6,299 research outputs found
Potensi Limbah Sagu (Metroxylon SP.) Di Kecamatan Tebing Tinggi Barat Kabupaten Kepulauan Meranti Sebagai Substrat Penghasil Biogas
Biogas is one of alternative energy sources that fulfills future fuel needs. This studyaimed to analyse the potency of sago waste as fermentation substrate for biogasproduction. This research was done experimentally by employing sago waste materialsobtained from Sago Factory Nambus River from District West Tebing Tinggi Sub-province Meranti and fresh cow rumen liquid was obtained from slaughterhouse inPekanbaru. The biogas volume was calculated by measuring the volume of water thatwas pushed every 3 days, where the volume of water driven was proportional to thevolume of biogas produced. The bacterial cell numbers was counted using plate countmethod employing Nutrient Agar (NA). The substrate fermentation temperature and pHwere measured every 3 days. The highest biogas volume was produced by fermenter III(45760 ml) containing solid sago waste, liquid sago waste, and rumen liquid with ratio 1: 1 : 1 and the lowest was produced by fermenter II (1600 ml). The total bacterialinvolved in biogas production ranges from 1,87x10 5 – 2,87x10 8 CFU/ml samples. Thetemperature and pH of substrate fermetation was relatively constant during biogasproduction. The results showed that sago waste is potential as substrate for biogasproduction
Flow analysis of piston head geometry for direct injection spark ignition engine
Constructors of gasoline engines face higher and higher requirements as regards to ecological issues, and increase in engine efficiency at simultaneous decrease in fuel consumption. Satisfying these requirements is possible by the recognition of the phenomena occurred inside engine cylinder, the choice of suitable optimal parameters of fuel injection process, and the determination of geometrical shapes of the combustion chamber and piston head. The aim of this study is to simulate flow in Fuel Direct-Injection engine with different geometrical shapes of piston head. Designing piston head shapes was done by referring to existing motorcycle, Demak 200cc-single cylinder using SolidWork and ANSYS software. The parameter investigated are shallow and deep bowl design of piston head. In term of fuel distribution throughout the combustion chamber, engine model that has deeper bowl (Model 2) shows better fuel distribution than model of shallow bowl as it manages to direct the fuel injected towards the location of spark plug. Total kinetic energy of Model 2 is about 20% higher than Model 1. Therefore, engine with deeper bowl is chose as the best model between the two models as it can create a richer mixture around the spark plug
CONCENTRIC TUBE-FOULING RIG FOR INVESTIGATION OF FOULING DEPOSIT FORMATION FROM PASTEURISER OF VISCOUS FOOD LIQUID
This paper reports the work on developing concentric tube-fouling rig, a new fouling deposit monitoring device. This device can detect and quantify the level of fouling deposit formation. It can also functioning as sampler for fouling deposit study, which can be attached at any food processing equipment. The design is initiated with conceptual design. The rig is designed with inner diameter of 7 cm and with tube length of 37 cm. A spiral insert with 34.5 cm length and with 5.4 cm diameter is fitted inside the tube to ensure the fluid flows around the tube. In this work, the rig is attached to the lab-scale concentric tube-pasteurizer to test its effectiveness and to collect a fouling sample after pasteurization of pink guava puree. Temperature changes are recorded during the pasteurization and the data is used to plot the heat transfer profile. Thickness of the fouling deposit is also measured. The trends for thickness, heat resistance profile and heat transfer profile for concentric tube-fouling rig matched the trends obtained from lab-scale concentric tube-pasteurizer very well. The findings from this work have shown a good potential of this rig however there is a limitation with spiral insert, which is discussed in this paper
High Dimensional Modulation and MIMO Techniques for Access Networks
Exploration of advanced modulation formats and multiplexing techniques
for next generation optical access networks are of interest as promising
solutions for delivering multiple services to end-users. This thesis addresses
this from two different angles: high dimensionality carrierless amplitudephase
(CAP) and multiple-input multiple-output (MIMO) radio-over-fiber
(RoF) systems.
High dimensionality CAP modulation has been investigated in optical
fiber systems. In this project we conducted the first experimental demonstration
of 3 and 4 dimensional CAP with bit rates up to 10 Gb/s. These
results indicate the potentiality of supporting multiple users with converged
services. At the same time, orthogonal division multiple access
(ODMA) systems for multiple possible dimensions of CAP modulation has
been demonstrated for user and service allocation in wavelength division
multiplexing (WDM) optical access network.
2 x 2 MIMO RoF employing orthogonal frequency division multiplexing
(OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface
emitting lasers (VCSEL) WDM passive optical networks (PONs). We have
employed polarization division multiplexing (PDM) to further increase the
capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps
with fiber-wireless transmission over 1 m air distance is demonstrated.
The results presented in this thesis demonstrate the feasibility of high
dimensionality CAP in increasing the number of dimensions and their potentially
to be utilized for multiple service allocation to different users.
MIMO multiplexing techniques with OFDM provides the scalability in increasing
spectral effciency and bit rates for RoF systems.
High dimensional CAP and MIMO multiplexing techniques are two
promising solutions for supporting wired and hybrid wired-wireless access
networks
Flood flow characteristics and bed load transport in non-vegetated compound straight channels
Floods are the most common natural disasters in Malaysia and have damaged structures, infrastructures, crops and even causes fatalities. It may also lead to erosion and sedimentation in rivers and this will result to complex river behaviour. A hydraulic laboratory experimental study was carried out. Also, flood flow and sediment transport in straight compound channels involving flow resistance, distribution of depth-averaged velocity, stream-wise vorticity patterns, channel bed morphology and bed load transport rate in non-vegetated compound straight mobile bed channels were investigated. The finding showed that the Darcy Weisbach friction factor f increased by 40% and 54% for floodplain and main channel, respectively when relative flood flow depth increase from 0.30 to 0.50. The small bed load transport rates of 0.09 g/s and 0.03 g/s for shallow and deep overbank flows, respectively were measured due to effect of very gentle or mild channel bed slope which was fixed at a gradient of 0.1%
Tapered microchannel for multi-particles passive separation based on hydrodynamic resistance
Researches on separation of multi-particles utilizing microfluidic have been flourishing in recent years with the aid from advancements in microfabrication design and technology. Generally, separation is beneficial for biomedical application especially involving heterogeneous samples. Due to inherent problems of samples isolation, a simple and efficient separation device is required. Here, we present a passive tapered microchannel for multi-particles separation using hydrodynamic principle. Our emphasis is on the effect of hydrodynamic resistance coupled with tapered microchannel design. In the experiment, successful multi-particles samples separation was observed. The results were further analyzed and were in agreement with the proposed concept. This method opens the route toward robust, low-cost and high-throughput, thus it may holds potential to be integrated as one functional module in Micro Total Analysis System (µTAS)
- …
