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A B S T R A C T

Surface ozone (O3) is considered an hazard to human health, affecting vegetation crops and ecosystems.
Accurate time and location O3 forecasting can help to protect citizens to unhealthy exposures when high levels
are expected. Usually, forecasting models use numerous O3 precursors as predictors, limiting the reproducibility
of these models to the availability of such information from data providers. This study introduces a 24 h-ahead
hourly O3 concentrations forecasting methodology based on bagging and ensemble learning, using just two
predictors with lagged O3 concentrations. This methodology was applied on ten-year time series (2006–2015)
from three major urban areas of Andalusia (Spain). Its forecasting performance was contrasted with an algorithm
especially designed to forecast time series exhibiting temporal patterns. The proposed methodology outperforms
the contrast algorithm and yields comparable results to others existing in literature. Its use is encouraged due to
its forecasting performance and wide applicability, but also as benchmark methodology.

1. Introduction

Ozone (O3) is an ubiquitous, secondary photochemical air pollutant
that is formed when volatile organic compounds, nitrogen oxides and
carbon monoxide –the three ozone precursors– react in the presence of
short wavelength solar radiation. To date, surface O3 is considered as
the most damaging air pollutant in terms of adverse effects on human
health, vegetation crops and material (Paoletti, 2006; Sicard et al.,
2016).

Concentrations of surface O3 can shift rapidly over hours and days,
sometimes reaching levels that can exceed prescribed thresholds con-
sidered to be safe for health, particularly for the most vulnerable seg-
ments of the population. Predicting the temporal evolution of O3 con-
centration in specific urban locations emerges as a priority for
guaranteeing quality of life, providing the population in affected areas
with accurate information and alerting them when exceptionally high
levels are present.

Any threshold value exceedance, accurately forecasted in advance,
allows environmental authorities to apply short-term pollution control
measures and abatement strategies to protect the population.
Traditionally, environmental modelers have relied on multiple in-
formation to perform predictions (Corani and Scanagatta, 2016),

incorporating numerous predictors related to O3 formation to the
general formulation of the forecasting models.

However, on many occasions, the observation data available from
monitoring sites do not ensure quality requirements or may often be
limited to few parameters. Hence, relevant O3 chemical precursors or
originators traditionally used as input parameters which strongly con-
tribute to perform better forecasts, cannot be considered.

Traditional time series (TS) techniques fail to forecast O3 accurately
(Chattopadhyay and Bandyopadhyay, 2007). As a replacement, ma-
chine learning (ML) techniques have emerged and proved to be more
effective for O3 prediction (Gong and Ordieres-Meré, 2016; Martínez-
Ballesteros et al., 2010; Martínez-Ballesteros et al., 2011). Since 2006,
ensemble forecasting has begun to receive more attention, as ensemble
algorithms can improve forecasting accuracy and enhance the gen-
eralization capability (Zhang et al., 2012). However, they hold the in-
herent limitations associated with the single ML model's accuracy.

This study introduces a methodology based on bagging and en-
semble learning to forecast 24 h-ahead hourly O3 concentrations, which
was evaluated using ten-year (2006–2015) hourly O3 TS obtained from
three major urban areas of Andalusia (Spain). The different air quality
monitoring site locations permitted to evaluate the forecasting results in
a wide range of pollution levels and urban scenarios. The main
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contribution of this methodology is to use just lagged O3 concentrations
as predictors, without requiring the participation of any other variable
related to the O3 formation in urban environments. This methodology
was compared with the Pattern Sequence-based Forecasting PSF
(Martínez-Álvarez et al., 2011; Bokde et al., 2017) algorithm, which is
especially conceived to forecast on TS exhibiting regular patterns, as in
O3 TS. A detailed revision of the existing literature was also performed
to compare the forecasting performance of the proposed methodology.

The rest of the paper is structured as follows. Relevant and related
works are reviewed in Section 2. Section 3 introduces the methodology
proposed to forecast O3 when limited historical data is available. Re-
sults from its application to several urban environments in Spain are
reported and discussed in Section 4. Finally, the conclusions drawn
from this study are summarized in Section 5.

2. Related works

Ozone TS forecasting problem has been addressed using a wide
variety of techniques, from statistical approaches to deterministic
models. The most recurrent techniques in literature are based on ML
algorithms, specially artificial neuronal networks (ANN) and ensemble
methods. In this section, the most relevant approaches for O3 TS fore-
casting are presented.

ANNs were used in (Pires et al., 2012), where both the activation
function and the number of hidden neurons are tuned using a genetic
algorithm which also optimizes a threshold value that helps to differ-
entiate between regimes of O3 behaviour. Different correction techni-
ques were applied to ANN to improve their performance based on the
average O3 profile and training errors (Pires and Martins, 2011). ANNs
were compared to a deterministic model named WRF-Chem in
(Hoshyaripour et al., 2016) resulting that the latter performs better in
predicting mean and extreme O3 concentrations, while ANN achieved
better results in predicting daily O3 values.

The combination of support vector regression algorithms and nu-
merical models were studied in (Carro-Calvo et al., 2017). In the work
of Lu et al. (Lu and Wang, 2014), the authors explained the limitations
of both ANN and support vector machines (SVM) in the field of the
ground-level O3 prediction. They claim that ANN-based techniques can
easily incur in overfitting, local minima problems and they not provide
interpretable models (ANN are black-box schemes).

Gaussian processes (GP) are statistical models for regression pro-
blems with an infinite-dimensional generalization of multivariate
normal distributions. GP has been applied to O3 TS prediction in
(Kocijan et al., 2016; Petelin et al., 2013). Specifically, in these works
an on-line learning-based variant of GP named evolving Gaussian pro-
cesses was used, enabling the possibility of considering a mobile air-
quality measurement station. Such methodology is able to predict O3

concentrations for a specific geographical location without a large
quantity of historical of measurements.

Sequential aggregation (Kolesárová et al., 2015) is a type of en-
semble techniques where a linear sequential aggregation rule produces
a weight vector based on the past observations and the past predictions.
The final prediction is then obtained by linearly combining the pre-
dictions of the models according to the weight vector. Sequential ag-
gregation was applied to O3 prediction in (Debry and Mallet, 2014;
Mallet et al., 2009). In the work of Debry et al. (Debry and Mallet,
2014), the predictions of the French platform Prev’Air were ensembled
via sequential aggregation improving original predictions.

Bagging, boosting and stacking are well-known ensemble ap-
proaches that intend to improve the accuracy of a set of predictors by
reducing their bias and variance. Bagging is designed to reduce the
variance, whereas boosting and stacking can help to reduce both the
bias and variance. Such three approaches were applied to predicting the
exceedances of daily maximum O3 in (Gong and Ordieres-Meré, 2016).
Specifically, bagging technique was used in combination with

classification/regression trees and random forests (Breiman, 2001).
Boosting technique was applied using stochastic gradient boosting
machines (Friedman, 2002) and AdaBoost (Freund and Schapire, 1996).
Stacking technique was implemented using a multiple linear regressor
as the metalearner and support vector machines, ANNs, classification/
regression trees, random forests, AdaBoost and gradient boosting ma-
chines as ensembled methods.

Fuzzy logic in combination with ANNs were applied in (Taylan,
2017) using the adaptive neuro-fuzzy inference system (Jang, 1993) to
predict ground-level O3 concentrations. Different feature selection
techniques were applied to O3 prediction in (Kocijan et al., 2015) using
different methods based on cost functions through a validation proce-
dure. Resulting regressor selections are specific for particular geo-
graphical locations and O3 concentration intervals.

It must be considered that after an exhaustive search and to the best
of the authors’ knowledge, no other similar approaches as the in-
troduced in this study have been found in literature. Therefore, the
novelty of our methodology led us to expose in this Section, (i) the more
avant-garde proposals to forecast O3 from a Data science approach, or
(ii) the methodologies which share with ours some of the applied
procedures, namely, bagging and ensembles. The main contribution of
our proposal is the ability to forecast O3 when no information about its
precursors is available and when historical data are scarce. It seems no
other forecasting approaches allow coping with these limitations.

3. Methodology

This section describes the methodology proposed to forecast O3

when limited information is available.
A linear method forecasts hourly O3 concentrations and is based on

an ensemble from a set of two models, 1M and 2M , that use three linear
regression models (LR1, LR2 and LR3) to estimate the forecasted O3,
using simply actual and lagged O3 concentrations as regressors. If it is
denoted +yh d, 1 as the O3 concentration at hour h and day +d 1, the
observations yh d, and −yh d, 1, for = …d 1, ,30, represent the actual and
24-h lagged hourly O3 concentrations prior to yh d, , respectively.
LR models are defined as follow:

= + ++ +LR y β β y ε: ˆh d h d h d1 , 1 0 1 , , 1 (1)

= + ++ − +LR y β β y ε: ˆh d h d h d2 , 1 0 1 , 1 , 1 (2)

= + + ++ − +LR y β β y β y ε: ˆh d h d h d h d3 , 1 0 1 , 2 , 1 , 1 (3)

where β0 is the intercept, β1 and β2 are regression coefficients, +εh d, 1 is
an error term and = …d 1, ,30. To verify the validity of regression
models (LR1, LR2 and LR3) during the model building processes, an
study of non-linearity of the data was performed using residual plots,
and no indication of discernible patterns or trends in the residuals were
detected. Complementarily, for the simple linear (LR1 and LR2) and
multiple (LR3) regression models, hypothesis tests were carried out to
confirm the association between predictor and response variables, using
the t and F statistics, respectively, which yielded statistically significant
values. Using a linear classical TS modelling approach, LR1 and LR2 are
equivalent to an autoregressive model of first order -AR (1)- in which
the autoregressive term is shifted back 24 h and 48 h with respect the
hourly observation at time t, respectively, with the length of TS, T=30.
Similarly, LR3 is equivalent to an AR (2) model, with the first auto-
regressive term shifted back 24 h, and the second one, 48 h. The error
term +εh d, 1 in equations (1)–(3) is equivalent to white noise with mean
zero and variance one, and β0 a constant.

The hourly O3 forecasted value from 1M model ( ŷ 1M ) is obtained
after averaging the forecasting results from three LRs. 2M model uses a
bagged averaging using LR1, LR2 and LR3 as base regression models. The
ŷ 2M value is obtained following the next algorithm, with =t 10 itera-
tions, divided into two different phases:
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1. Model generation phase. For each of t iterations:
(a) Sample with replacement from observations ( − −y y y, ,h d h d h d, , 1 , 2),

= …d 1, ,30.
(b) Build LR1, LR2 and LR3 from the sample.
(c) Store the resulting models.

2. Forecasting phase. For each of the t models:
(a) Forecast value of O3 by averaging LR1, LR2 and LR3 forecasting.
(b) Return the average value (ŷ 2M ) of the forecasted values.

The final O3 hourly forecasted value is obtained after averaging the
ŷ 1M and ŷ 2M values.

Figure 1 depicts how the proposed methodology makes a prediction.
First, the historical data for the last 30 days are only considered for
learning the algorithm. Let us suppose that, for instance, hour h at day

+d 1 is going to be predicted. In that case, only hour h at day d and
hour h at day −d 1 are considered ( = …d 1, ,30). Other possible
window lengths were studied (15, 45, 60 and 90 days), and the selected
one (30 days), was chosen according to its forecasting performance
using the quality measures described in Section 4.2. Apart from
showing a better accuracy behaviour, it seems that a window length of
30 days conveniently balances robust prediction accuracy and model
training with enough recent observations, and therefore, allows to
capture the seasonal temperature conditions governing the O3 forma-
tion in the different study periods along the year. From a modelling
perspective, the daily pattern of hourly O3 concentrations could be
assumed to be influenced by an underlying seasonal cycle which varies
through the year. Since the above regression models (LR1, LR2 and LR3)
do not consider this latter seasonal component, its possible influence
during the time span covered by the TS (30 days) was studied using the
auto arima. function from the forecast package (Hyndman, 2017) in R
(R Core Team, 2017). This function allows for conducting a search over
possible seasonal ARIMA models within the order constraints provided,
and then returning the best model according to a bayesian criterion. To
that end, hourly TS from the 30 days prior to the hour to be forecasted
were modeled using the seasonal ARIMA p d q P D Q( , , )( , , )24. The values
of q and Q were set to 0, and those of p d P, , and D were restrained to a
maximum of 2 orders. The best models were selected according to the
BIC criterion.

Finally, Fig. 2 illustrates the methodology aforementioned. It can be
seen that three linear regressions, LR1, LR2 and LR3, are created and
their average is calculated ( ŷ 1M ). Alternatively, ten models are built
from 10 bootstrap samples generating 10 averaged bagging models
( ŷ 2M ). The average of ensembles and linear regressions results in the
final forecasting.

4. Results

This section reports the results obtained by the application of the
proposed methodology to the datasets described in Section 4.1. The

used metrics to evaluate its performance is introduced in 4.2. Finally,
errors and comparison to other well-established methods are discussed
in Section 4.3.

4.1. Data description

O3 data were collected at five urban sites from three air quality
monitoring networks in Andalusia, Spain (Cordova, Jaen and Seville)
from 2006 to 2015, following the reference monitoring method estab-
lished in Directive (2008)/50/EC on ambient air quality and cleaner air
for Europe. Table 1 presents the type (suburban, urban) and pre-
dominant emission sources (background, traffic) of each monitoring
site selected in this study. O3 data were provided by the Regional
Ministry of Environment and Land Planning of Andalusia (Seville,
Spain) after validation. The cities of Cordova, Jaen and Seville are lo-
cated in southern Spain, and during 2014, had a total population of
328,041, 115,837 and 696,676 (data collected from the Institute of
Statistics and Cartography from Andalusia, last accessed 2017), re-
spectively.

4.2. Quality parameters

Many error measures can be used to assess a prediction performance
(Hyndman and Koehler, 2006). However, in the context of this study,
the most common are root mean square error (RMSE) and mean ab-
solute error (MAE), and for this reason, they were the ones selected.
Their formulas are:

∑ ∑= − = −
= =

RMSE
n

y y MAE
n

y y1 ( ˆ ) and 1 ˆ ,
i

n

i i
i

n

i i
1

2

1

where n is the number of evaluated samples, yi the actual value and ŷi
the predicted value.

4.3. Discussion

This section includes the results obtained by the proposed metho-
dology and the comparison to the successful PSF algorithm, especially
designed to forecast TS with temporal patterns. Briefly, this algorithm
forecasts the behaviour of TS based on similarity of pattern sequences.
The prediction of a data point is provided as follows: first, the pattern
sequence prior to the day to be predicted is extracted. Then, this se-
quence is searched for within the historical data and the prediction is
calculated by averaging all the samples immediately after the matched
sequence.

Tables 2 and 3 show the results, in terms of RMSE and MAE, re-
spectively, for all the five stations and years 2006–2015. As it can be
seen, the proposed methodology clearly outperforms results of PSF for
every year. On average, the RMSE achieved is 18.16 μ g/m33, whereas

Fig. 1. Strategy for forecasting O33 con-
centration at h hour, using last 30 days as
learning period with 24 and 48 h lagged
concentrations. Blue and orange squares
indicated hourly O3 with different lagging
(24 h and 48 h, respetively), with respect the
concentration at hour h. (For interpretation
of the references to colour in this figure le-
gend, the reader is referred to the Web
version of this article.)
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Fig. 2. Linear regression and ensemble models generation for forecasting one hourly O3 concentration +y( ˆ )h d, 1 . ŷ 1M estimation is obtained after averaging the LR1, LR2

and LR3 estimations, represented with red figures. ŷ 2M is obtained after averaging the estimations obtained in each bootstrap sample with LR1, LR2 and LR3. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Classification of monitoring sites where O3 data were obtained (locations are given in X,Y ETRS89-UTM coordinates, zone 30).

City Site Type Main pollution source Location (X, Y)

Cordova Asomadilla Suburban Background (343546, 4196519)
Jaen Ronda del Valle Urban Background (431177, 4181976)
Seville Aljarafe Suburban Background (230473, 4137017)
Seville Bermejales Urban Background (236063, 4137554)
Seville Torneo Urban Traffic (234151, 4142873)

Table 2
Performance of proposed and PSF algorithms to forecast hourly O3 concentrations at five studied sites from 2006 to 2015, using RMSE (in μg m/ 3).

Year Aljarafe Asomadilla Bermejales Ronda del Valle Torneo

Proposed PSF Proposed PSF Proposed PSF Proposed PSF Proposed PSF

2006 18.6 20.5 18.6 40.7 20.7 22.3 22.3 25.3 14.6 15.7
2007 17.7 20.0 17.8 20.0 20.3 22.1 21.5 24.0 14.7 15.7
2008 18.8 20.9 18.9 21.1 20.1 22.3 22.6 24.3 14.5 16.1
2009 19.0 21.2 18.0 19.6 20.7 22.6 21.6 23.3 15.6 17.2
2010 18.7 21.3 17.6 19.7 20.5 22.8 22.8 26.1 – 17.8
2011 17.7 19.2 17.3 19.8 19.2 21.2 20.4 22.5 15.4 17.0
2012 18.7 20.4 – 17.7 19.6 21.8 16.7 19.3 16.1 17.5
2013 16.9 19.0 16.4 18.9 19.1 21.2 19.2 21.6 10.7 17.1
2014 17.3 18.3 17.7 19.7 18.8 21.1 19.7 22.6 15.7 18.1
2015 15.7 20.1 17.0 18.9 18.3 20.7 19.7 22.3 16.0 17.2
Average 17.9 20.1 17.7 21.6 19.7 21.8 20.7 23.1 14.8 16.9

Table 3
: Performance of both algorithms, as in Table 2, using MAE (in μg m/ 3).

Year Aljarafe Asomadilla Bermejales Ronda del Valle Torneo

Proposed PSF Proposed PSF Proposed PSF Proposed PSF Proposed PSF

2006 14.8 15.8 14.5 31.4 15.9 17.0 17.8 19.9 11.2 11.8
2007 14.0 15.5 14.0 15.4 15.8 17.1 16.9 18.5 11.2 11.8
2008 15.1 16.4 15.1 16.4 16.1 17.4 18.0 19.1 11.3 12.5
2009 15.3 16.6 14.1 15.2 16.5 17.6 17.1 18.3 12.2 13.3
2010 14.7 16.8 14.0 15.6 16.4 17.8 18.4 20.7 – 14.0
2011 14.1 15.2 13.8 15.5 15.3 16.7 16.2 17.7 11.9 13.2
2012 14.9 16.2 – 13.8 15.7 17.0 13.2 15.2 12.6 13.4
2013 13.4 14.9 12.8 14.8 15.1 16.8 15.0 16.9 8.1 13.1
2014 13.9 14.6 14.2 15.4 14.9 16.6 15.8 17.8 12.3 13.9
2015 11.6 16.0 13.4 14.8 14.6 16.2 15.5 17.4 12.5 13.3
Average 14.2 15.8 14.0 16.8 15.6 17.0 16.4 18.2 11.5 13.0

Á. Gómez-Losada et al. Environmental Modelling and Software 110 (2018) 52–61

55



PSF achieved 20.72 μ g/m3, being the best obtained values 10.7 μ g/m3

and 15.7 μ g/m3, respectively. With respect to MAE, the average results
were 14.33 μ g/m3 and 16.17 μ g/m3 for the proposed and PSF algo-
rithms, an the best values, 8.1 μ g/m3 and 11.8 μ g/m3, respectively.

The seasonal ARIMA models described previously yielded forecasting
performances lower than the proposed and PSF algorithms (results not
shown). The reason the latter algorithms forecast more accurately than
seasonal ARIMA models in the context of this study remains open for

Fig. 3. Average RMSE values for all the five stations for 2015, distributed by hour and month, (in μg m/ 3).
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further investigation.
For illustrative purposes, only graphical results from 2015 for RMSE

and MAE are depicted in Figs. 3–6. Letters A, B, C, D and E identify
Aljarafe, Asomadilla, Bermejales, Ronda del Valle, and Torneo stations,
respectively. In particular, a temporal distribution of the RMSE and
MAE per month and hour of the day can be seen in Figs. 3 and 4, re-
spectively, being more consistently obtained higher values of both

statistics at night during the first six months of the year in Asomadilla,
Bermejales and Ronda del Valle stations. This observation, however,
cannot be extended to the rest of stations because smoother RMSE and
MAE values are obtained in Aljarafe and Torneo stations during the
whole year.

Broadly speaking, Figs. 3 and 4 show how the forecasting perfor-
mance of our proposed methodology behaves along the day and year.

Fig. 4. Average MAE values for all the five stations for 2015, as in Fig. 3.
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As said before, Aljarafe (A) and Torneo (E) sites seem to experience a
less acute declining of the RMSE and MAE performance. Aljarafe site is
placed at the Seville's outskirts, and could receive O3 from a transported
origin (Huelva city, with an intense industrial activity). The transported
O3 during night is not coupled with the O3 genesis photochemical

reactions, which are (light) ultra-violet dependent. With respect the
Torneo site, in this area it is produced a high concentration of NO2, a
typical marker of traffic origin, which in case of adequate presence of
sunlight intensity, can also produce high O3 concentrations during the
day. If this O3 is not conveniently washed-out by wind conditions, it

Fig. 5. Behaviour of the RMSE values during the week, for all the five stations and year 2015.
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Fig. 6. Behaviour of the MAE values during the week, as in Fig. 5.

Á. Gómez-Losada et al. Environmental Modelling and Software 110 (2018) 52–61

59



could become stagnant during night hours. Therefore, in Aljarafe and
Torneo sites, the O3 concentrations would experience less range var-
iations than in the rest of sites. It seems that exogenous O3 concentra-
tions present at night, caused by transport from other origins, or the
stagnated one produced during the day, could be captured by our
methodology. However, the more wide O3 concentration ranges ex-
perienced in Asomadilla, Bermejales and Ronda del Valle sites (due to
high O3 concentration values at midday and low at night hours) would
not be entirely described with our approach. This aspect remains open
for further investigation.

Figs. 5 and 6 illustrate the particular behaviour of the RMSE and
MAE values per day of the week, which also depends on the studied
station. Based on Tables 2 and 3 values for the rest of the years, it can be
concluded that RMSE and MAE values are approximately constant and,
in general, robust over the 10 years studied. Likewise, these values
seem to be locally controlled by generating factors of pollution that
have an effect on the performance of the proposed algorithm. It is worth
to note the more steady behaviour of RMSE and MAE in Asomadilla site
(B), a typical suburban background monitoring site, as Aljarafe site. In
this case, Asomadilla site experiences higher O3 concentrations due to
its location far from Cordova's downtown, such area of the city likely
being the origin of this higher O3 pollution due to transport dynamic.
This fact could support the performance explanation derived from
Figs. 3 and 4. In general terms, from Figs. 5 and 6, it can be concluded
that our approach seems not to properly describe the weekend effect
(lower O3 concentrations during Saturday and Sunday) since similar
RMSE and MAE values are obtained with respect to working days.

Despite the short available time period for learning the proposed
algorithm (30 days), these results must be considered satisfactory in
absolute terms, since similar RMSE values were achieved in other
consistent studies. Table 4 shows other RMSE models applied to the
same kind of data, where MLP stands for multilayer perceptron, SVM
for support-vector machine, MLR for multiple linear regression, and AR
for autorregressive model.

As it can be noticed, all methods obtained RMSE values higher than
those of the proposed method and even higher than those of PSF. The
only exception are the works in (Debry and Mallet, 2014), (Kumar
et al., 2017) and (Hoshyaripour et al., 2016). However, in (Debry and
Mallet, 2014) authors considered exogenous variables such as NO2 and
PM10, in (Kumar et al., 2017), temperature, relative humidity and NO2,
and NO2 and wind direction, in (Hoshyaripour et al., 2016), to generate
a more robust models. It is worth highlighting that the ultimate goal of
this approach is to make predictions in extreme situations, where short
historical data and no other correlated variables are available. There-
fore, its comparison could not be considered fair.

5. Conclusions

A new methodology based on bagging and ensembles of learning
models to forecast 24 h-ahead hourly surface-level O3 is proposed. Its
main novelty lies in the ability to develop these models when no in-
formation about O3 precursors is available, which is new in literature.
This methodology was only built on two O3 variables composed by 24 h
and 48 h lagged concentrations with respect the hourly concentration to
be forecasted, or equivalently, just using the information from the two
days prior the forecasting time were required. Modelling introduced in
this work are presented ready-to-use, without requiring further inter-
vention from the final user to reproduce it.

Hourly TS from five O3 monitoring sites from Andalusia (Spain)
were used to test the forecasting ability of the proposed methodology.
The long period of study (2006–2015) and the different monitoring
sites where data were obtained permitted a wide range of pollution
levels, contributions and locations to be considered for assessing its
robustness. Every forecasted hourly O3 concentration was obtained
after averaging the estimated O3 concentrations from two models: the
first one averages the estimates of three linear regression models, and
the second one, used an bagged averaging of them. The proposed
methodology could pose how simply averaging few and slightly cor-
related models can improve the forecasting ability of ensembles.

The accuracy of the proposed forecasting approach outperforms the
results found in the literature. Related studies make use of input vari-
ables involved in the O3 formation in urban environments. These latter
variables are provided by meteorological and air quality services which
make models reproducibility dependent on the availability of such in-
formation from other similar data providers. The introduced method
circumvents the use of this information related to the O3 genesis,
widening their applicability. The PSF algorithm, specially designed to
forecast TS with temporal patterns, as in the O3 case, was used to
compare the performance of the proposed methodology. On average,
the RMSE and MAE achieved by this algorithm after studying their
forecasting performance was 20.72 μm/m3 and 16.17 μm/m3, whereas
the proposed methodology obtained 18.16 μm/m33 and 14.33 μm/m3,
respectively.

The use of the proposed methodology O3 is encouraged to en-
vironmental modelers devoted to forecast surface-level O3. Its use is
intended when no information of the precursors involved in the for-
mation of this air pollutant is available or when historical data are
scarce. However, their forecasting accuracy can be used to provide a
benchmark performance for comparative purposes with respect to other
modelling approaches.
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The data used in this study were kindly provided by the Regional
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from www.r-project.org and runs on UNIX, Windows and MacOS plat-
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Table 4
Average RMSE (in μg m/ 3) reported by other models.

Reference Models Average
RMSE

Best
RMSE

(Lu and Wang, 2014) Four MLP, one SVM 25.28 22.50
(Sousa et al., 2009) MLR 21.55 18.78
(Pires and Martins,

2011)
Two ANN, two MLR 23.63 23.00

(Pires et al., 2010) Seven AR, one ANN 23.18 22.11
(Mallet et al., 2009) Fifty-one ensemble models 19.21 17.43
(Pires et al., 2012) Three ANN 19.11 17.35
(Debry and Mallet,

2014)
Three-model ensemble 15.57 12.80

(Kumar et al., 2017) MLP trained with
backpropagation

12.05 8.83

(Hoshyaripour et al.,
2016)

One ANN 9.66 7.06
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