59 research outputs found

    A New Early Oligocene Dugongid (Mammalia, Sirenia) from Fayum Province, Egypt

    Full text link
    89-108http://deepblue.lib.umich.edu/bitstream/2027.42/48643/2/ID510.pd

    Locomotion, posture, and the foramen magnum in primates: Reliability of indices and insights into hominin bipedalism

    Get PDF
    The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion–prosthion (OP–PR) and the opisthocranion–glabella (OP–GL) indices, the basion–biporion (BA–BP) and basion–bicarotid chords, the foramen magnum angle (FMA), and the basion–sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA–BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP–PR, OP–GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings

    Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    Get PDF
    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices

    Inheritance of mitochondrial DNA in the rotifer Brachionus plicatilis

    Get PDF
    By crossing Brachionus plicatilis s.s. NH1L strain and German strain, we obtained two types of hybrids, NH1L female × German male designated as NXG and German female × NH1L male designated as GXN. To confirm the crossing of the two hybrid strains at the genetic level, random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis using 10 kinds of primers (10 and 12 mers) was carried out. Some amplified DNA fragments from RAPD of the hybrid strain showed mixed patterns of both parental strains, thus confirming that both hybrids were crossbreeds of the NH1L and German strains. Using these hybrids, we investigated the mode of mitochondrial inheritance in B. plicatilis. Full length mtDNA of the four strains was amplified by PCR, and digested with restriction enzymes to obtain restriction fragment length polymorphism (RFLP) patterns. Both hybrid strains had the same RFLP patterns as their female parents. This result shows that mitochondrial inheritance in rotifers is maternal

    Moonstruck Primates: Owl Monkeys (Aotus) Need Moonlight for Nocturnal Activity in Their Natural Environment

    Get PDF
    Primates show activity patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. Unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics have switched their activity pattern from strict nocturnality to one that also includes regular diurnal activity. Harsher climate, food availability, and the lack of predators or diurnal competitors, have all been proposed as factors favoring evolutionary switches in primate activity patterns. However, the observational nature of most field studies has limited an understanding of the mechanisms responsible for this switch in activity patterns. The goal of our study was to evaluate the hypothesis that masking, namely the stimulatory and/or inhibitory/disinhibitory effects of environmental factors on synchronized circadian locomotor activity, is a key determinant of the unusual activity pattern of Azara's owl monkeys. We use continuous long-term (6–18 months) 5-min-binned activity records obtained with actimeter collars fitted to wild owl monkeys (n = 10 individuals) to show that this different pattern results from strong masking of activity by the inhibiting and enhancing effects of ambient luminance and temperature. Conclusive evidence for the direct masking effect of light is provided by data showing that locomotor activity was almost completely inhibited when moonlight was shadowed during three lunar eclipses. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions. Our results highlight the importance of the masking of circadian rhythmicity as a determinant of nocturnality in wild owl monkeys and suggest that the stimulatory effects of dim light in nocturnal primates may have been selected as an adaptive response to moonlight. Furthermore, our data indicate that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Anatomy of Friction Ridge Skin

    No full text
    • 

    corecore