7 research outputs found
Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer
Immunotherapy of prostate cancer (CaP) may be a promising novel treatment option for the management of advanced CaP. However, the lack of suitable tumor antigens remains a major obstacle for the rational design of vaccines. To characterize potential CaP antigens, we determined the mRNA expression of the prostate-specific genes C1, C2, C5, PAGE-1, and prostate stem cell antigen (PSCA) in hormone-refractory CaP, benign prostatic hyperplasia, CaP cell lines, and CaP specimens. Among these gene products, only expression of PSCA appears to be retained in the majority of advanced CaP samples, as shown by reverse transcription-PCR analyses. Peptide fragments of PSCA presented in the context of major histocompatibility molecules could serve as recognition targets for CD8 T cells, provided these lymphocytes were not clonally deleted or peripherally tolerized. Our goal was to determine whether the human T-cell repertoire could recognize PSCA-derived peptide epitopes in the context of a common class I allele, HLA-A0201. Of nine peptides that, according to HLA-A0201 binding motifs, were candidate ligands of A0201 class I molecules, three peptides were able to stabilize HLA-A0201 molecules on the cell surface. One of the latter peptides, encompassing amino acid residues 14-22, was capable of generating a PSCA-specific T-cell response in a human lymphocyte culture from a patient with metastatic CaP. PSCA-specific CTLs recognized peptide-pulsed targets as well as three prostate carcinoma lines in cytotoxicity assays, indicating that this peptide could be endogenously processed. In conclusion, our findings establish PSCA as a potential target for antigen-specific, T cell-based immunotherapy of prostate carcinoma
Soluble CD146 is generated by ectodomain shedding of membrane CD146 in a calcium-induced, matrix metalloprotease-dependent process
CD146 is a cell adhesion molecule localized at the endothelial junction and is involved in the control of cell-cell cohesion. In this study, we showed that calcium influx in human microvascular lung endothelial cells results in the loss of surface CD146 and the release of soluble CD146. This calcium-induced CD146 shedding could be prevented with inhibitors of matrix metalloproteases indicating a central role of matrix metalloproteases in this process. We also investigated if CD146 shedding influences vascular permeability. Endothelial cell monolayers cultured on filter membranes showed an increased permeability for albumin when stimulated with ionomycin. This calcium-induced increase in permeability was inhibited when CD146 shedding was prevented by a matrix metalloprotease inhibitor. Our data indicate that surface CD146 plays a central role in the regulation of vascular permeability and demonstrate that CD146 and matrix metalloproteases are potential targets to modify endothelial barrier function.publishe