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ABSTRACT

Keywords:

A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new

methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the

Seismic time series

original version in several aspects. First, new seismicity indicators have been used to characterize earthquakes. Second, a machine learning

clustering algorithm has been applied in a very flexible way, thus allowing the discovery of new data groupings. Third, a novel search

Earthquake prediction
Pattern discovery

Clustering

strategy is proposed in order to obtain non-overlapped patterns. And, fourth, arbitrary lengths of patterns are searched for, thus
discovering long and short-term behaviors that may influence in the occurrence of medium-large earthquakes. The methodology has been
applied to seven different datasets, from three different regions, namely the Iberian Peninsula, Chile and Japan. Reported results show a
remarkable improvement with respect to the former version, in terms of all evaluated quality measures. In particular, the number of false

positives has decreased and the positive predictive values increased, both of them in a very remarkable manner.

1. Introduction

The discovery of earthquake precursors is a task of utmost relevance
in order to take precautionary measures and prevent human losses. Ac-
cording to Ishibashi (1998), such events can be classified into two cate-
gories: physical (irreversible rupture process) and tectonics (tectonic
slide). Physical precursors are mainly considered for the short and in-
termediate term.

It is well-known that certain precursory events are correlated to large
earthquakes. Actually, a vast majority of major earthquakes exhibit
anomalous seismic activity just before they occur. The features include
changes in regional activity rate and changes in the pattern of small
earthquakes, including alignments on unmapped linear features near the
(future) main shock. It has long been suggested that large earthquakes
are preceded by observable variations in regional seismicity (Shanker
et al., 2010).

The main objective of this work is to generalize the methodology
introduced in (Morales-Esteban et al., 2010) and extended in (Florido
et al., 2015). In it, authors applied unsupervised learning to discover
significant precursory anomalies. Although the results they obtained
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were relevant in terms of accuracy, the approach itself exhibited several
limitations:

1. Only b-value and time occurrence were considered to discover
meaningful anomalies. That is, only two features were considered to
characterize seismicity. There exist many other features that may be
used.

2. The search strategy was not exhaustive and some patterns were just
sub-patterns or shorter patterns of other patterns. Therefore, an
improved search strategy must be developed in order to avoid over-
lapping in discovered patterns.

3. Only three labels were assigned when k-means were applied (the
number of clusters was not thoroughly discussed and was set to 3).
This number was particularly suitable for visualization, but certain
physical behaviors may remain unrevealed.

4. The length of the patterns were limited to three elements, which
involved the consideration of only 15 last events.

5. Results showed similar behavior for all the seven analyzed zones.

In view of the above mentioned, a novel methodology is introduced in
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order to find non-overlapped patterns and to explore the entire search
space. The heuristic is fed with a relevant set of seismicity parameters,
already published in the literature. Moreover, a voting system is used to
determine the optimal number of partitions to be used. And, finally, data
for different zones in the world (Iberian Peninsula (Morales-Esteban
et al., 2010), Chile (Reyes et al., 2013) and Japan (Asencio-Cortés et al.,
2017)) are analyzed aiming at discovering common patterns.

The rest of the paper is structured as follows. Section 2 reviews recent
and relevant works in this field of research. The followed methodology to
discover earthquake precursors is described in Section 3. Results ach-
ieved from the application of the proposed methodology to several cat-
alogs are summarized and discussed in Section 4. Finally, Section 5
presents the conclusions drawn in this work.

2. Related works

A very thorough survey of earthquake precursors was published in
(Cicerone et al., 2009). Seismicity, surface deformations, temperature
changes or magnetic fields can be encountered among all analyzed pre-
cursors. Three main conclusions were drawn from this study: largest
anomalies occur before largest earthquakes, the number of anomalies
increases when approaching to the earthquake and precursory anomalies
usually take place closer to the epicenter. Another interesting survey can
be found in (Florido et al., 2016), in which the performance of artificial
neural networks is reviewed under a variety of earthquake prediction
problems.

The b-value was pointed out to be an earthquake precursor in 1981,
when Smith (1981) performed an analysis in New Zealand, showing that
in areas surrounding eventual earthquake epicenters, b-value initially
increases and, later, it decreases after earthquake occurrence.

In 1992, it was found that a pattern for large earthquakes, consisting
in an intermediate-term increase followed by short-term decrease in the
b-value (Sammonds et al., 1992). Additionally, they limited the influence
of the b-value to a period no longer than seven years.

Similar conclusions were drawn by Nuannin et al. in 2005 for the
region of Andaman-Sumatra (Nuannin et al., 2004). The authors intro-
duced a thorough study on b-value variations by means of a time-sliding
window. It was concluded that an acute decrease in the b-value is usually
reported prior to major earthquakes.

The predictive ability of three seismic parameters (number of earth-
quakes, b-value and energy released) was studied in (Baskoutas and
Popandopoulos, 2014). These parameters were included in the proposed
FastBEE algorithm. Data from Greece were used to assess its perfor-
mance, showing promising results.

Unglert et al. compared the performance of Self-Organizing Maps
versus Principal Component Analysis when applied to synthetic data
(Unglert et al., 2016). These data were built from retrieved information
from two volcanic eruptions. They concluded that hierarchical cluster
performs better.

Seismic signals have also been analyzed by means of pattern recog-
nition techniques in Chile (Curilem et al., 2016). In particular, the au-
thors proposed two strategies to combine information retrieved from
different monitoring stations, in order to improve the precursor classifi-
cation performance.

Last et al. proposed the use of new seismic parameters, along with
other existing ones, to predict earthquakes in Israel (Last et al., 2016).
Both foreshocks and aftershocks were removed from the catalog. Their
new proposed features, based on the number of earthquakes and the
maximum earthquake magnitude during the same year, exhibited
remarkable predictive ability.

Fault deformations prior to the 2016 Qinghai Menyuan earthquake,
6.4 M;, were studied in (Li et al., 2016). The authors found long anom-
alous tendencies near the epicenter the days before the earthquake took
place. They even reported anomaly sites approximately a year earlier and
kept increasing and migrating towards areas surrounding the epicenter
several months prior to the event.

Swarm magnetic data from the 2015 Nepal earthquake, 7.8 M, were
analyzed in (De Santis et al., 2017). The authors applied a statistical
approach to detect temporal patterns and relevant anomalies were
discovered. The authors claimed that this fact indicates an internal origin
of the anomalies discovered.

A hydrogeochemical dataset associated with the 2016 Amatrice-
Norcia, Italy, seismic sequence (Anzidei and Pondrelli, 2016) was
analyzed in (Barberio et al., 2017). They reported variations of pH
values, an increase of As, V, and Fe concentrations, whereas Cr concen-
trations increased immediately after the main shock. The authors inter-
preted the anomalies within the dataset as reliable seismic precursors for
a dilational tectonic setting.

3. Methodology

The methodology proposed to perform earthquake predictions is
described in this section. It is a methodology based on finding precursor
patterns that involve further large magnitude earthquake events. Those
patterns are based on seismic features derived from the Gutenberg-
Ritcher's b-value (Gutenberg and Richter, 1944). The parameters on
which the methodology depends are automatically optimized leaving the
user free to tune them.

In Section 3.1 the entire procedure is summarized. Section 3.2 ex-
plains how seismic information was extracted from earthquake catalogs
producing propositional datasets. Once those datasets are generated, the
training procedure carried out to produce precursor models is explained
in Section 3.3. Finally, the prediction procedure is described in Section
3.4.

3.1. General procedure

The methodology proposed is drawn in a schematic way in Figs. 1 and
2. The first figure shows the training procedure while the second one
shows the prediction procedure. First, catalogs of earthquake events were
taken from various works in the literature (Morales-Esteban et al., 2010;
Reyes et al., 2013; Asencio-Cortés et al., 2017) in order to establish
comparisons. Specifically, Section 4.1 describes the seven catalogs
considered. Therefore, the proposed methodology was tested on seven
different datasets.

The univariate time series corresponding to the magnitude of the
earthquake events in the catalogs was considered in this work. The time
series is defined by the sequence of magnitudes {m;} and it is indexed by
the sequence of times {t;}, where 1 < i < nand n is the time series length.

A propositional dataset is constructed for each earthquake catalog.
Such dataset contains a set of seismic features (a;,as,...,a,) (see Section
3.2) and a target to predict (C). The target is defined as in the reference
work. In all these works the target was the maximum earthquake
magnitude in the next days.

Once the propositional dataset is generated, it was divided in two
subsets named training and test. This division was performed exactly as
in the reference work for each catalog. Reference works splitted the
datasets using hold-out based on specific separated training and test
subsets.

The training procedure is explained in Fig. 1. The core of the training
process is based on the following sequence of tasks: clustering (Section
3.3.1), grouping (Section 3.3.2), construction of a precursor tree (Section
3.3.3), pattern extraction (Section 3.3.4) and pattern selection (Section
3.3.5).

Because the clustering and grouping tasks depend on parameters K
and A, respectively, an exhaustive search was introduced wrapping the
core. Note that K is the number of clusters to be created and A is the
length of the pattern sequence to be found within historical data. This
search iterates over all combinations in the given K, A grids and produces
the best parameter values according to a measure of performance
(explained in Section 4.2). The final precursor model contains several
objects: the training clusters, the best value obtained for the parameter A
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Fig. 1. Methodology proposed for training and producing precursor models from
exhaustive search over parameters K and A. The precursor model is built through a
and pattern extraction and selection. The training procedure finishes returning the

and the selected precursors. Precursors are formally defined in Section
3.3.3.

The test procedure is shown in Fig. 2. In first place, the propositional
instances corresponding to the test events of the catalog are generated.
From the previously generated precursor final model, a sequence of tasks
were performed: cluster assignment, grouping instances, find precursor
patterns and, finally, the prediction assignment. Once predictions were
made, their performance is analyzed in Section 4.

3.2. Propositional dataset generation

A propositional dataset is constructed for each earthquake catalog.
Such dataset contains tabular data structured on a set of attributes a;, az,
...,y and a class C. Such data structure has the standard meaning in
machine learning area: attributes could contain relevant information to
infer the class, which is the objective to estimate.

The class C is defined as the maximum magnitude of events in the
next days. Depending on the specific work, those days can vary. The class

earthquake catalogs. It involves the creation of propositional datasets and an
sequence of tasks including clustering, grouping, construction of a precursor tree
precursor model and its performance.

considered in the proposed methodology is the specific for each reference
work to perform correct comparisons.

Attributes a1, ay, ..., a, are seismic features mostly derived from the
Gutenberg-Ritcher's b-value (Gutenberg and Richter, 1944). The b-value
is the size distribution factor. It reflects the tectonics of the underlying
zone and it is related to the geophysical properties of the zone. Specif-
ically, Table 1 shows the set of seismic features used in the reference
works (Morales-Esteban et al., 2010; Reyes et al., 2013; Asencio-Cortés
et al., 2017).

The features x1, X2, X3, X4, X5, X and x; were proposed in (Reyes et al.,
2013) and b,a,n, AM, T, u, c,dEY/? and Myeqn were introduced in (Pan-
akkat and Adeli, 2007). To assess the features for a given event, the
previous n events must be calculated. In this work n was set to the same
specific value of the reference works (n = 50). The seismic features
considered in this work were the specific for each reference work, in
order to provide the same input information to the proposed methodol-
ogy and to compare properly its prediction results.
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Fig. 2. The prediction procedure of the proposed methodology. First, propositional instances from test events are generated. Then, from such instances and a precursor
final model, a sequence of tasks are performed, including cluster assignment, grouping instances, find precursor patterns and prediction assignment. Finally, per-

formance of predictions is assessed and analyzed.

Table 1
Seismic feature set used in the reference works.
Feature  Description
b Gutenberg-Richter law's b-value
X1 Increment of b between the events i and i — 4
X2 Increment of b between the eventsi —4 and i — 8
X3 Increment of b between the events i — 8 and i — 12
X4 Increment of b between the eventsi — 12 and i — 16
Xs Increment of b between the events i — 16 and i — 20
X6 Maximum magnitude from the events recorded during the last week (OU's
law)
X7 Probability of recording an event with magnitude larger or equal to 6.0
using a probability density function
a Gutenberg-Richter law's a-value
n Mean square deviation
AM Magnitude deficit
T Elapsed time
H Mean time
c Coefficient of variation
dEY/? Rate of square root of seismic energy
Minean Mean magnitude

3.3. Training procedure

The procedure to generate the precursor model from the proposi-
tional training subset is shown in Algorithm 1. Note that it is based, in
high level terms, on an exhaustive search over parameters K and A.
Parameter K is the number of clusters used in the clustering phase.
Parameter A is the group size used in the grouping phase.

The algorithm receives a grid of values for both K and A to perform
the search for their optimum values. In this work, the following grids
were used: Kgig = 2,3,4,5,6 and Agig = 2,3,4,5,6. The algorithm also
receives the training attributes (a;; € R,Vi,j:1<i<n,1<j<m)and
its classes (C; € {0,1}, Vi: 1 <i<n).

The algorithm returns the set of precursors obtained M*, the best
parameter values K* and A*, the cluster assignment to training instances
L* and the performance ¢ of the obtained precursors. This performance
measurement is defined in Section 4.2. All these objects compose the
knowledge model produced by the training procedure of the proposed
methodology. This model will be used to perform earthquake pre-
dictions, as it is explained in Section 3.4.



Algorithm 1: Training procedure

Input
a € R™™ (training attributes)
C € {0,1}" (training classes)
Kgrig € WK (K grid values)
Agriqd € IN4t (A grid values)
Output:
M* €< Si, H,G >M (precursors)

K* € Kgriq (best value for parameter K)
A* € Agriq (best value for parameter A)

CT* € R+ (clustered training)
¢ €10,1] € R (performance)

1 ¢=0;
2 foreach K € K4 do
3 foreach A € Ay.;q do
4 CT := clustering(a, K);
5 G = grouping(CT, A, C);
@ T := precursortree(G, K, A);
7 M := extraction(T);
8 <M, ¢,> = selection(M, G);
9 if ¢, > ¢ then
10 ‘ <M*, K*, A*, CT*, ¢>:— <M, K, A, CT, ¢, >;
11 end
12 end
13 end

3.3.1. Clustering instances

Clustering process is aimed to group seismic similarities among the
training instances. For this purpose, all the attributes a;, a, ..., a, were
normalized between 0 and 1. Then, the k-means clustering algorithm
(Lloyd, 1982) was applied to the training instances (excluding their
classes C). The number of clusters is determined by the parameter K
managed by the training procedure.

After clustering process is completed, the result CT € R™(Mm+1) = a|L
is composed of the training instances plus a column vector L with their
cluster assignments. These assignments must be within the number of
clustersK: L; € {1,...,K}, Vi: 1 <i<n.

3.3.2. Grouping instances

The aim of the grouping process is to form sequences of consecutive
cluster assignments in training instances (precursors) and their conse-
quence in possible next large earthquakes. For this purpose, instances are
condensed in groups of A elements. The process is shown in Fig. 3 for A =

Clustered Training (CT)

-“
an an A1im

3 (an example).

The grouping process results in a matrix named grouped training
G € NM-A+1)x(A+1) The first A columns of the matrix G;,Go,...,Ga
contain the cluster assignments of the grouped instances. The last column
C* = C;€{0,1}, Vi: A<i<n, contains the class value of the last
grouped instance.

Elements of the matrix G are defined in two parts: a) the submatrix
with the columns G; is defined as gje N,Vi:1<i<(n— A+ 1),
Vj:1<j<A;Db) elements of the column vector C* are defined as ] €
{0,1},Vi:1 <i< (n— A+ 1). Thus, the matrix G = g|c*.

Thereby, the class of last grouped instances, C*, means whether a
large earthquake will occur in the next days and the columns Gy, Ga, ...,
Gy represent the pattern of previous seismic features (precursors) which
could be the cause of these further earthquakes.

3.3.3. Construction of the precursor tree
The main objective was to select the most characteristic and general

Grouped Training (G)

I A=3
;| ax am L3 —> L L, Ls G
an az am L B L, L3 Ly Cs
o
o
an1 an am Ly —» Lo Lha Ly C,

Fig. 3. Example of the process of grouping instances for A = 3.
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Fig. 4. Representation of a precursor tree with K clusters.

precursors that involves large further earthquakes. Once such precursors
are obtained they can be used as patterns to predict earthquakes. To
achieve this goal, the next stage of the proposed methodology, once the
grouped training (G) was built, is to construct a tree-based model we
named precursor tree. Fig. 4 shows a representation of a precursor tree
defined with K clusters. In this section all fundamentals about precursor
trees are defined.

In first place, let's introduce all the definitions about precursors. A
precursor P is a tuple of three components, as defined in Eq. (1a). The
component s is a sequence containing up to A elements with values be-
tween 1 and K, as it is shown in Egs. (1b) and (1c). Specifically, s is a
sequence of cluster assignments that corresponds, partial or totally, to a
row in the submatrix g.

Py =< s,hs, g, > (1a)
SES:0<j<A (1b)
Si={s1,...,s5}: 1 <5 <K, Vk=1.j;S ={} (1c)
0<h <gAN0<g <n—A+1 1d)

If s contains exactly A elements, then3i,1 <i< (n—-A+1): s =g.
For sequences s with less than A elements, s corresponds to a row in the
submatrix g' formed by the last columns of g. Specifically, 3i,1 <i < (n—
A+1):s =g Ag =Ga_ys1|...|Ga € N4 where |s| is the length
of s.

The component g; of the precursor is the number of rows of G with
which s matches (partial or totally); i.e. the number of occurrences of s in
G. Since the matrix G is derived from earthquake catalogs, seismic fea-
tures and cluster assignments, precursors P are linked to the original
data.

Due to only precursors that involves large further earthquakes are
object of interest for prediction, the component h; of precursors counts
the occurrences of s in G which their corresponding class C* is 1. Ac-
cording to these definitions, h; must be less than or equal to g, as it is
shown in Eq. (1d).

The nodes of the precursor tree are all precursors P; such that g, > 0,
in order to omit sequences of patterns that are not present in the original
data. As it can be seen in Fig. 4, the root node contains the precursor with
the void sequence (s = [ ]). In this precursor, g =n—A+1land h; = >
C* (i.e. the number of rows in G with the class C* = 1).

The precursor tree is a K-ary tree, i.e. each node of the precursor tree
can have up to K child nodes, as it is shown in Fig. 4. Given a node of the
tree, each child adds a different number (between 1 and K) at the end of
the sequence s of the parent. The tree can have up to A+ 1 levels of
depth. Therefore, this data structure can represent all precursors of a
dataset in an hierarchical way.

3.3.4. Precursor pattern extraction

In order to select the most characteristic and general precursors that
involves large further earthquakes, in this phase of the methodology, the
K best precursors were extracted from the precursor tree. Specifically,
one precursor is extracted from each subtree PT;, Vi : 1 < i < K. Note that
one of the main drawbacks of the previous versions consisted in
discovering overlapped patterns. By extracting just one precursor from
each subtree this situation is avoided. As an example, in Fig. 4, the PT; of
the precursor tree is highlighted in blue.

The best precursor extracted for each subtree PT; is the one that has
the maximum ratio hs/g; (most characteristic precursor). If there are
more than one precursor with the maximum ratio h;/g;, the one that has
the shorter sequence s is extracted (most general precursor).

3.3.5. Precursor pattern selection

Once the K best precursors were extracted, in this phase the best
subset of them is selected, because not all precursors together will pro-
duce necessarily the best prediction results. For this purpose, an
exhaustive search over all possible subsets of precursors within the best K
was performed.

Due to the evaluation of goodness of a set precursors is very fast, in
terms of computation time, the space of subsets is addressed in a
reasonable time. Specifically, such evaluation measurement is defined in
Section 4.2 and it involves the calculation of TP, TN, FP and FN values.

Finally, the best subset of precursors selected in this phase are
returned as the precursor model, finishing the training procedure.

3.4. Prediction procedure

The procedure to produce predictions from the previously generated
precursor model is shown in Algorithm 2. The algorithm receives the test
attributes, the clustered training (generated in the clustering phase of the
training procedure), the best value for parameter A and the best subset of
precursors M* (achieved after the precursor pattern selection phase).
Regarding the last input, M; is the number of precursors obtained in the

training phase, M; = |[M*|. The algorithm returns the predicted values c
for the test classes.

The procedure is repeated for each test instance g;. First, a training
cluster is assigned to the instance a;. For this assignment, the Euclidean
distance between q; and each cluster centroid is used. The cluster whose
centroid has the lower distance is assigned to the instance, and the cor-
responding cluster number is appended at then of the vector g;, resulting
inaj.

After cluster assignment, the grouping process performs the same
operation explained in Section 3.3.2 only applied to the test instance a;
and producing one group of A* elements. The grouped test instance G is
then used to find precursors within the precursor subset M*, which are
returned in P.

Finally, if no precursors were found (P = @), the prediction will be

C; = 0, which means that no earthquake with large magnitude will occur
in the next days. On the other hand, if precursors were found, the pre-

dicted will be positive (Ei =1).



Algarithm 2: Prediction procedure

Input
a € R™ ™ (test attributes)
L* € R™*(m+1) (clustered training)

A* € Agria (best value for parameter A)

M*e< SiLH, G >Mi (precursors)
Output:

C € {0,1}" (predicted classes)
1 foreach q; € a do
2 a? := assigncluster(a;, L*);
2 G :— grouping(al, a, A*);
4 P := findprecursors(G, M*);
5 if P =0 then
6
7
8
9

4. Results

This section presents the results achieved in this work, after appli-
cation of the methodology described in the previous section. First, the
data used is introduced in 4.1. Section 4.2 describes the quality param-
eters used to assess the method performance.

4.1. Data description

Data from Spain, Chile and Japan have been used in this paper. In
particular, the datasets used in (Morales-Esteban et al., 2010) are first
analyzed. In them, data from two different Iberian Peninsula seismogenic
zones can be found. Data from four different zones in Chile are also
analyzed in this work, and correspond to those firstly studied in (Reyes
et al., 2013). Finally, data from Japan studied in (Asencio-Cortés et al.,
2017) are also here analyzed.

Table 2 summarizes information about these datasets. Note that the
minimum magnitude of interest for all the datasets is 4.5. That is, pat-
terns associated with earthquakes with magnitude larger than 4.5 are
searched for every zone. ZMAP was used to decluster catalogs (Wiemer,
2001).

4.2. Quality parameters to assess the model

True positives (TP) identify the occurrence of earthquakes with
magnitude greater or equal to 4.5 when any of the considered sequences
of labels are present. On the other hand, the false negatives (FN) repre-
sent the number of cases in which a medium-large earthquake also occurs
but no proposed sequences of labels are found. True negatives (TN) and
false positives (FP) refer to the situation in which no earthquakes

Table 2
Datasets used in the study.
Zone Country Events  Cell Date Declustered
size
Alboran Sea Iberian 532 1° 1980-2007  Yes
Peninsula
Western Azores- Iberian 443 1° 1980-2007 Yes
Gibraltar fault Peninsula
Santiago Chile 531 0.5° 2003-2011  Yes
Talca Chile 353 0.5° 2003-2011 Yes
Valparaiso Chile 530 1° 2006-2011 Yes
Pichilemu Chile 353 1° 2005-2011  Yes
Tokyo Japan 464 2° 2013-2015  No

occurred. However, the TN denotes that no proposed sequences appear,
while the FP makes reference to the apparition of any of the considered
sequences.

In addition, six well-known indices are provided: sensitivity, speci-
ficity, predictive positive value (PPV), negative positive value (NPV),
Matthew's correlation coefficient (MCC) and accuracy. In this context,
the sensitivity quantifies the grade of reliability of the method when real
events take place while the specificity measures the reliability of the
method when sequences of labels are discarded. PPV measures how
reliable positive predictions are, whereas NPV measures how reliable
negative predictions are. Finally, MCC and accuracy stand for global
measures. MCC is in essence a correlation coefficient between the
observed and predicted binary classifications, whereas the accuracy ac-
counts for all the actual predictions of the algorithm, irrespective of
positive or negative predictions.

All measures range from 0 to 100%, except for MCC whose range is [ —
1, + 1], where +1 represents a perfect prediction, 0 no better than
random prediction and —1 indicates total disagreement between pre-
diction and observation.

These indices are defined by the following equations:

TP
Sensitivity = TP+ FN 2)
P TN
Speuﬁuty = m—m (3)
TP
PPV = ——
TP + FP Q)
N
NPV = — 5)
TN + FN
TP-TN — FP-FN
MCC = 6)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
TP + TN
Accuracy = _ IPHIN. ()

TP+ FN + FP +TN
4.3. Results for the Iberian Peninsula
Results for the Iberian Peninsula are reported in this section. Several

seismogenic zonings are proposed in the literature for the Iberian
Peninsula (Martinez-Alvarez et al., 2015; Morales-Esteban et al., 2014).



Table 3
Results performance for the Iberian Peninsula: Western-Azores Gibraltar Fault
and Alboran Sea.

Parameters Western-Azores Gibraltar Fault Alboran Sea

Former version New version Former version New version
TP 23 25 9 9
FN 6 4 1 1
FP 5 3 15 8
TN 47 49 71 78
Sensitivity 79.31% 86.21% 90.00% 90.00%
Specificity 90.38% 94.23% 82.56% 90.70%
PPV 82.14% 89.29% 37.50% 52.94%
NPV 88.68% 92.45% 98.61% 98.73%
MCC 0.7026 0.8109 0.5119 0.6458
Accuracy 86.42% 91.36% 83.33% 90.63%

However, the original work considered the zoning proposed by Martin
(1984). In particular, datasets selected to assess the performance of the
proposed methodology are those published in (Morales-Esteban et al.,
2010), where two zones were analyzed: Western-Azores Gibraltar Fault
and the Alboran Sea.

Results achieved with the former methodology were already satis-
factory. However, with the new strategy two new TP have been detected
and two FP have been avoided for Western-Azores Gibraltar Fault, as
summarized in Table 3. These findings lead to improving global measures
values from 0.7026 to 0.8109 (MCC) or from 86.42% to 91.36% (accu-
racy). These facts are also reflected in improved PPV and specificity,
parameters directly related to the number of FP, reaching 89.29% and
94.24%, respectively. The increase of TP also influence other parameters
such as sensitivity and NPV with new values set to 86.21% and 92.45%.

Results for the Alboran Sea present similar behavior since they are
overall improved. FN remain equals to 1, that is, there is one actual
occurrence that remains hidden to the new approach. However, the
number of FP is significantly decreased from 15 to 8 and TN is increased
from 71 to 78. As a consequence, the new specificity reaches 90.70% and
PPV 52.94%. Global measures experiment a major improvement as well,
with new MCC and accuracy equals to 0.6458 and 90.63%, respectively.

In conclusion, the results have been improved by 5.72% and 8.76%
for Western-Azores Gibraltar Fault and the Alboran Sea, respectively, if
only the total number of instances properly classified is taken into
account.

4.4. Results for Chile

Results for four main cities in Chile and surroundings are discussed in
this section. It is worth noting that the original seismogenic zoning was
proposed in (Reyes and Cardenas, 2010) and refined in (Reyes et al.,
2013; Morales-Esteban et al., 2014), from which the datasets have been
extracted.

The former methodology achieved moderately satisfactory results for
the city of Santiago, as can be seen in Table 4. MCC was slightly less than
0.5, which is the minimum threshold for a classification to be considered
satisfactory. In this sense, both sensitivity and PPV must be clearly out-
performed (57.14% and 42.11%, respectively) in order to make use of the
patterns discovered with the former methodology. The main achieve-
ment with the new methodology lies on the drastic decrease of FP
(reduced by 50%) and the significant increase of TP (incremented from 8
to 11), along with their associated improvements in FN and TN rates.
These facts lead to an improved 78.57% sensitivity and 61.11% PPV, as
well as remarkable values for specificity (95.07%) and NPV (87.83%).
Due to this overall improvement, global measures such as MCC reached
0.6588 and accuracy 93.59% (see Table 5).

Results for Pichilemu, on the contrary, were already quite good in
terms of PPV and there was no much room for improvement. It can be
seen that only 3 FP had been triggered (in a total of 14 triggers), having
already reached PPV equals to 95.38%. With the new methodology one

Table 4
Results performance for Chile: Santiago, Pichilemu, Valparaiso and Talca.
Santiago Pichilemu
Parameters Former version New version Former version New version
TP 8 11 62 62
FN 6 3 11 11
FP 11 7 3 2
TN 131 135 19 20
Sensitivity 57.14% 78.57% 84.93% 84.93%
Specificity 92.25% 95.07% 86.36% 90.91%
PPV 42.11% 61.11% 95.38% 96.88%
NPV 95.62% 97.83% 63.33% 64.52%
MCC 0.4317 0.6588 0.6470 0.6823
Accuracy 89.10% 93.59% 85.26% 86.32%
Valparaiso Talca

Parameters Former version New version Former version New version
TP 28 36 14 19
FN 24 16 8 3
FP 17 13 4 3
TN 131 135 18 19
Sensitivity 53.85% 69.23% 63.64% 86.36%
Specificity 88.51% 91.22% 81.82% 86.36%
PPV 62.22% 73.47% 77.78% 86.36%
NPV 84.52% 89.40% 69.23% 86.36%
MCC 0.4450 0.6165 0.4623 0.7273
Accuracy 79.50% 85.50% 72.73% 86.36%

Table 5

Results performance for Japan: Tokyo.
Parameters Former version New version
TP 7 9
FN 12 10
FP 12 5
TN 61 68
Sensitivity 36.84% 47.37%
Specificity 83.56% 93.15%
PPV 36.84% 64.29%
NPV 83.56% 87.18%
MCC 0.2040 0.4567
Accuracy 73.91% 83.70%

less FP was triggering which involves slight improvement in PPV
(96.88%). As for FN, unfortunately, it cannot be reduced and therefore
the sensitivity remained at 84.93%, which was already satisfactory.
Finally, MCC and accuracy reached 0.6823 and 86.32%, respectively.

In Valparaiso, there were already 28 TP and 131 TN. However, the
number of FP was 17 which led to a 62.22% PPV. Since the number of FN
was 24, the sensitivity obtained a poor 53.85%. Overall, global measures
threw 0.4450 and 79.50% values for MCC and accuracy, respectively.
The most relevant achievement in this dataset is reduction of FN by 33%
(from 24 to 16). Additionally, FP has also been decreased up to 13 and TN
increased up to 135 accordingly. In this new situation, values for speci-
ficity, NPV or accuracy highlight, reaching 91.22%, 89.40% and 85.50%,
respectively.

The last Chilean city analyzed in this study is Talca. Reported results
showed only 4 FP but 8 FN, which resulted in a 77.78% PPV and a
63.64% sensitivity. MCC almost reached 0.5 as happened in Santiago and
Valparaiso, which indicated that results must be improved. In this sense,
the new methodology reported only 3 FN (increasing FP from 14 to 19)
and decreased FP from 4 to 3 (increasing TN by one unit as well).
Unsually, all the observed quality parameters reached exactly the same
value: 86.36% and MCC reached a remarkable 0.7273 value.

Finally, the results have been improved by 5.04%, 1.23%, 7.55% and
18.75% for Santiago, Pichilemu, Valparaiso and Talca, respectively, if
only the total number of instances properly classified is taken into
account.



4.5. Results for Japan

Results for the city of Tokyo are reported and discussed in this section.
Although several seismogenic zonings have been proposed in the litera-
ture (Hashimoto et al., 2009), the dataset introduced in (Asencio-Cortés
et al., 2017) has been selected since it is only focused in Tokyo and
neighborhood.

It can be noticed that results with the former methodology were not
that totally satisfactory. Although accuracy reached 73.91%, which could
be considered good enough in some contexts, too many FP were trig-
gered, in particular, 12. This value is high if compared to the number of
TP, 7, since it leads to a PPV rate slightly over 35% or a MCC value equals
to 0.2040. Moreover, sensitivity was not particularly high either
(36.84%) whereas rates associated with negatives remained at 83.56%
(both specificity and NPV). These values do not meet the minimum re-
quirements to be considered useful in the field of earthquake.

Nevertheless, the improved methodology's output draws a new sce-
nario. The main achievement lies in the significant reduction of FP: from
12 to 5. Therefore the value for TN is increased from 61 to 68. This sit-
uation involves new hit rates, i.e., PPV and specificity new values are
64.29% and 93.15%, respectively. The number of TP has been increased
as well, being able to accurately discover patterns preceding 9 earth-
quakes. Analogously, the number of FN has been decreased by 2 units.
The effect is clear: sensitivity and NPV has been increased up to 47.37%
and 87.18%, respectively. As for global measures, MCC is now 0.4567
and accuracy 83.70%.

It can be concluded that the results have been improved by 13.25%
for the Tokyo dataset, if only the total number of instances properly
classified is taken into account.

5. Conclusions

A novel methodology to detect earthquake precursory patterns is
proposed in this work. In particular, the approach improves its previous
version in several aspects. First, new features have been considered in
order to discover patterns with diverse shapes. Second, patterns are not
overlapped and those found ensure unique shapes. Third, the number of
clusters generated is not necessary equals to 3. Finally, patterns can be of
arbitrary shape. To assess the performance of the novel approach, seven
different datasets from three seismic zones —Iberian Peninsula, Chile and
Japan- have been analyzed. Reported results are promising and lead to
the conclusion that similar patterns could be found across the Earth due
to the different nature of the data used.
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