227 research outputs found

    A novel approach to forecast urban surface-level ozone considering heterogeneous locations and limited information

    Get PDF
    Surface ozone (O3) is considered an hazard to human health, affecting vegetation crops and ecosystems. Accurate time and location O3 forecasting can help to protect citizens to unhealthy exposures when high levels are expected. Usually, forecasting models use numerous O3 precursors as predictors, limiting the reproducibility of these models to the availability of such information from data providers. This study introduces a 24 h-ahead hourly O3 concentrations forecasting methodology based on bagging and ensemble learning, using just two predictors with lagged O3 concentrations. This methodology was applied on ten-year time series (2006–2015) from three major urban areas of Andalusia (Spain). Its forecasting performance was contrasted with an algorithm especially designed to forecast time series exhibiting temporal patterns. The proposed methodology outperforms the contrast algorithm and yields comparable results to others existing in literature. Its use is encouraged due to its forecasting performance and wide applicability, but also as benchmark methodology

    ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer

    Get PDF
    Radiation therapy (RT) is a valuable component of multimodal treatment for localized pancreatic cancer. Intraoperative radiation therapy (IORT) is a very precise RT modality to intensify the irradiation effect for cancer involving upper abdominal structures and organs, generally delivered with electrons (IOERT). Unresectable, borderline and resectable disease categories benefit from dose-escalated chemoradiation strategies in the context of active systemic therapy and potential radical surgery. Prolonged preoperative treatment may act as a filter for selecting patients with occult resistant metastatic disease. Encouraging survival rates have been documented in patients treated with preoperative chemoradiation followed by radical surgery and IOERT (>20 months median survival, >35% survival at 3 years). Intensive preoperative treatment, including induction chemotherapy followed by chemoradiation and an IOERT boost, appears to prolong long-term survival within the subset of patients who remain relapse-free for>2 years (>30 months median survival; >40% survival at 3 years). Improvement of local control through higher RT doses has an impact on the survival of patients with a lower tendency towards disease spread. IOERT is a well-accepted approach in the clinical scenario (maturity and reproducibility of results), and extremely accurate in terms of dose-deposition characteristics and normal tissue sparing. The technique can be adapted to systemic therapy and surgical progress. International guidelines (National Comprehensive Cancer Network or NCCN guidelines) currently recommend use of IOERT in cases of close surgical margins and residual disease. We hereby report the ESTRO/ACROP recommendations for performing IOERT in borderline-resectable pancreatic cancer

    A novel tree-based algorithm to discover seismic patterns in earthquake catalogs

    Get PDF
    A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the original version in several aspects. First, new seismicity indicators have been used to characterize earthquakes. Second, a machine learning clustering algorithm has been applied in a very flexible way, thus allowing the discovery of new data groupings. Third, a novel search strategy is proposed in order to obtain non-overlapped patterns. And, fourth, arbitrary lengths of patterns are searched for, thus discovering long and short-term behaviors that may influence in the occurrence of medium-large earthquakes. The methodology has been applied to seven different datasets, from three different regions, namely the Iberian Peninsula, Chile and Japan. Reported results show a remarkable improvement with respect to the former version, in terms of all evaluated quality measures. In particular, the number of false positives has decreased and the positive predictive values increased, both of them in a very remarkable manner.Ministerio de Ciencia y Tecnología TIN2011-28956-C00Junta de Andalucía P12-TIC-1728Instituto Ramón y Cajal (RYC) RYC-2012-1198

    Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write

    Get PDF
    This paper describes the direct laser write of a photocurable acrylate-based PolyHIPE (High Internal Phase Emulsion) to produce scaffolds with both macro- and microporosity, and the use of these scaffolds in osteosarco-ma-based 3D cell culture. The macroporosity was introduced via the application of stereolithography to produce a clas-sical woodpile structure with struts having an approximate diameter of 200 ?m and pores were typically around 500 ?m in diameter. The PolyHIPE retained its microporosity after stereolithographic manufacture, with a range of pore sizes typically between 10 and 60 ?m (with most pores between 20 and 30 ?m). The resulting scaffolds were suitable substrates for further modification using acrylic acid plasma polymerisation. This scaffold was used as a structural mimic of the trabecular bone and in vitro determination of biocompatibility using cultured bone cells (MG63) demon-strated that cells were able to colonise all materials tested, with evidence that acrylic acid plasma polymerisation im-proved biocompatibility in the long term. The osteosarcoma cell culture on the 3D printed scaffold exhibits different growth behaviour than observed on tissue culture plastic or a flat disk of the porous material; tumour spheroids are ob-served on parts of the scaffolds. The growth of these spheroids indicates that the osteosarcoma behave more akin to in vivo in this 3D mimic of trabecular bone. It was concluded that PolyHIPEs represent versatile biomaterial systems with considerable potential for the manufacture of complex devices or scaffolds for regenerative medicine. In particular, the possibility to readily mimic the hierarchical structure of native tissue enables opportunities to build in vitro models closely resembling tumour tissue

    Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write

    Get PDF
    This paper describes the direct laser write of a photocurable acrylate-based PolyHIPE (High Internal Phase Emulsion) to produce scaffolds with both macro- and microporosity, and the use of these scaffolds in osteosarco-ma-based 3D cell culture. The macroporosity was introduced via the application of stereolithography to produce a clas-sical woodpile structure with struts having an approximate diameter of 200 ?m and pores were typically around 500 ?m in diameter. The PolyHIPE retained its microporosity after stereolithographic manufacture, with a range of pore sizes typically between 10 and 60 ?m (with most pores between 20 and 30 ?m). The resulting scaffolds were suitable substrates for further modification using acrylic acid plasma polymerisation. This scaffold was used as a structural mimic of the trabecular bone and in vitro determination of biocompatibility using cultured bone cells (MG63) demon-strated that cells were able to colonise all materials tested, with evidence that acrylic acid plasma polymerisation im-proved biocompatibility in the long term. The osteosarcoma cell culture on the 3D printed scaffold exhibits different growth behaviour than observed on tissue culture plastic or a flat disk of the porous material; tumour spheroids are ob-served on parts of the scaffolds. The growth of these spheroids indicates that the osteosarcoma behave more akin to in vivo in this 3D mimic of trabecular bone. It was concluded that PolyHIPEs represent versatile biomaterial systems with considerable potential for the manufacture of complex devices or scaffolds for regenerative medicine. In particular, the possibility to readily mimic the hierarchical structure of native tissue enables opportunities to build in vitro models closely resembling tumour tissue

    The abundances and distributions of molluscs in the southern Iberian Peninsula: A comparison of marine and terrestrial systems

    Get PDF
    Molluscs are the second most diverse of all animal phyla, and occur in many habitat types. They are, therefore, a particularly good phylum with which to compare and contrast differences between ecosystems. Mollusc data from a number of sites along the southern coast of the Iberian Peninsula are analysed to study patterns of diversity and distribution using a range of multivariate techniques. Within each site, data are presented from three locations -fully terrestrial, rocky intertidal and soft bottom benthic (10 m and 20 m depths)- all in close proximity. The species are then classified in relation to morphology and size, and analysed at supraspecific levels to elucidate underlying patterns. The observed patterns are briefly discussed, with particular reference to the differential scope and importance of controlling factors in each ecosystem, such as dispersal processes. The results from the systems are compared and discussed in the context of ecological and evolutionary constraints in MolluscaLos moluscos constituyen el segundo filo animal más diverso y se encuentran en muchos tipos de hábitat, por lo que son idóneos para establecer comparaciones entre distintos ecosistemas. Se han analizado los datos de los moluscos obtenidos en una serie de emplazamientos que cubrían el sur de la península Ibérica para determinar, empleando distintas técnicas multivariantes, los patrones de diversidad y distribución de estos organismos. Los datos se tomaron de ejemplares capturados en lugares del medio terrestre próximos a la línea de costa, de la franja intermareal rocosa y de sedimentos de fondos marinos situados a 10 y 20 m de profundidad. Las especies fueron clasificadas atendiendo a la morfología y el tamaño, y se analizaron a nivel supraespecífico para elucidar los patrones generales, que se discuten aquí, brevemente, con especial énfasis en las diferencias según la importancia de los factores que controlan cada ecosistema, como, por ejemplo, los procesos de dispersión. Los resultados de los distintos sistemas se comparan y discuten en el contexto de las tendencias ecológicas y evolutivas de los molusco

    Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee

    Get PDF
    La domótica consiste en la aplicación de técnicas provenientes de la automática industrial al hogar con objeto de ofrecer servicios que aporten, entre otras cosas, confort, seguridad y eficiencia energética a los usuarios. Hasta el momento la penetración de dichas técnicas en los hogares ha sido reducida. Una de las razones fundamentales de esta lenta transposición de técnicas de control al hogar es la dificultad de integración entre los diferentes sistemas presentes en el hogar. En este artículo se presenta un desarrollo encaminado a mejorar la integración de los sistemas domóticos con aquellos dispositivos que sean controlables mediante infrarrojos. En concreto se ha desarrollado una pasarela inalámbrica que permite a una red domótica el envío de tramas de infrarrojos. De esta manera se posibilita un despliegue rápido y económico de los nodos que sean necesarios para integrar dispositivos tales como los sistemas de aire acondicionado en una red domótica.Ministerio de Industria, Turismo y Comercio MITC-09-TSI-020100-2009-359Ministerio de Educación DPI2008-05818Junta de Andalucía TEP0272

    The use of microfabrication techniques for the design and manufacture of artificial stem cell microenvironments for tissue regeneration.

    Get PDF
    The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche

    Delivery of bioactive compounds to improve skin cell responses on microfabricated electrospun microenvironments

    Get PDF
    The introduction of microtopographies within biomaterial devices is a promising approach that allows one to replicate to a degree the complex native environment in which human cells reside. Previously, our group showed that by combining electrospun fibers and additive manufacturing it is possible to replicate to an extent the stem cell microenvironment (rete ridges) located between the epidermal and dermal layers. Our group has also explored the use of novel proangiogenic compounds to improve the vascularization of skin constructs. Here, we combine our previous approaches to fabricate innovative polycaprolactone fibrous microtopographical scaffolds loaded with bioactive compounds (2-deoxy-D-ribose, 17β-estradiol, and aloe vera). Metabolic activity assay showed that microstructured scaffolds can be used to deliver bioactive agents and that the chemical relation between the working compound and the electrospinning solution is critical to replicate as much as possible the targeted morphologies. We also reported that human skin cell lines have a dose-dependent response to the bioactive compounds and that their inclusion has the potential to improve cell activity, induce blood vessel formation and alter the expression of relevant epithelial markers (collagen IV and integrin β1). In summary, we have developed fibrous matrixes containing synthetic rete-ridge-like structures that can deliver key bioactive compounds that can enhance skin regeneration and ultimately aid in the development of a complex wound healing device
    corecore