267 research outputs found

    Magnetic imaging of pearl vortices in artificially layered (Ba 0.9Nd0.1CuO2+x)m/(CaCuO 2)n systems

    Get PDF
    We have used scanning SQUID magnetometry to image vortices in ultrathin (Ba0.9Nd0.1CuO2+x)(m)/(CaCuO2)(n) high temperature superconductor samples, with as few as three superconducting CuO2 planes. The Pearl lengths (Lambda=2lambda(L)(2)/d, lambda(L) the London penetration depth, d the superconducting film thickness) in these samples, as determined by fits to the vortex images, agree with those by local susceptibility measurements, and can be as long as 1 mm. The in-plane penetration depths lambda(ab) inferred from the Pearl lengths are longer than many bulk cuprates with comparable critical temperatures. We speculate on the causes of the long penetration depths, and on the possibility of exploiting the unique properties of these superconductors for basic experiments

    Effect of 2 sex-sorting time schedules on SIT facility management

    Get PDF
    Improvements are needed in mosquito mass-rearing to effectively implement the sterile insect technique (SIT). However, managing this technique is challenging and resource intensive. SIT relies on mass rearing, sterilization, and release of adult males to reduce field populations. Maintaining an acceptable level of female presence, who can transmit viruses through biting, is crucial. Females are also essential for facility sustainability. Sex sorting plays a vital role in the production process, and our current mechanical sorting approach aims to obtain a high number of adult males with minimal female contamination within 24 h of pupation. Utilizing protandry helps control female contamination. While the 24-h sorting period achieves desired contamination levels, it may not yield enough females to sustain breeding lines, leading to increased labor costs that impact project sustainability. By delaying the sorting procedure to 48 h, we obtained sufficient females to sustain breeding lines, achieving a balance between male production and female contamination using the automatic version of the Fay-Morlan device as the sorting tool

    Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools

    Get PDF
    The sterile insect technique (SIT) is a biologically based method of pest control, which relies on the mass production, sterilization, and release of sterile males of the target species. Since females can transmit viruses, it is important to develop a mass rearing system to produce a large number of males with a low presence of females. We evaluated the effects of different strains, larval diets and sexing tools on male productivity and residual female presence for the application of SIT against Aedes albopictus. Strains coming from Italy, Germany, Greece, and Montenegro, with different levels of colonization, were reared with three larval diets: IAEA-BY, BLP-B and SLP-BY. Developed pupae were sexed using two different mechanical methods: sieve or Fay-Morlan separator. The results proved that adoption of the Fay-Morlan separator increased the productivity and limited the female presence. The IAEA-BY diet showed the lowest female contamination. Strains with a high number of breeding generations showed a decreased productivity and an increased female presence. Increased female presence was found only in extensively reared strains and only when the sorting operation was conducted with sieves. We hypothesize that extensive colonization may determine a size reduction which limits the sexing tool efficiency itself

    Dissipation in ultra-thin current-carrying superconducting bridges; evidence for quantum tunneling of Pearl vortices

    Full text link
    We have made current-voltage (IV) measurements of artificially layered high-TcT_c thin-film bridges. Scanning SQUID microscopy of these films provides values for the Pearl lengths Λ\Lambda that exceed the bridge width, and shows that the current distributions are uniform across the bridges. At high temperatures and high currents the voltages follow the power law VInV \propto I^n, with n=Φ02/8π2ΛkBT+1n=\Phi_0^2/8\pi^2\Lambda k_B T+1, and at high temperatures and low-currents the resistance is exponential in temperature, in good agreement with the predictions for thermally activated vortex motion. At low temperatures, the IV's are better fit by lnV\ln V linear in I2I^{-2}. This is expected if the low temperature dissipation is dominated by quantum tunneling of Pearl vortices.Comment: 5 pages, 7 fig

    A unique MSH2 exon 8 deletion accounts for a major portion of all mismatch repair gene mutations in Lynch syndrome families of Sardinian origin

    Get PDF
    Lynch syndrome is an autosomal-dominant hereditary condition predisposing to the development of specific cancers, because of germline mutations in the DNA-mismatch repair (MMR) genes. Large genomic deletions represent a significant fraction of germline mutations, particularly among the MSH2 gene, in which they account for 20% of the mutational spectrum. In this study we analyzed 13 Italian families carrying MSH2 exon 8 deletions, 10 of which of ascertained Sardinian origin. The overrepresentation of Sardinians was unexpected, as families from Sardinia account for a small quota of MMR genes mutation tests performed in our laboratory. The hypothesis that such a result is owing to founder effects in Sardinia was tested by breakpoint junctions sequencing and haplotype analyses. Overall, five different exon eight deletions were identified, two of which recurrent in families, all apparently unrelated, of Sardinian origin (one in eight families, one in two families). The c.1277–1180_1386+2226del3516insCATTCTCTTTGAAAA deletion shares the same haplotype between all families and appears so far restricted to the population of South-West Sardinia, showing the typical features of a founder effect. The three non-Sardinian families showed three different breakpoint junctions and haplotypes, suggesting independent mutational events. This work has useful implications in genetic testing for Lynch syndrome. We developed a quick test for each of the identified deletions: this can be particularly useful in families of Sardinian origin, in which MSH2 exon 8 deletions may represent 50% of the overall mutational spectrum of the four MMR genes causing Lynch syndrome

    Strain induced phase separation in La0.7Sr0.3MnO3 thin films.

    Get PDF
    La0.7Sr0.3MnO3 thin films having different thicknesses were grown by pulsed laser deposition with in situ reflection high energy electron diffraction diagnostics on LaAlO3 substrates. The mismatch between film and substrate gives rise to an in-plane compressive biaxial strain, which partially relaxes in films thicker than 30 unit cells. Accordingly, the ratio between the out-of-plane and the in-plane lattice parameter c/a varies between 1.06 fully strained and 1.03 partially relaxed. In-plane compressive strain favors the stabilization of the 3z2−r2 orbitals chain-type antiferromagnetic phase, thus giving rise to a sizeable x-ray absorption linear dichroism signal. The shape of the linear dichroism depends weakly on the c/a ratio, while its intensity strongly increases with c/a. At the same time, the metal-insulator transition temperature shifts from about 360 K towards lower temperatures with decreasing thickness, eventually reaching an insulating state for the 30 unit cells film. Low-temperature nuclear magnetic resonance spectra show a decrease of the MnDE doubleexchange metallic contribution with decreasing the thickness, which becomes negligible in the 30 unit cells thick film. The experimental results demonstrate a strain driven competition between two stable phases: the orbital ordered chain-type insulating antiferromagnetic and the orbital disordered metallic ferromagnetic. For intermediate values of the epitaxial strain the local minimum state of the system lies in a gap region between the two stable phases. Such a region has glassy characteristics with coexisting clusters of the two phases. The strain is used as a driving force to span the glassy region

    C-axis resistivity and high Tc superconductivity

    Full text link
    Recently we had proposed a mechanism for the normal-state C-axis resistivity of the high-Tc_c layered cuprates that involved blocking of the single-particle tunneling between the weakly coupled planes by strong intra-planar electron-electron scattering. This gave a C-axis resistivity that tracks the ab-plane T-linear resistivity, as observed in the high-temperature limit. In this work this mechanism is examined further for its implication for the ground-state energy and superconductivity of the layered cuprates. It is now argued that, unlike the single-particle tunneling, the tunneling of a boson-like pair between the planes prepared in the BCS-type coherent trial state remains unblocked inasmuch as the latter is by construction an eigenstate of the pair annihilation operator. The resulting pair-delocalization along the C-axis offers energetically a comparative advantage to the paired-up trial state, and, thus stabilizes superconductivity. In this scheme the strongly correlated nature of the layered system enters only through the blocking effect, namely that a given electron is effectively repeatedly monitored (intra-planarly scattered) by the other electrons acting as an environment, on a time-scale shorter than the inter-planar tunneling time. Possible relationship to other inter-layer pairing mechanisms proposed by several workers in the field is also briefly discussed.Comment: typos in equations corrected, contents unchange

    Renin Angiotensin System Blockers and Risk of Mortality in Hypertensive Patients Hospitalized for COVID-19: An Italian Registry

    Get PDF
    Background: It is uncertain whether exposure to renin\u2013angiotensin system (RAS) modifiers affects the severity of the new coronavirus disease 2019 (COVID-19) because most of the available studies are retrospective. Methods: We tested the prognostic value of exposure to RAS modifiers (either angiotensin-converting enzyme inhibitors [ACE-Is] or angiotensin receptor blockers [ARBs]) in a prospective study of hypertensive patients with COVID-19. We analyzed data from 566 patients (mean age 75 years, 54% males, 162 ACE-Is users, and 147 ARBs users) hospitalized in five Italian hospitals. The study used systematic prospective data collection according to a pre-specified protocol. All-cause mortality during hospitalization was the primary outcome. Results: Sixty-six patients died during hospitalization. Exposure to RAS modifiers was associated with a significant reduction in the risk of in-hospital mortality when compared to other BP-lowering strategies (odds ratio [OR]: 0.54, 95% confidence interval [CI]: 0.32 to 0.90, p = 0.019). Exposure to ACE-Is was not significantly associated with a reduced risk of in-hospital mortality when compared with patients not treated with RAS modifiers (OR: 0.66, 95% CI: 0.36 to 1.20, p = 0.172). Conversely, ARBs users showed a 59% lower risk of death (OR: 0.41, 95% CI: 0.20 to 0.84, p = 0.016) even after allowance for several prognostic markers, including age, oxygen saturation, occurrence of severe hypotension during hospitalization, and lymphocyte count (adjusted OR: 0.37, 95% CI: 0.17 to 0.80, p = 0.012). The discontinuation of RAS modifiers during hospitalization did not exert a significant effect (p = 0.515). Conclusions: This prospective study indicates that exposure to ARBs reduces mortality in hospitalized patients with COVID-19
    corecore