patients with SAR showed that 25 of 38 TCR pathway genes were differentially expressed. A total of 62 SNPs were analysed in eight of the 25 genes; ICOS, IL4, IL5, IL13, CSF2, CTLA4, the inducible T-cell tyrosine kinase (ITK) and CD3D. Significant chi-squared values were identified for several markers in the ITK kinase gene region. A total of five SNPs were nominally significant at the 5% level. Haplotype analysis of the five significant SNPs showed increased frequency of a haplotype that covered most of the coding part of ITK. The functional relevance of ITK was supported by analysis of an independent material, which showed increased expression of ITK in allergen-challenged CD4+ cells from patients, but not from controls. Conclusion: Analysis of SNPs in TCR pathway genes revealed that a haplotype that covers a major part of the coding sequence of ITK is a risk factor for SAR

    A Bayesian analysis of the chromosome architecture of human disorders by integrating reductionist data

    Get PDF
    In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases

    An Epidemiological Human Disease Network Derived from Disease Co-occurrence in Taiwan

    No full text
    Abstract In “classic” biomedical research, diseases have usually been studied individually. The pioneering human disease network (HDN) studies jointly consider a large number of diseases, analyse their interconnections, and provide a more comprehensive description of diseases. However, most of the existing HDN studies are based on molecular information and can only partially describe disease interconnections. Building on the unique Taiwan National Health Insurance Research Database (NHIRD), in this study, we construct the epidemiological HDN (eHDN), where two diseases are concluded as interconnected if their observed probability of co-occurrence deviating that expected under independence. Advancing from the existing HDN, the eHDN can also accommodate non-molecular connections and have more important practical implications. Building on the network construction, we examine important network properties such as connectivity, module, hub, and others and describe their temporal patterns. This study is among the first to systematically construct the eHDN and can have important implications for human disease research and health care and management

    A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    No full text
    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identified a T helper 2 (T(H)2) cell module by small interfering RNA-mediated knockdown of 25 putative IL13-regulating transcription factors followed by expression profiling. The module contained candidate genes whose diagnostic potential was supported by clinical studies. Functional studies of human TH2 cells as well as mouse models of allergy showed that deletion of one of the genes, S100A4, resulted in decreased signs of allergy including TH2 cell activation, humoral immunity, and infiltration of effector cells. Specifically, dendritic cells required S100A4 for activating T cells. Treatment with an anti-S100A4 antibody resulted in decreased signs of allergy in the mouse model as well as in allergen-challenged T cells from allergic patients. This strategy, which may be generally applicable to complex diseases, identified and validated an important diagnostic and therapeutic candidate gene in allergy
    corecore